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Abstract

We propose a theoretical framework of multi-way similarity
to model real-valued data into hypergraphs for clustering via
spectral embedding. For graph cut based spectral clustering, it
is common to model real-valued data into graph by modeling
pairwise similarities using kernel function. This is because
the kernel function has a theoretical connection to the graph
cut. For problems where using multi-way similarities are more
suitable than pairwise ones, it is natural to model as a hyper-
graph, which is generalization of a graph. However, although
the hypergraph cut is well-studied, there is not yet established
a hypergraph cut based framework to model multi-way sim-
ilarity. In this paper, we formulate multi-way similarities by
exploiting the theoretical foundation of kernel function. We
show a theoretical connection between our formulation and
hypergraph cut in two ways, generalizing both weighted ker-
nel k-means and the heat kernel, by which we justify our
formulation. We also provide a fast algorithm for spectral clus-
tering. Our algorithm empirically shows better performance
than existing graph and other heuristic modeling methods.

Introduction
Graphs are widely used data representations for data that
have pairwise relationships. One of the main aims for graph
machine learning is clustering vertices, and the graph cut
based spectral clustering is a popular method (Shi and Malik
1997; von Luxburg 2007). For clustering purposes, spectral
clustering is also useful for real-valued data. We model real-
valued data as a graphs by forming a vertex from each data
point and an edge from pairwise similarity of each pair of
data points (Goyal and Ferrara 2018). One popular modeling
method uses kernel functions. The kernel has been theoreti-
cally justified; for example, dot product kernel is shown to
be linked to the normalized graph cut via weighted kernel k-
means (Dhillon, Guan, and Kulis 2004) and Gaussian kernel
is justified via heat kernel (Belkin and Niyogi 2003).

Hypergraphs generalize graphs (Berge 1984), and hence
are suitable to model data that have multi-way relation-
ships, such as videos (Huang, Liu, and Metaxas 2009) and
cells (Klamt, Haus, and Theis 2009). For hypergraphs, cut-
based spectral clustering has also been established (Zhou,
Huang, and Schölkopf 2006; Hein et al. 2013). Therefore,
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from the discussion on graphs, it is natural to model real-
valued data as hypergraphs for clustering. By looking at
multi-way relationships, we aim to gain better clustering re-
sults for general data as well as to model data that essentially
involves multi-way relationships, such as the examples above.
However, while heuristic modeling as hypergraphs has been
done in several domains (Govindu 2005; Sun et al. 2017; Yu
et al. 2018), we are yet to have a modeling framework that is
theoretically connected to hypergraph cut problems.

This paper proposes a hypergraph modeling and its spec-
tral embedding framework for clustering, which we theoret-
ically connect to the established hypergraph cut problems.
This framework models real-valued data as an even order
m-uniform hypergraphs, all of whose edges connect m ver-
tices. For this purpose, we propose a biclique kernel, which
formulates multi-way similarity, by exploiting the kernel
function’s ability to model similarity but in a way where
we expand from pairs to multiplets. We give a theoretical
foundation to biclique kernel: a biclique kernel is equivalent
to semi-definite even-order tensor (Thm. 1). We show that
biclique kernel is theoretically connected to the established
hypergraph cut problems proposed by (Zhou, Huang, and
Schölkopf 2006; Saito, Mandic, and Suzuki 2018; Ghosh-
dastidar and Dukkipati 2015) via two problems, weighted
kernel k-means and heat kernels. We provide a spectral clus-
tering algorithm for our formulation, which is faster than
existing ones (O(n3) vs. O(nm), where n is the number of
data points). This speed-up allows us to model as an arbitrar-
ily higher-order hypergraphs in a reasonable computational
time. We numerically demonstrate that our algorithm outper-
forms the existing graph and heuristic embedding methods.
Our empirical study also shows that by increasing order of a
hypergraph, the performance is gained until a certain point
but slightly drops from there. To our knowledge, it is first time
to obtain the behavior of performance of spectral clustering
using higher-order (say, m≥ 8) uniform hypergraph.

Our contributions are as follows; i) We provide a formula-
tion to model real-valued data as an even order m-uniform
hypergraph. ii) We show that our formulation is theoreti-
cally linked to the established hypergraph cuts in two ways,
weighted kernel k-means and heat kernel. iii) We provide a
fast spectral clustering algorithm. iv) We numerically show
that our method outperforms the standard graph ones and ex-
isting heuristic embedding ones. All proofs are in Appendix
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in (Saito 2022), which we refer to as “Appendix”.

Related Work
This section reviews the related work of graph and hyper-
graph modeling. There are several approaches for justification
of graph modeling via kernel function. Existing work shows
the theoretical connection to the graph cut from the weighted
kernel k-means (Dhillon, Guan, and Kulis 2004), energy
minimization problem via continuous heat kernel (Belkin
and Niyogi 2003), and kernel PCA (Bengio et al. 2004).
Our approach follows the first two. A study on hypergraph
cut has three approaches. One way is a graph reduction
way (Agarwal, Branson, and Belongie 2006), which also
works for non-uniform hypergraphs. There are three variants
of this; star (Zhou, Huang, and Schölkopf 2006), clique (Ro-
driguez 2002; Saito, Mandic, and Suzuki 2018), and inho-
mogeneous (Li and Milenkovic 2017; Veldt, Benson, and
Kleinberg 2020; Liu et al. 2021). Other ways are total varia-
tion (Hein et al. 2013; Li and Milenkovic 2018) and tensor
modeling for uniform hypergraph (Hu and Qi 2012; Chen,
Qi, and Zhang 2017; Chang et al. 2020; Ghoshdastidar and
Dukkipati 2014, 2015). Our approach follows star and clique
ways as well as tensor and its graph reduction approach
of (Ghoshdastidar and Dukkipati 2015). We also connect
ours to the inhomogeneous way. Comparing to the produc-
tion of hypergraph cut objectives as above, ways of modeling
as hypergraphs have received less attention. There are various
studies to model real-valued data as hypergraphs by heuristic
ways (Govindu 2005; Sun et al. 2017; Yu et al. 2018). How-
ever, to our knowledge, no studies developed a hypergraph
cut-based framework to model real-valued data as hyper-
graphs. Moreover, for hypergraph connection, Whang et al.
(2020) considers weighted kernel k-means, but they consider
a naive connection between reduced contracted graphs and
the standard kernel. Also, Louis (2015) and Ikeda et al. (2018)
consider discrete heat equation, which is connected to ran-
dom walk. However, those three are different to ours since
they do not intend to formulate multi-way relationships.

Tensors and Uniform Hypergraphs
This section introduces notations of tensors and hyper-
graphs. We define an m-order tensor as A ∈ Rn1×...×nm ,
whose (i1, i2, . . . , im)-th element is ai1i2...im∈R. If all
the dimensions of an m-order tensor A are identical, i.e.,
n1=. . .=nm=n, we call this tensor as cubical. Letting Sm

be a set of permutations σ on {1, ...,m}, an even m-order cu-
bical tensor is called as half-symmetric if for every elements

Aiσ(1)...iσ(m/2)im/2+σ′(1)...im/2+σ′(m/2)
=

Aim/2+σ′(1)...im/2+σ′(m/2)iσ(1)...iσ(m/2)
, ∀σ, σ′ ∈ Sm

2
, (1)

see Appendix for examples. In the following, we assume
a half-symmetric even order cubical tensor. We define the
mode-k product of A∈Rn1×...×nm and a vector x∈Rnk as
A×kx∈Rn1×...×nk−1×1×nk+1×...×nm , whose element is

(A×k x)i1...ik−11ik+1...im :=

nk∑
ik=1

Ai1...ik...imxik (2)

We define a contracted matrix A(m) for a half-symmetric
even m-order cubical tensor A as

A(m) := A×2 1×3 · · · ×m
2 −1 1×m

2 +1 1 · · · ×m 1 (3)

Note that A(m) is symmetric. For details, see (Lim 2005; Qi
2005; De Lathauwer, De Moor, and Vandewalle 2000).

An m-uniform hypergraph, a generalized graph, can be
represented by an m-order cubical tensor. A hypergraph G
is a set of (V,E,w), where an element of V is called a ver-
tex, an element of E is called as an edge, and w is a vector
{w(e)}e∈E where w : E→R+ associates each edge with a
weight. When all the edge contains the same number of ver-
tices, we call uniform. A hypergraph is connected if there
is a path for every pair of vertices. If an edge contains the
same vertex multiple times, we call that this edge has a self-
loop. We define an adjacency tensor A for uniform hyper-
graph, where we assign the weight of edge e={i1, . . . ,im}
to (i1, . . . , im)-th element of m-order cubical tensor. A uni-
form hypergraph is half-undirected when its adjacency tensor
is half-symmetric. Note that a uniform hypergraph is half-
undirected if undirected. The following assumes that a hyper-
graph G is uniform, connected, half-undirected, and has self-
loops unless noted. We define the degree of a vertex v∈V as
di=

∑
e∈E:i∈ew(e), and define a degree matrix Dv whose di-

agonal elements are the degree of vertices. Let We∈R|E|×|E|

be a diagonal matrix, whose diagonal elements are weight of
edge e. Let H∈R|V |×|Eu| be an index matrix, whose element
h(v, e) =

√
ρv,e if a vertex v is connected to an edge e, and

0 otherwise, where ρv,e counts how many times the edge e
contains the vertex v, e.g., if edge is e=(v, v, v1, v2) for 4 uni-
form hypergraph, ρv,e=2. Other than this tensor way, there
is another way to represent hypergraphs as adjacency matrix,
which contracts hypergraphs into graphs. There have been
three popular ways for this, star (Zhou, Huang, and Schölkopf
2006) and two variants of clique methods (Rodriguez 2002;
Saito, Mandic, and Suzuki 2018). In terms of clustering for
half-undirected uniform hypergraph, which is our focus, these
three different methods produce the same result (see Ap-
pendix). This paper uses the star method, which contracts a
hypergraph into a graph by forming As:=HWeH

⊤/m.

Formulation of Multi-way Similarity
This section proposes a formulation of multi-way similar-
ity and discusses its properties. Looking back at a pairwise
similarity, kernel function is a convenient tool to model a
similarity. However, kernel functions consider pairwise sim-
ilarities, not multi-way similarities. The idea to construct a
multi-way similarity framework is that we take the benefits
of the kernel framework’s modeling ability, but at the same
time, we expand to multiplets from pairs.

Biclique Kernel and Tensor Semi-definitness
This section formulates multi-way similarity as a biclique
kernel and discusses its semi-definite property. For two
sets of m/2 variables, {xi·} and {tl·}, xi· , tl·∈X, X ⊆
Rd, we formulate even m multi-way similarity function
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κ(m)(xi1 , ..,xim/2
, tl1 , .., tlm/2

) : Xm/2×Xm/2→R as

κ(m)({xi·}, {tl·}}) :=
m/2∑
γ=1

m/2∑
ν=1

κ(xiγ , tlν ), (4)

where κ :X×X→R is a standard kernel. We call κ as a base
kernel. By construction, κ(m) is also a kernel. Therefore,
we call κ(m) as biclique kernel. Let K be a gram tensor
of κ(m), i.e., an m-order cubical tensor formed by Eq. (4),
whose (i1,..., im)-th element is κ(m)(xi1 ,...,xim). Note that
K is half-symmetric due to the construction of κ(m). Seeing
Eq. (4), we can obtain arbitrary even m order biclique kernel
from a standard kernel function κ.

The biclique kernels are connected to the semi-definite
even order tensors, which serves as a theoretical ground of the
biclique kernel. For the standard kernel, a gram matrix for a
kernel function is equivalent to a semi-definite matrix (Shawe-
Taylor, Cristianini et al. 2004). This characteristic is one of
the theoretical foundations of kernel function. Here, we es-
tablish a generalization of this characteristics for the gram
tensor K. We begin with the definition of semi-definiteness
of even-order tensors. An even m-order cubical tensor A
is semi-definite if A×1x...×mx≥0, ∀x ∈ R. Note that the
semi-definiteness can be applied only to even order tensors
since no odd-order tensors satisfy this semi-definiteness (see
Appendix). For this semi-definiteness of tensors, the follow-
ing theorem for a tensor formed by a biclique kernel holds.
Theorem 1. Given a function κ(m):Xm/2×Xm/2→R de-
fined by κ(m)({xi·}, {tl·}})=

∑
γ,ν κ(xiγ , tlν ), where κ is

a function κ :X×X→R, then κ can be decomposed as
κ(x, z)= ⟨ψ(x),ψ(z)⟩ if and only if κ(m) is half-symmetric
and has the m-order tensor semi-definite property.

This theorem gives a theoretical foundation of the biclique
kernel. Thm. 1 shows that a half-symmetric even-order semi-
definite tensor and a biclique kernel are equivalent, which is
similar to the foundations of the standard kernel function.

Contraction of Biclique Kernel
Despite of the nice property of Thm. 1, tensors are practically
hard to work with. Many tensor problems of generalized
common operations to matrix are NP-hard (Hillar and Lim
2013), such as computing eigenvalues. This motivates us
to explore a practically easy while theoretical guaranteed
way to deal with biclique kernel. This section argues that a
contracted matrix of a gram tensor can address this issue.

We consider a contacted matrix K(m) (defined in Eq. (3))
of a gram tensor K of the biclique kernel κ(m). We call this
contracted matrix K(m) as a gram matrix of κ(m). In the
following, we see this gram matrix is more computationally
efficient while equivalent to the original biclique kernel. We
first observe the following lemma and corollary by contract-
ing a gram tensor into a gram matrix.
Lemma 1. Assume κ(x, z)=⟨ψ(x), ψ(z)⟩κ is a base kernel
of the biclique kernel κ(m). Let ψi := ψ(xi), and Ψ :=∑n

l=1 ψl/n. The gram matrix K(m) of κ(m) is equal to a
gram matrix formed by a kernel κ′ : X ×X → R as

κ′(xi,xj)

nm−2
:=

〈
ψi +

m− 2

2
Ψ, ψj +

m− 2

2
Ψ
〉
κ
. (5)

Corollary 1. The gram matrix K(m) is semi-definite.

From this lemma, we observe that K(m) is more computa-
tionally efficient than K of the following reason. Computing
Eq. (5), we can rewrite K(m) by using the gram matrix K of
the base kernel κ as

K
(m)
ij

nm−2
= Kij +

m− 2

2n
(δi + δj) +

(m− 2)2

4n2
ρ (6)

where δi is the sum of i-th row of K and ρ is a sum of all the
elements of K, i.e., ρ=

∑
i,jKij . Since we can pre-compute

δi, δj and ρ fromK inO(n2), the overall computational time
forK(m) isO(n2), whereasO(nm) if we naively formK(m)

from the original tensor and Eq. (3). Note that if we seeK(m)

as a graph, its degree matrix is equal to a degree matrix Dv

of a hypergraph formed by K. Using this lemma, we obtain
the following proposition about equivalence of K and K(m).
Proposition 1. There exists only one kernel κ′ from a biclique
kernel κ(m). Also, we can compose only one biclique kernel
κ(m) from a kernel κ′ and even-order m.

This proposition shows that a biclique kernel κ(m) and
a set of a kernel function κ′ and even order m are equiv-
alent. Therefore, Prop. 1 is a theoretical guarantee to use
a computationally cheaper gram matrix K(m) instead of a
computationally expensive gram tensor K.

Hypergraph Cut and Spectral Clustering
Similarly to the graph case, we want to ground our formula-
tion of multi-way similarity by biclique kernel on a hyper-
graph cut theory. This section discusses uniform hypergraph
cut, to which we aim to link our formulation later. Here we
consider partitioning a hypergraph G into two disjoint ver-
tices sets V1,V2⊂V , V1∩V2=∅. Since the hypergraph edges
contain multiple vertices, a generalization from graph cut to
hypergraph cut is not straightforward. The line of the research
of graph contraction ways (Zhou, Huang, and Schölkopf
2006; Saito, Mandic, and Suzuki 2018) defines hypergraph
cut to penalize by a balance of the number of intersected ver-
tices in edge by a partition. More formally, following (Zhou,
Huang, and Schölkopf 2006), a hypergraph cut is defined as

Cut(V1, V2) :=
∑
e∈E

w(e)|e ∩ V1||e ∩ V2|/m (7)

We define the normalized hypergraph cut problem as

NCut(V1, V2) := Cut(V1, V2)
(
vol−1(V1) + vol−1(V2)

)
,

where vol(Vj)=
∑

i∈Vj
di. We extend this to k-way normal-

ized hypergraph cut problem as

kNCut({Vi}ki=1) :=
k∑

j=1

NCut(Vj , V \Vj). (8)

We can rewrite the minimization problem of Eq. (8) as

min kNCut({Vi}ki=1)

= min traceZ⊤D−1/2
v LsD

−1/2
v Z s.t.Z⊤Z = I (9)
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Algorithm 1: Spectral clustering for hypergraph embedded
by generalized kernel.
Require: Data X, κ, and m

Compute K from the base kernel kernel κ from data X .
Construct a gram matrix K(m) of the biclique kernel κ(m)

from K by using Eq. (6).
Compute degree matrix Dv from K(m) and obtain top
k-eigenvectors of D−1/2

v K(m)D
−1/2
v .

Conduct k-means to the obtained top k-eigenvectors
Ensure: The clustering result.

= max traceZ⊤D−1/2
v AsD

−1/2
v Z s.t.Z⊤Z = I, (10)

where Ls:=Dv−As is a hypergraph Laplacian and
Zij=(di/

∑
l∈Vj

dl)
1/2 when i∈Vj otherwise 0. Eq. (9) and

Eq. (10) become eigenproblem if we relax Z into real-values.
As discussed, there are three types of adjacency matrix for hy-
pergraph; star and two cliques. We can define similar cuts for
the other two (Saito, Mandic, and Suzuki 2018). For uniform
hypergraphs, which are our focus, these three cuts would
produce the same results. See Appendix for more discussion.

In the line of tensor modeling of uniform hypergraph re-
search (Ghoshdastidar and Dukkipati 2015, 2017), k-way
partitioning problem is also considered, which we refer as
GD. Slightly changing from GD, we form an adjacency ma-
trix Ag as a contracted matrix of A. A change from GD is the
“position” of mode-k products, i.e., GD defines a contraction
as A×31...×m1. The reason for this change is that we want
a contraction of half-undirected hypergraph to be symmetric.
On the other hand, this change does not affect the result in
GD since GD assumes undirected hypergraph and symmetric
tensor and hence contraction does not change by the position
of mode-k products. The clustering algorithm of GD is to
solve the eigenproblem as

max traceZ⊤D−1/2
v AgD

−1/2
v Z, s.t.Z⊤Z = I. (11)

We here show the connection between these two algorithms
through the following proposition.
Proposition 2. For half-symmetric uniform hypergraphs,
Eq. (11) and Eq. (10) are equivalent.

We call solving these eigenproblems as spectral clustering.

Proposed Algorithm
We propose an algorithm for clustering real-valued data

via modeling as an even m-uniform hypergraph and using
hypergraph cut. The overall algorithm is shown in Alg. 1. The
core of our algorithm is that we model real-valued data as a
hypergraph by our biclique kernel (Eq. (4)) and use hyper-
graph spectral clustering (Prop. 2). To do this efficiently, we
firstly compute K(m) using Eq. (6) (the first and second step
of Alg. 1) and then conduct spectral clustering (the third step).
The fourth step uses a simple k-means algorithm for obtained
eigenvectors to decide the split points, same as the previous
studies (Zhou, Huang, and Schölkopf 2006; Ghoshdastidar
and Dukkipati 2015). The overall computation time of Alg. 1
isO(n3), since it takesO(n2) to computeK as well asK(m),

and takes O(n3) to compute eigenvectors, which is equiva-
lent to the standard graph spectral methods. Alg. 1 is faster
than spectral algorithms naively using Eq. (10) (Zhou, Huang,
and Schölkopf 2006; Saito, Mandic, and Suzuki 2018) and
Eq. (11) (Ghoshdastidar and Dukkipati 2015) for a hyper-
graph formed by K. Both of these cost O(nm) to compute K
and K(m), while ours takes overall O(n3). This reduction al-
lows us to model as an arbitrary evenm-uniform hypergraphs
in a reasonable computation time, e.g., for a 20-uniform hy-
pergraph O(n3) vs. O(n20). Therefore, Alg. 1 is as scalable
as the standard graph methods in terms of n, and more scal-
able than the existing hypergraph methods in terms of m.

The question is, what are theoretical justifications for
Alg. 1? At this point, it seems ad-hoc to model real-valued
data as a hypergraph via biclique kernel for spectral clus-
tering since we do so without any justifications. To justify
Alg. 1, next two sections connect Alg. 1 to the weighted ker-
nel k-means and explain Alg. 1 with Gaussian-type biclique
kernel from a heat kernel view.

Kernel k-means and Spectral Clustering
The graph cut and the standard kernel have a connection
through a trace maximization problem via weight kernel k-
means (Dhillon, Guan, and Kulis 2004). This section explores
a similar connection between our biclique kernel and the hy-
pergraph cuts. To do so, we first revisit the connection for
the standard case and give an alternative way of connection
for any kernel, instead of the dot product kernel originally
discussed in (Dhillon, Guan, and Kulis 2004). This way is a
kernel function approach instead of an explicit feature map
approach done in (Dhillon, Guan, and Kulis 2004). We gener-
alize this way of the graph case to our biclique kernel setting.
We show that this generalized weighted kernel k-means ob-
jective for our biclique kernel is equivalent to the established
cut in Prop. 2, which we see as a justification of Alg. 1.

Revisiting Spectral Connection
This section revisits the claim in (Dhillon, Guan, and Kulis
2004) that weighted kernel k-means and graph cuts are con-
nected. We here give an alternative way of connection. This
alternative way allows us to handle any inner product kernels,
while the original in (Dhillon, Guan, and Kulis 2004) only
assumes the dot product kernel. We define clusters by πj , a
partitioning of points as {πj}kj=1, and the weighted kernel
k-means objective for this as

J({πj}kj=1) :=
∑

xi∈πj ,j

w(xi)∥ψ(xi)−mj∥2, (12)

where mj is a weighted mean, which is defined as mj :=∑
xi∈πj

w(xi)ψ(xi)/sj , sj :=
∑

xi∈πj
w(xi), and ∥·∥ is a

norm induced by any inner product forming a kernel func-
tion κ(x,y)=⟨ψ(x), ψ(y)⟩. Let κij :=κ(xi,xj),ψi:=ψ(xi),
and wi:=w(xi). Using the kernel κ and its gram matrix K
we can rewrite Eq. (12) as

J({πj}kj=1) =
∑

i∈πj ,j

wi(∥ψi∥2 − 2⟨ψi,mj⟩+ ∥mj∥2)
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=
∑

i∈πj ,j

(
wiκii − 2wi

∑
l∈πj

wl

sj
κil + wi

∑
l,r∈πj

wlwr

s2j
κlr

)
=

∑
i∈πj ,j

wiκii −
∑

r,l∈πj ,j

wrwlκrl/sj (13)

= traceW 1/2KW 1/2 − traceYW 1/2KW 1/2Y, (14)

where Yij=(w(xi)/sj)
1/2 when xi∈πj otherwise 0, and W

is a diagonal matrix whose diagonal element is wi. To mini-
mize Eq. (14), we want to maximize the second term because
the first term is constant w.r.t. the partitioning variable Y .
Since Y ⊤Y=I , maximizing the second term is taking the top
k eigenvectors ofW 1/2KW 1/2. TakingK as a graph andW
as inverse of the degree matrix, Eq. (14) becomes the relaxed
graph cut problem. This gives an alternative way to connect
the weighted kernel k-means and the graph cut.

Spectral Connection for Multi-way Similarity
This section aims to establish a connection between our for-
mulation of multi-way similarity and the hypergraph cut prob-
lem, similarly to the graph one. To do so, we first generalize a
weighted kernel k-means for our biclique kernel. Looking at
Eq. (13), the objective function of weighted kernel k-means
uses the kernel function κ directly. Therefore, we consider
generalizing by replacing κ in Eq. (13) to our biclique kernel.
This discussion leads us to define an objective function for
weighted kernel k-means for multi-way similarity as follows:

J ′({πj}kj=1) :=
∑

i∈πj ,j

∑
{i·}⊂πj

wiκ
(m)(i, i·, i, i·)

−
∑

i,l∈πj ,j

∑
{i·},{l·}⊂πj

wiwlκ
(m)(i, i·, l, l·)/sj , (15)

where we write i instead of xi, and write i· instead of {xi·},
a set of m/2−1 variables. Seeing the way we form the gram
matrix K(m) of κ(m) (Eq. (3)), we can rewrite Eq. (15) as

J ′({πj}kj=1) =
∑

x∈πj ,j

wiK
(m)
ii −

∑
i,l∈πj ,j

wiwjK
(m)
il /sj

= traceW
1
2K(m)W

1
2 − traceYW

1
2K(m)W

1
2Y, (16)

where Y is defined as Eq. (14) and K(m) is a gram matrix of
biclique kernel κ(m). Similarly to the graph case, Eq. (16) can
be solved by taking top k eigenvectors of W 1/2K(m)W 1/2.

This discussion draws a connection between hypergraph
cut and biclique kernel, and justifies Alg. 1. Recall that a gram
matrix K(m) is obtained by a contraction of a gram tensor K.
Taking a gram matrix K(m) as a contracted matrix from the
adjacency tensor of m-uniform hypergraph and W=D−1

v ,
where Dv is its degree matrix, Eq. (16) is equivalent to the
hypergraph cut problem (Prop 2 and Eq. (7)). Thus, the hy-
pergraph cut problem for a hypergraph formed by κ(m) is
equivalent to the weighted kernel k-means objective function
for κ(m) (Eq. (15)) with a particular weight. This discussion
justifies Alg. 1, since Alg. 1 turns out to be equivalent to a
generalization of weighted kernel k-means for κ(m). Note
that since we form K by κ(m), elements of K can be negative.

This contradicts the assumption that all the weight of an edge
is positive. However, this can be practically resolved in a way
that does not affect topological structures, e.g., by adding
the same constant to all the data points. Finally, we remark
that we can rewrite Eq. (15) as an Eq. (12)-style objective
function. Let ψ′

i:=n
m−2

2 (ψi+
m−2
2

∑n
l=1 ψl/n). Observing

Eq. (16), we can rewrite Eq. (15) as

J ′({πj}kj=1) =
∑

i∈πj ,j

wi∥ψ
′

i −m′
j∥2, (17)

where m′
j :=

∑
i∈πj

wiψ
′
i/
∑

i∈πj
wi.

We can more generalize this framework to connect inhomo-
geneous cut and weighted kernel k-means, which we discuss
in Appendix.

Heat Kernels and Spectral Clustering
This section establishes a connection between heat kernel
and biclique kernel to justify Alg 1. In the graph case, for a
graph made from a gram matrix of Gaussian kernel formed by
randomly generated data, the cut of this graph can be seen as
an analog of the asymptotic case of an energy minimization
problem of the single variable heat equation using Gaussian
kernel as a heat kernel (Belkin and Niyogi 2003). It is also
shown that the graph Laplacian converges to the continuous
Laplace operator with infinite number of data points (Belkin
and Niyogi 2005). We formulate a multivariate heat equa-
tion, to which we can similarly connect our biclique kernel.
We show that the hypergraph cut problem converges to an
asymptotic case of the energy minimization problem of this
heat equation using our biclique kernel as heat kernel if the
number of data points is infinite.

We define a discrete Laplacian L(m)
t,n for m/2 variables

{xi·}∈Xm/2, X⊂Rd and a function f :Xm/2→R which is
“decomposable” as f({xi·})=

∑m/2
µ=1 f

′(xiµ), f
′: X→R as

L
(m)
t,n f({xi·}) := −

∑
{yi·}

H
(m)
t ({xi·}, {yi·})f({yi·})

+
∑
{yi·}

H
(m)
t ({xi·}, {yi·})f({xi·})(m/2)−1 (18)

where H(m)
t is a biclique kernel formed as

H
(m)
t ({xi·}, {yi·}) :=

m/2,m/2∑
γ,ν=1

Gt(xiγ ,yiν ),

where Gt(x,y) := exp
(
−∥x− y∥2/4t

)
/(4πt)d/2.

Note that Gt is a Gaussian kernel. Note also that the co-
efficient m/2 in Eq. (18) comes from approximation of
heat equation. Also, define an energy as S2(H

(m)
t , f):=∑

{xi·},{yi·}
L
(m)
t,n f({xi·})f({yi·}) with proper constraints.

Minimizing this energy is equivalent to the 2-way hypergraph
cut problem for a hypergraph formed byH(m)

t . See Appendix
for the detail of both remarks.

We consider to relate discrete operator L(m)
t,n to continuous

Laplace operator. Let us begin with the Laplace operator.
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Assume a compact differentiable d-dimensional manifold
M isometrically embedded into RN , a set of m/2 variables
{xi}m/2

i=1 , xi∈M, abbreviated as {x·}, and a measure µ. Con-
sider a problem to obtain a function f :Mm/2→R, that min-
imizes S2(f):=∥∇f∥2 s.t. ∥f∥2=1, and f is decomposable
as f({x·})=

∑
i f

′(xi) using f ′:M→R. In physics analogy,
we can recognize S2(f) as energy, and the problem as an
energy minimization problem. This problem often appears
where we want to know a profile minimizing energy, such as
velocity profile in fluid dynamics (Courant and Hilbert 1962).
In machine learning, ∇f can be seen to measure how close
each data point is when we embed data from a manifold to
the Euclidean space. Then, this problem can be thought to
find a suitable mapping f best preserving locality, and hence
as a clustering algorithm (Belkin and Niyogi 2003).

By using Stokes theorem, ∥∇f∥2 = ⟨∆f, f⟩, which
rewrites this energy minimization problem as

min(S2(f) = ⟨∆f, f⟩) s.t. ∥f∥2 = 1, ⟨f, c1⟩ = 0, (19)

where c is constant. Since Laplace operator ∆ is semi-definite
and ∥f∥2=1 in constraint, the minimizer of Eq. (19) is given
as an eigenfunction of ∆f . The first eigenfunction is a con-
stant function that maps variables xi ∈ M to one point. To
avoid this, we introduce the second constraint since the sec-
ond eigenfunction is orthogonal to the first, which is constant.

We now formulate a multivariate heat equation to analyze
∆f . For even m and m/2 variables xi ∈ M ⊂ Rd, consider
the following heat equation on a manifold Mm/2 as(

∂

∂t
+∆

)
U(t, {x·}) = 0, U(0, {x·}) = f({x·}), (20)

where {f(xi·})=
∑m/2

µ=1 f
′(xiµ), as defined as “decompos-

able” in Eq. (18). Eq. (20) governs an m/2 variables system,
which evolves by m/2 variables interacting with each other
but the initial conditions f ′ only depend on one variable. The
solution is given as to satisfy

U =

∫
Ht({x·}, {y·})U(0, {y·})dµ(y∗) (21)

where dµ(y∗):=
∏m/2

i=1 dµ(yi) andHt is a heat kernel. A well-
known example of heat kernel is Gaussian, which gives a
solution to one variable Eq. (20) when M = Rn. However,
it is difficult to obtain a concrete form of heat kernel for a
general manifold. For details of heat kernel, refer to (Rosen-
berg and Steven 1997). Since we can prove that H(m)

t is also
a heat kernel, there exists a heat equation on manifolds M′

and M′′, where M′=M′′m/2, whose solution is given as
Eq. (21) using Ht=H

(m)
t . In the following, we consider the

heat equation on this manifold M′.
Using Eq. (21), we can relate the energy minimization

problem to hypergraph cut and justify Alg. 1. The energy
minimization problem Eq.(19) can be approximated as

S2(f) =

∫
M′

dx∗⟨∆f, f⟩ ≈
1

t
S2(H

(m), f), (22)

with proper constraints in Eq. (19) (see Appendix for details).
As discussed when we defined discrete Laplacian (Eq. (18)),

the third term S2(H
(m), f) is equivalent to the 2-way hy-

pergraph cut problem using a hypergraph formed by a bi-
clique kernel H(m)

t if properly treating constraints. Hence,
the energy minimization problem Eq.(19) can be seen as a
continuous analog to the hypergraph spectral clustering. This
discussion supports our biclique kernel with Gaussian ker-
nel and Alg. 1, since Alg. 1 with the Gaussian-type biclique
kernel can be thought as an approximation of energy mini-
mization problem Eq. (19). The key observation is that taking
a different m corresponds to taking a different manifold sat-
isfying heat equation Eq. (20). This is because the biclique
kernel H(m) is a different heat kernel for each m, and each
heat kernel has a manifold, on which Eq. (20) holds. This key
observation gives an intuitive insight; choosing better m cor-
responds to choosing a manifold M′ to which the given data
space X fits better. We conclude this section by theoretically
formulating the above discussion in the following theorem.

Theorem 2. Let M′=Mm/2 be a manifold, on which
Eq. (20) satisfies with solutions using H(m)

t . Let the data
points x1, · · ·xn be sampled from a uniform distribution on
a manifold M, and f ∈ C∞(M′). Putting tn = n−1/(2+α),
where α > 0, there exists a constant C such that

lim
n→∞

C(ntn)
−1L

(m)
n,tnf({xi·}) = ∆f({xi·}) in probability.

This theorem theoretically supports the discussion in this
section; if we have infinite number of data, Eq. (18) converges
to the continuous Laplace operator and approximation in
Eq. (22) becomes exact.

Experiment
This section numerically demonstrates the performance of
our Alg. 1 using our formulation of multi-way similarity with
biclique kernel. We evaluated our modeling by comparing the
standard kernel and other heuristic hypergraph embeddings.
To focus on this purpose, we varied the embeddings and kept
fixed the cut objective function as Eq. (7). Our experiments
were performed on classification datasets, iris and spine from
the UCI repository, and ovarian cancer data (Petricoin III
et al. 2002). We also used Hopkins155 dataset (Tron and Vi-
dal 2007), which contains 155 motion segmentation datasets.
We used Gaussian kernel (κ(xi,xj)=exp(−γ∥xi−xj∥2))
and polynomial kernel (κ(xi,xj)=(

∑
ixixj+c)

d) as a base
kernel to form a biclique kernel κ(m), and conduct Alg. 1.
We used m=2, 4..., 20. For comparison, we employed the
following types of modeling. First, we used m=2, the stan-
dard graph method, for both kernels as a baseline. Second,
we used ad-hoc modeling used in the experiment of (Ghosh-
dastidar and Dukkipati 2015) for both kernels. Third, we
employ Gaussian-type modeling used in various papers such
as (Govindu 2005; Li and Milenkovic 2017), which is the
mean Euclidean distance to the optimal fitted affine subspace.
Fourth, we used Gaussian-type modeling used in (Li and
Milenkovic 2017), which is referred as dH−2. Lastly, for
polynomial, we used a generalized dot product form (Yu
et al. 2018). Note that all the hypergraph comparison meth-
ods work for any uniform hypergraph. We can say that we
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Kernel and Method iris spine Ovarian Hopkins155
Gaussian (m=2, the standard graph) 0.1027 ± 0.0033 0.3191 ± 0.0025 0.1315 ± 0.0023 0.1600

Gaussian Ours (m≥4) 0.0693 ± 0.0033 0.2807 ± 0.0000 0.0841 ± 0.0000 0.1112
Gaussian (Ghoshdastidar and Dukkipati 2015) 0.0737 ± 0.0318 0.3000 ± 0.0000 0.1806 ± 0.0000 0.1465

Gaussian (Affine Subpace) 0.2267 ± 0.0000 0.2839 ± 0.0000 0.1690 ± 0.0023 0.1294
Gaussian (dH−2 (Li and Milenkovic 2017)) 0.2407 ±0.0662 0.3195 ± 0.0078 0.3317 ± 0.0892 0.1490

Polynomial (m=2, the standard graph) 0.2922 ± 0.0746 0.3183 ± 0.0295 0.2043 ± 0.0780 0.2278
Polynomial Ours (m≥4) 0.2719 ± 0.0383 0.3142 ± 0.0452 0.1898 ± 0.0794 0.2258

Polynomial (Ghoshdastidar and Dukkipati 2015) 0.4359 ± 0.0546 0.3219 ± 0.0050 0.2817 ± 0.1201 0.2934
Polynomial (Yu et al. 2018) 0.3227 ± 0.0199 0.3828 ± 0.0754 0.4399 ± 0.0093 0.2654

Table 1: Experimental Results. The standard deviation is from randomness involved in the fourth step of Alg. 1. Since Hopkins155
is the average performance of 155 datasets, this only shows the average. Details are in the main text.

(a) Iris (b) Spine (c) Ovarian

2 4 6 8 101214161820
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Figure 1: Experimental results. Red shows the result for Gaussian and blue shows for polynomial. The shade shows the standard
deviation of the fourth step of Alg. 1. Since Hopkins155 is the average performance of 155 datasets, this only shows the average.

compare five Gaussian-type methods (ours, baseline, (Ghosh-
dastidar and Dukkipati 2015), affine subspace, and dH−2)
and four polynomial-type methods (ours, baseline, (Ghosh-
dastidar and Dukkipati 2015), and (Yu et al. 2018)). We
restrict hypergraph comparison methods to be m=3 to make
the comparison fair in terms of computational time. By this,
all of the comparisons and ours equally cost O(n3). For the
comparisons, we also used the spectral clustering as Eq. (10),
and conduct the forth step of Alg. 1. We used a free parame-
ter γ∈{10−3, 10−2,..., 105} for Gaussian, and d∈{1, 3, ..., 9}
and c=0, 1 for polynomial. Since the fourth step of Alg. 1
involves randomness at k-means, we repeat this step 100
times. We evaluated our performance on error rate, i.e., (#
of mis-clustered data points)/(# of data points), same as the
previous studies (Zhou, Huang, and Schölkopf 2006; Li and
Milenkovic 2017). We report average errors and standard de-
viations caused from the fourth step except for Hopkins155.
Since Hopkins155 contains 155 tasks and standard devia-
tions vary by each task, we only report an average error of
155 tasks, similar to the previous studies (Ghoshdastidar and
Dukkipati 2014, 2017). Our experimental code is available at
github1.

We summarize the results in Table 1 and Fig. 1. From Ta-
ble 1, we see that ours with Gaussian kernel outperforms the
other methods at all the datasets. Ours with polynomial kernel
also outperforms other polynomial methods. Additionally, for
most cases in Fig. 1, if we increase m, results are improved
until a certain point but slightly drop from there. This cor-
responds to the intuition; multi-way relations could be too

1https://github.com/ShotaSAITO/HypergraphModeling

“multi” beyond a certain point: Too many relations could
work as noise to separate the data. To our knowledge, it is
first time to obtain insights on behaviors of higher-order (say,
m≥ 8) uniform hypergraph on spectral clustering. Moreover,
for Gaussian methods, the variance for ours is smaller than
one for the others. This means that our methods offer more
separated embedding. Additional results are in Appendix.

Conclusion

To conclude, we have provided a hypergraph modeling
method, and a fast spectral clustering algorithm that is con-
nected to the hypergraph cut problems proposed by (Zhou,
Huang, and Schölkopf 2006; Ghoshdastidar and Dukkipati
2015; Saito, Mandic, and Suzuki 2018). A future direction
would be to explore other constructions of multi-way similar-
ity which can connect to other uniform and non-uniform hy-
pergraph cuts not having kernel characteristics, such as Lapla-
cian tensor ways (Chen, Qi, and Zhang 2017; Chang et al.
2020), total variation and its submodular extension (Hein
et al. 2013; Yoshida 2019). Also, it would be interesting to
study more on connections between this work and a general
splitting functions of inhomogeneous cut (Li and Milenkovic
2017; Chodrow, Veldt, and Benson 2021), e.g., to see which
class of splitting functions can be connected to the biclique
kernel. The limitation of our work is that we cannot apply
our formulation to an odd-order uniform hypergraph. The
reason for this limitation is that our biclique kernel is equiva-
lent to half-symmetric semi-definite even-order tensor while
odd-order semi-definiteness is indefinite as discussed.
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