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Abstract

We study algorithms for approximating pairwise similarity
matrices that arise in natural language processing. Generally,
computing a similarity matrix for n data points requires Ω(n2)
similarity computations. This quadratic scaling is a signifi-
cant bottleneck, especially when similarities are computed via
expensive functions, e.g., via transformer models. Approxima-
tion methods reduce this quadratic complexity, often by using
a small subset of exactly computed similarities to approximate
the remainder of the complete pairwise similarity matrix.
Significant work focuses on the efficient approximation of pos-
itive semidefinite (PSD) similarity matrices, which arise e.g.,
in kernel methods. However, much less is understood about
indefinite (non-PSD) similarity matrices, which often arise in
NLP. Motivated by the observation that many of these matrices
are still somewhat close to PSD, we introduce a generalization
of the popular Nyström method to the indefinite setting. Our
algorithm can be applied to any similarity matrix and runs in
sublinear time in the size of the matrix, producing a rank-s
approximation with just O(ns) similarity computations.
We show that our method, along with a simple variant of
CUR decomposition, performs very well in approximating a
variety of similarity matrices arising in NLP tasks. We demon-
strate high accuracy of the approximated similarity matrices
in tasks of document classification, sentence similarity, and
cross-document coreference.

1 Introduction
Many machine learning tasks center around the computation
of pairwise similarities between data points using an appro-
priately chosen similarity function. E.g., in kernel methods, a
non-linear kernel inner product is used to measure similarity,
and often to construct a pairwise kernel similarity matrix. In
natural language processing, document or sentence similarity
functions (e.g., cross-encoder models (Devlin et al. 2018) or
word mover’s distance (Piccoli and Rossi 2014; Kusner et al.
2015))) are key components of cross-document coreference
(Cattan et al. 2020) and passage retrieval for question an-
swering (Karpukhin et al. 2020). String-similarity functions
are used to model name aliases (Tam et al. 2019) and for
morphology (Rastogi, Cotterell, and Eisner 2016).
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Computing all pairwise similarities for a data set with n
points requires Ω(n2) similarity computations. This can be
a major runtime bottleneck, especially when each compu-
tation requires the evaluation of a neural network or other
expensive operation. One approach to avoid this bottleneck
is to produce a compressed approximation to the n× n pair-
wise similarity matrix K for the data set, but avoid ever fully
forming this matrix and run in sub-quadratic time (i.e., with
running time less than O(n2), or sublinear in the size of K).
The compressed approximation, K̃, can be used in place of
K to quickly access approximate pairwise similarities, and in
methods for near neighbor search, clustering, and regression,
which would typically involve K.

1.1 Existing Methods
Similarity matrix approximation is very well-studied, espe-
cially in the context of accelerating kernel methods and Gaus-
sian process regression. Here, K is typically positive semidef-
inite (PSD). This structure is leveraged by techniques like
the random Fourier features and Nyström methods (Rahimi
and Recht 2007; Le, Sarlós, and Smola 2013; Williams and
Seeger 2001; Yang et al. 2012), which approximate K via a
rank-s approximation K̃ = ZZT , for s� n and Z ∈ Rn×s.
These methods have runtimes linear in n and sublinear in
the matrix size. They have been very successful in practice
(Huang et al. 2014; Meanti et al. 2020), and often come
with strong theoretical bounds (Gittens and Mahoney 2016;
Musco and Musco 2017; Musco and Woodruff 2017).

Unfortunately, most similarity matrices arising in natural
language processing, such as those based on cross-encoder
transformers (Devlin et al. 2018) or word mover’s distance
(Piccoli and Rossi 2014), are indefinite (i.e., non-PSD). For
such matrices, much less is known. Sublinear time methods
have been studied for certain classes of similarities (Bakshi
and Woodruff 2018; Oglic and Gärtner 2019; Indyk et al.
2019), but do not apply generally. Classic techniques like
low-rank approximation via the SVD or fast low-rank approx-
imation via random sketching (Frieze, Kannan, and Vempala
2004; Sarlos 2006; Drineas, Mahoney, and Muthukrishnan
2008) generally must form all of K to approximate it, and so
run in Ω(n2) time. There are generic sublinear time sampling
methods, like CUR decomposition (Drineas, Kannan, and
Mahoney 2006; Wang, Zhang, and Zhang 2016), which are
closely related to Nyström approximation. However, as we
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will see, the performance of these methods varies greatly
depending on the application.

1.2 Our Contributions
Algorithmic. Our first contribution is a simple variant of
the Nyström method that applies to symmetric indefinite
similarity matrices1. The Nyström method (Williams and
Seeger 2001) approximates a PSD similarity matrix K by
sampling a set of s � n landmark points from the dataset,
computing their similarities with all other points (requiring
O(ns) similarity computations), and then using this sampled
set of similarities to reconstruct all of K. See Sec. 2.

Our algorithm is motivated by the observation that many
indefinite similarity matrices arising in NLP are somewhat
close to PSD – they have relatively few negative eigenvalues.
Thus, a natural approach would be simply to apply Nyström
to them. However, even for matrices with just a few small neg-
ative eigenvalues, this fails completely. We instead show how
to ‘minimally correct’ our matrix to be closer to PSD, before
applying Nyström. Specifically, we apply an eigenvalue shift
based on the minimum eigenvalue of a small random princi-
pal submatrix of K. We call our method Submatrix-Shifted
Nyström, or SMS-Nyström. SMS-Nyström is extremely ef-
ficient, and, while we do not give rigorous approximation
bounds, it recovers the strong performance of the Nyström
method on many near PSD-matrices.

Empirical. Our second contribution is a systematic evalu-
ation of a number of sublinear time matrix approximation
methods in NLP applications. We consider three applications
involving indefinite similarity matrices: 1) computing docu-
ment embeddings using word mover’s distance (Kusner et al.
2015), for four different text classification tasks; 2) approx-
imating similarity matrices generated using cross-encoder
BERT (Devlin et al. 2018) and then comparing performance
in three GLUE tasks: STS-B (Cer et al. 2017), MRPC (Dolan
and Brockett 2005) and RTE (Bentivogli et al. 2009), which
require predicting similarity, semantic equivalence, and sen-
tence entailment; 3) approximating the similarity function
used to determine coreference relationships across documents
in a corpus of news articles mentioning entities and events
(Cybulska and Vossen 2014; Cattan et al. 2020).

We show that both SMS-Nyström, and a simple variant of
CUR decomposition yield accurate approximations that main-
tain downstream task performance in all these tasks while
greatly reducing the time and space required as compared to
the exact similarity matrix. They typically significantly out-
perform the classic Nyström method and other CUR variants.

1.3 Other Related Work
Our work fits into a vast literature on randomized methods
for matrix approximation (Mahoney 2011; Woodruff et al.
2014). There is significant work on different sampling dis-
tributions and theoretical bounds for both the Nyström and
CUR methods (Goreinov, Tyrtyshnikov, and Zamarashkin

1While asymmetric similarity matrices do arise, we focus on
the symmetric case. In our experiments, symmetrizing and then
approximating these matrices yields good performance.

1997; Drineas, Mahoney, and Cristianini 2005; Drineas, Ma-
honey, and Muthukrishnan 2008; Zhang, Tsang, and Kwok
2008; Kumar, Mohri, and Talwalkar 2012; Wang and Zhang
2013; Talwalkar and Rostamizadeh 2014). However, more
advanced methods generally require reading all of K and
so require Ω(n2) time. In fact, any method with non-trivial
worst-case guarantees on general matrices cannot run less
than O(n2) time. If the entire mass of the matrix is placed on
a single entry, all entries must be accessed to find it.

A number of works apply Nyström variants to indefi-
nite matrices. Belongie et al. (2002) show that the Nyström
method can be effectively applied to eigenvector approx-
imation for indefinite matrices, specifically in application
to spectral partitioning. However, they do not investigate
the behavior of the method in approximating the similarity
matrix itself. Gisbrecht and Schleif (2015) shows that, in
principle, the classic Nyström approximation converges to
the true matrix when the similarity function is continuous
over R. However, we observe poor finite sample performance
of this method on text similarity matrices. Other work ex-
ploits assumptions on the input points – e.g. that they lie in
a small number of labeled classes, or in a low-dimensional
space where distances correlate with the similarity (Schleif,
Gisbrecht, and Tino 2018). This later assumption is made
implictly in recent work on anchor-net based Nyström (Cai,
Nagy, and Xi 2021), and while it may hold in many settings,
in NLP applications, it is often not clear how to find such
a low-dimensional representation. By removing the above
assumptions, our work is well suited for applications in NLP,
which often feed two inputs (e.g., sentences) into a neural
network to compute similarities.

There is also significant related work on modifying indefi-
nite similarity matrices to be PSD, including via eigenvalue
transformations and shifts (Chen, Gupta, and Recht 2009;
Gisbrecht and Schleif 2015). These modifications would al-
low the matrix to be approximated with the classic Nyström
method. However, this work does not focus on sublinear run-
time, typically using modifications that require Ω(n2) time.

Finally, outside of similarity matrix approximation, there
are many methods that seek to reduce the cost of similar-
ity computation. One approach is to reduce the number of
similarity computations. Examples include locality sensitive
hashing (Gionis et al. 1999; Lv et al. 2007), distance preserv-
ing embeddings (Hwang, Han, and Ahn 2012), and graph
based algorithms (Orchard 1991; Dong, Moses, and Li 2011)
for near-neighbor search. Another approach is to reduce the
cost of each similarity computation, e.g., via model distilla-
tion for cross-encoder-based similarity (Sanh et al. 2019; Jiao
et al. 2019; Michel, Levy, and Neubig 2019; Lan et al. 2019;
Zafrir et al. 2019; Humeau et al. 2019). However, model dis-
tillation requires significant additional training time to fit the
reduced model, unlike our proposed approach which requires
only O(ns) similarity computations. There is also work on
random features methods and other alternatives to expensive
similarity functions, such as those based on the word-movers
distance (Cuturi 2013; Wu et al. 2018, 2019).
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2 Submatrix-Shifted Nyström
In this section, we introduce the Nyström method for PSD
matrices, and describe our modification of this method for
application to indefinite similarity matrices.

2.1 The Nyström Method
Let X = {xi}ni=1 be a dataset with n datapoints, ∆ : X ×
X → R be a similarity function, and K ∈ Rn×n be the
corresponding similarity matrix with Kij = ∆(xi, xj). The
Nyström method samples s landmark points – let S ∈ Rn×s

be the matrix for this sampling. S has a single randomly
positioned 1 in each column. KS is an Rn×s submatrix of K
consisting of randomly sampled columns corresponding to
the similarities between all n datapoints and the s landmarks.
The key idea is to approximate all pairwise similarities using
this sampled set. The Nyström approximation of K is:

K̃ = KS(STKS)−1STK. (1)

Running Time. Nyström approximation of (1) requires just
O(ns) evaluations of the similarity function to compute
KS ∈ Rn×s. We typically do not form K̃ directly, as it would
take at least n2 time to even write down. Instead, we store this
matrix in ‘factored form’, computing Z = KS(STKS)−1/2.

In this way, we have ZZT = K̃. I.e., the approximate simi-
larity between points xi and xj is the inner product between
the ith and jth rows of Z, which can be thought of as embed-
dings of the points into Rs. Computing Z requires computing
(STKS)−1/2 – the matrix squareroot of (STKS)−1 which
takesO(s3) time using e.g., Cholesky decomposition2. Multi-
plying by KS then takesO(ns2) time, which is the dominant
cost since n > s.

Intuition. In (1), STKS ∈ Rs×s is the principal submatrix
of K containing the similarities between the landmark points
themselves. To gain some intuition behind the approximation,
consider removing the (STKS)−1 term and approximating
K with KSSTK. That is, we approximate the similarity be-
tween any two points xi and xj by the inner product between
their corresponding rows in KS – i.e. the vector in Rs con-
taining their similarities with the landmarks. This would be a
reasonable approach – when xi and xj are more similar, we
expect these rows to have higher dot products.

The (STKS)−1 term intuitively ‘corrects for’ similari-
ties between the landmark points. Formally, when K is
PSD, it can be written as K = BBT for some matrix
B ∈ Rn×n. Thus Kij = 〈bi,bj〉. Eq. (1) is equivalent
to projecting all rows of B onto the subspace spanned by
the rows corresponding to the landmark points to produce
B̃, and then letting K̃ = B̃B̃T . If e.g., rank(K) ≤ s, then
rank(B) = rank(K) ≤ s and so as long as the rows of
B corresponding to the landmark points are linearly inde-
pendent, we will have B̃ = B and thus K̃ = K. If K is
close to low-rank, as is often the case in practice, K̃ will still
generally yield a very good approximation.

2If det(STKS) = 0, (STKS)+ can be used.

2.2 Nyström for Indefinite Matrices
Our extension of the Nyström method to indefinite matrices
is motivated by two observations.
Obs. 1: Text Similarity Matrices are Often Close to PSD.
Without some form of structure, we cannot approximate a
general n × n matrix in less than O(n2) time. Fortunately,
while many similarity functions used in natural language
processing do not lead to matrices with PSD structure, they
do lead to matrices that are close to PSD, in that they have
relatively few negative eigenvalues, and very few negative
eigenvalues of large magnitude. See Figure 1.
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Figure 1: The eigenspectrums of many text similarity ma-
trices have relatively few negative eigenvalues – i.e., they
are relatively close to PSD. The Twitter similarity matrix
arise from the exponentiation of Word Mover’s Distance
(Kusner et al. 2015). STS-B and MRPC are symmetrized
cross-encoder BERT sentence and document similarity matri-
ces (Devlin et al. 2018). Eigenvalues are plotted in decreasing
order of magnitude from rank 2 to 201. The magnitude of
the top eigenvalue is typically very large, and so excluded for
better visualization.

Obs. 2: Classic Nyström Fails on Near-PSD Matrices.
Given Observation 1, it is natural to hope that perhaps the
Nyström method is directly useful in approximating many
indefinite similarity matrices arising in NLP applications. Un-
fortunately, this is not the case – the classic Nyström method
becomes very unstable and leads to large approximation er-
rors when applied to indefinite matrices, unless they are very
close to PSD. See Fig. 3.

A major reason for this instability seems to be that STKS
tends to be ill-conditioned, with several very small eigenval-
ues that are ‘blown up’ in (STKS)−1 and lead to significant
approximation error. See Fig. 2. Several error bounds for
the classic Nyström method and the related pseudo-skeleton
approximation method (where the sampled sets of rows and
columns may be different) applied to indefinite matrices de-
pend on λmin(STKS)−1, and thus grow large when STKS
has eigenvalues near zero (Cai, Nagy, and Xi 2021; Goreinov,
Tyrtyshnikov, and Zamarashkin 1997; Kishore Kumar and
Schneider 2017). When K is PSD, by the Cauchy interlacing
theorem, STKS is at least as well conditioned as K. How-
ever, when K is indefinite, there may exist well-conditioned
principal submatrices. Indeed, a number of methods attempt
to select S such that STKS is well conditioned (Cai, Nagy,
and Xi 2021). However, it is not clear how this can be done
in sublinear time in general, without further assumptions.
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Figure 2: To understand why Nyström fails in indefinite matrices, even when they are relatively near-PSD, we independently
sample STKS with sample size of 200, 50 times. For each sample we compute all eigenvalues, combine, and plot them in a
histogram. For the STS-B and MRPC matrices, STKS often has eigenvalues very close to zero. For Twitter, which is very
near-PSD, there are many fewer eigenvalues very close to zero. As we can see in Figure 3, classic Nyström performs well on
Twitter, but fails on the other two matrices.

2.3 Submatrix-Shifted Nyström

Algorithm 1: Submatrix-Shifted Nyström (SMS-Nyström)

1: Input: Data {xi}ni=1 ∈ X , sample sizes s1, s2, with
s2 ≥ s1 scaling parameter α, similarity function ∆ :
X × X → R.

2: Draw at set of s2 ∼ U [1, . . . , n] indices in S2. Also draw
at set of s1 ∼ U [S1] indices in S1.

3: KS1 = ∆(X ,XS1
), ST

1 KS1 = ∆(XS1
,XS1

).
4: ST

2 KS2 = ∆(XS2
,XS2

).
5: e = −α · λmin(ST

2 KS2).
6: KS1 = KS1 + e ∗ In,s1 , where In×s1 ∈ Rn×s1 has

Iij = 1 if i = j, Iij = 0 otherwise.
7: ST

1 KS1 = ST
1 KS1 + e ∗ ·Is1×s1 .

8: Return Z = KS1(ST
1 KS1)−1/2 with ZZT ≈ K.

Given the above observations, our goal is to extend the
Nyström method so that it can be applied to near-PSD
matrices. Our approach is based on a simple idea: if we
let λmin(K) denote the minimum eigenvalue of K, then
K̄ = K − λmin(K)In×n is PSD. K̄ can thus be approxi-
mated with Nyström, and if |λmin(K)| is not too large, this
should yield a good approximation to K.

There are two issues with the above approach: (1) λmin(K)
cannot be computed without fully forming K and (2) when
|λmin(K)| is relatively large, the shift can have a significant
negative impact on the approximation quality – this often
occurs in practice – see Fig. 1.

We resolve these issues by instead sampling a small prin-
cipal submatrix of K, computing its minimum eigenvalue,
and using this value to shift K. Specifically, consider the
Nyström approximation KS1(ST

1 KS1)−1KS1 generated by
sampling a set of s1 indices S1 ⊆ [n]. We let S2 be a superset
of S1, with size s2. We typically simply set s2 = 2 · s1. We
then compute e = λmin(ST

2 KS2) and apply the Nyström
method to K̄ = K− e · In×n.

Since ST
2 KS2 is a principal submatrix of K, e =

λmin(ST
2 KS2) ≥ λmin(K) and thus K̄ will generally not

be PSD. However, we do have e ≤ λmin(ST
1 KS1), since

ST
1 KS1 is a submatrix of ST

2 KS2. Thus, ST
1 KS1− e · In×n

will always be PSD. We also do not expect this matrix to have

any very small eigenvalues, since we expect a fairly large
gap between λmin(ST

2 KS2) and λmin(ST
1 KS1) when s2 is

significantly larger than s1 – e.g. s2 = 2·s1. To further insure
this, we can multiply e by a small constant factor α > 1 (we
typically use α = 1.5) before applying the shift.

Since (ST
1 KS1 − eIn×n)−1 is the joining matrix in the

Nyström approximation of K̄, our method resolves the issue
of small eigenvalues discussed in Sec. 2.2. As we observe
in Sec. 3, it is enough to recover the strong performance of
Nyström on many near-PSD matrices. Since the minimum
eigenvalue of ST

2 KS2 is typically much smaller in magnitude
than λmin(K), we often see improved accuracy over the exact
correction baseline.

We call our method Submatrix-shifted Nyström (SMS-
Nyström) and give full pseudocode in Algorithm 1. SMS-
Nyström requires roughly the same number of similarity
computations and running time as classsic Nyström. We need
to perform (s2 − s1)2 additional similarity computations to
form ST

2 KS2 and must also compute λmin(ST
2 KS2), which

takes O(s32) using a full eigendecomposition. However, this
value can also be very efficiently approximated using iter-
ative methods, and typically this additional computation is
negligible compared to the full Nyström running time.

3 Matrix Approximation Results
We now evaluate SMS-Nyström and several baselines in
approximating a representative subset of matrices.

CUR Decomposition. In addition to classic Nyström
method, we consider a closely related family of CUR de-
composition methods (Mahoney and Drineas 2009; Wang,
Zhang, and Zhang 2016; Pan et al. 2019). In CUR decompo-
sition, K ∈ Rn×n is approximated as the product of a small
subset of columns KS1 ∈ Rn×s1 , a small subset of rows
ST
2 K ∈ Rs2×n, and a joining matrix U ∈ Rs1×s2 . KS1 and

ST
2 K are generally sampled randomly – the strongest the-

oretical bounds require sampling according to row/column
norms or matrix leverage scores (Drineas, Kannan, and Ma-
honey 2006; Drineas, Mahoney, and Muthukrishnan 2008).
However, these sampling probabilities require Ω(n2) time to
compute and so we focus on the setting where columns and
rows are sampled uniformly at random.

There are multiple possible options for the joining matrix
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U. Most simply and analogously to the Nyström method,
we can set U = (ST

2 KS1)+ – this is also called skeleton
approximation (Goreinov, Tyrtyshnikov, and Zamarashkin
1997). In fact, if S1 = S2, and K is symmetric this method
is identical to Nyström. Alternatively, as suggested e.g., in
(Drineas, Kannan, and Mahoney 2006), we can set s1 =
s2 = s and U = n

s · (KS1S
T
1 K)−1ST

1 KS2. As we will see,
these different choices yield very different performance.

Results. We report matrix approximation error vs. sample
size for several CUR variants, along with Nyström and SMS-
Nyström on the text similarity matrices from Fig. 1, along
with a random PSD matrix (see Fig. 3).
• Nyström. As discussed in Sec. 2, Nyström performs well

on the PSD matrix and the Twitter matrix, which is near-
PSD, it completely fails on the other matrices.

• SMS-Nyström. Our simple Nyström variant with s2 =
2s1 and α = 1.5 performs well on all test cases, matching
the strong performance of Nyström on the PSD and Twitter
matrix, but still performing well on the less-near PSD cases
of STS-B and MRPC.

• Skeleton Approximation. Similar results to Nyström are
observed for the closely related skeleton approximation
method when U = (ST

2 KS1)+, s1 = s2, and S1,S2 are
sampled independently. This is unsurprising – this method
is quite similar to Nyström.

• SiCUR. If we modify the skeleton approximation, using
s2 > s1, we also obtain strong results. Many theoretical
bounds for CUR with joining matrix U = (ST

2 KS1)+ re-
quire s2 > s1 (cf. (Drineas, Mahoney, and Muthukrishnan
2008)), and this choice has a significant effect. It is sim-
ilar to how SMS-Nyström regularizes the inner matrix –
ST
2 KS1 is a rectangular matrix whose minimum singu-

lar value is unlikely to be too small. We find that setting
s2 = 2s1 yields good performance in all cases. To mini-
mize similarity computations, we have S1 sample a random
subset of the indices in S2. There is very little performance
difference if S1 and S2 are chosen independently. We call
this approach SiCUR for ‘Simple CUR’.

• StaCUR: Using the U = n
s (KS1S

T
1 K)−1ST

1 KS2 variant
of CUR with s = s1 = s2 yields ‘Stable CUR’ (StaCUR).
StaCUR gives good results on all datasets, but is outper-
formed by Nyström on PSD matrices and by SMS-Nyström
and SiCUR in most other cases. Unlike SMS-Nyström and
SiCUR, StaCUR has no parameters to tune. Unlike skeleton
approximation, setting s2 > s1 seems to have little effect
so we keep s1 = s2. In Fig. 3 we report results for two
variants StaCUR(s) and StaCUR(d), where S1,S2 are set
equal or two independent samples respectively. StaCUR(s)
typically performs better and requires roughly half as many
similarity computations, so we use this variant for the re-
mainder of our evaluations.

4 Empirical Evaluation
We evaluate SMS-Nyström, along with SiCUR and StaCUR
on approximating similarity matrices used in document clas-
sification, sentence similarity, and cross document corefer-
ence. In each application, we show that our approximation
techniques can achieve downstream task performance that

matches or is competitive with exact methods, using a frac-
tion of the computation. See the full version (Ray et al. 2021)
for more results and details (e.g., hyperparameter optimiza-
tion).

4.1 Document Classification with WMD
Our first application is approximating Word mover’s dis-
tance (WMD) (Kusner et al. 2015) in document classification.
WMD, related to the Earthmover’s distance, measures the
alignment of words in two documents according to a word
embedding space.
Word Movers Embedding. Wu et al. (2018) suggests a PSD
similarity function derived from WMD, for which the similar-
ity matrix K can be approximated efficiently as K ≈ ZZT

using a random features method. The resultant feature em-
beddings Z are called Word mover’s embeddings (WME).
Experiments show that WME outperforms true WMD in
several tasks (Wu et al. 2018).
Our Approach. Following (Wu et al. 2018), we define a sim-
ilarity function between two documents x, ω by ∆(x, ω) =
exp(−γWMD(x, ω)) for a scalar parameter γ. While this
function does not seem to be PSD, it tends to produce near-
PSD matrices – see. e.g. the Twitter matrix in Fig. 1. We then
approximate the similarity matrix K using our Nyström and
CUR variants. For Nyström, we write K̃ = ZZT and use Z
as document embeddings (see Alg. 1). For CUR, we factor
U using its SVD U = WSVT as (WS1/2)(S1/2VT ), and
use CWS1/2 as document embeddings.
Evaluation. We evaluate the performance of our embeddings
in multi-class classification for four different corpora drawn
from (Huang et al. 2016; Kusner et al. 2015) – Twitter (2176
train, 932 test), Recipe-L (27841 train, 11933 test), Ohsumed
(3999 train, 5153 test), and 20News (11293 train, 7528 test).
Following (Wu et al. 2018) we compare the performance of
the embeddings produced by WME, SMS-Nyström, SiCUR,
and StaCUR at several sample sizes s. ‘Small Rank’, is the
dimension ≤ 550 for which the method achieves highest
performance. ‘Large Rank’ is the dimension ≤ 4096 (1500,
and 2500 resp. for Twitter and Ohsumed) where the method
achieves highest performance. For all except WME, the op-
timal ranks are typically around the dimension limits. This
is expected since larger samples results in better approxima-
tion. As baselines, we also compare against (1) WMD-kernel,
which uses the true similarity matrix with entries given by
∆(x, ω) = exp(−γWMD(x, ω)) and (2) Optimal – which
uses the optimal rank-k approximation to K computed with
SVD. This method is inefficient, but can be thought of as giv-
ing a cap on the performance of our sublinear time methods.
Results. Our results are reported in Table 1. SMS-Nyström
consistently outperforms all other methods, and even at rela-
tively low-rank nears the ‘optimal’ accuracy. In general, the
similarity matrix approximation methods tend to outperform
the WME baseline. Interestingly, while StaCUR tends to
have lower approximation quality on these similarity matri-
ces (see Fig. 3), its performance in downstream classification
is comparable to SMS-Nyström and SiCUR. Observe that the
approximation methods achieve much higher accuracy than
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Figure 3: Evaluation of sublinear time Nyström and CUR variants on the language similarity matrices described in Fig. 1, and a
test PSD matrix, ZZT with Z ∈ R1000×1000 having i.i.d. N (0, 1) entries. Error is reported as ‖K− K̃‖F /‖K‖F and averaged
over 10 trials. The x-axis is s/n. For SiCUR it is s2/n. If a method does not appear, it maybe due to large error it is out of
range. The error may increase with samples after a certain limit, we believe this is because the correction term overwhelms the
approximation error. For better viewing please visit our full paper in (Ray et al. 2021).

previous work, WME, including an 8 point improvement on
20News. Our approximation methods achieve results that are
within 2-4 points of accuracy of the expensive WMD-kernel
true similarity matrix, while maintaining sublinear time and
massive space reduction. We also observe that SMS-Nyström
and SiCUR can achieve high accuracy for small ranks, com-
pared to both WME and WMD-kernel. The amount of com-
putation we save is considerable, e.g., we require just 14% of
the computation for Recipe-L as compared to WMD-kernel.

Method Twitter RecipeL Ohsumed 20News

Sm
al

lR
an

k WME
SMS-N
StaCUR
SiCUR
Optimal

72.5± 0.5
75.3± 1.3
73.8± 1.5
74.9± 1.5

75.8

72.5± 0.4
77.7± 1.3
74.9± 1.0
75.9± 1.5

78.8

55.8± 0.3
59.4± 1.5
58.7± 2.6
59.3± 1.9

60.3

72.9
79.3± 1.3
76.8± 1.6
73.0± 0.6

82.2

L
ar

ge
R

an
k WME

SMS-N
StaCUR
SiCUR
Optimal

74.5± 0.5
76.1± 1.2
71.9± 2.3
75.3± 2.1

76.9

79.2± 0.3
80.7± 1.1
77.1± 1.0
79.5± 1.7

81.3

64.5± 0.2
65.3± 1.1
55.7± 0.4
63.3± 2.9

68.2

78.3
86.6± 1.5
84.2± 2.1
85.8± 1.0

88.3

WMD-kernel 78.21 82.17 69.03 89.37

Table 1: Results on document classification task.

4.2 Approximation of Cross-Encoder BERT
Similarity Matrices

Our second application is to approximate similarity of a cross-
encoder BERT model (Devlin et al. 2018).
Evaluation. We consider three GLUE benchmark datasets
– STS-B, MRPC, and RTE. For each task, we first train the
BERT model on the test set, using code from (Wolf et al.
2019). We compute the full BERT similarity matrix for all
sentences in the validation set, which consists of a set of
sentence pairs, each with a ‘true’ score, derived from human
judgements. The similarity matrices for the datasets STS-B,
MRPC and RTE are 3000×3000, 816×816, and 554×554 re-
spectively. We compute approximations to this full similarity
matrix using SMS-Nyström, SiCUR, and StaCUR. In general,
the BERT similarity matrices are non-PSD (see Fig. 1), and
in fact non-symmetric. So that SMS-Nyström can be applied,
we symmetrize them as ∆̄(x, ω) = 1/2·(∆(x, ω)+∆(ω, x)).
We use the approximate similarity matrix to make predictions
on a dataset of labeled sentences for evaluation. Performance
is measured via Pearson and Spearman correlation with the
human scores for STS-B, F1 score of predicted labels for
MRPC, and accuracy for RTE. We report the average scores
obtained with different sample sizes, over 50 runs.
Results. Table 2 reports results for the approximations, the
exact, and the symmetrized (SYM-BERT) approaches. SMS-
Nyström performs particularly well on STS-B, while SiCUR
performs best on MRPC. All methods are comparable on
RTE. This performance is inline with the accuracy in approx-
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Figure 4: We report the downstream task F1 performance and approximation error on EventCorefBank (ECB+).

Method STS-B(P) STS-B(S) MRPC RTE

SM
S-

N
ys @R1

@R2
@R3

75.6± 1.3
77.3± 1.8
79.4± 1.5

75.3± 1.5
76.9± 1.8
78.6± 1.3

57.4± 2.2
63.9± 2.7
63.0± 1.1

60.0± 1.1
61.8± 2.1
60.2± 1.1

St
aC

U
R @R1

@R2
@R3

28.2± 2.3
34.2± 1.6
45.9± 1.1

46.8± 2.1
49.9± 3.2
51.7± 1.4

53.8± 4.2
64.4± 0.5
67.0± 1.1

58.2± 2.2
57.3± 1.2
61.4± 0.1

Si
C

U
R @R1

@R2
@R3

45.6± 3.1
57.7± 2.6
68.8± 0.2

44.9± 2.8
56.5± 2.4
67.0± 0.4

69.4± 3.7
72.4± 2.1
75.5± 0.9

61.1± 2.2
62.7± 1.5
63.3± 0.3

BERT
S-BERT

85.1
85.5

84.7
85.1

83.3
83.8

66.0
66.1

Table 2: Comparison of original and approximated BERT
similarities on GLUE benchmarks. {R1, R2, R3} for STS-
B, MRPC and RTE is {250, 350, 700}, {100, 250, 500},
{100, 200, 450} respectively. Ri implies ith rank and S-BERT
is SYM-BERT.

imating K.

4.3 Approximate Similarity Matrices for Entity &
Event Coreference

Cross-document entity and event coreference is the task of
clustering ambiguous mentions such that each cluster refers
to the same entity or event. Cattan et al. (2020) learn a pair-
wise function (MLP applied to the concatenation of RoBERTa
(Liu et al. 2019), embeddings of two mentions and their ele-
mentwise product), inducing an asymmetric, not-PSD, matrix.
Average-linkage agglomerative clustering with a similarity
threshold is used.

Evaluation. We evaluate the approximation error and the
downstream task performance (CoNLL F1 (Pradhan et al.
2014)) of approximating the symmetrized similarity matrix
of the model on the EventCorefBank+ Corpus (Cybulska and
Vossen 2014).

Results. Fig. 4 shows the downstream task performance mea-
sured in CoNLL F1 and the approximation error as a function

of the number of landmarks used. We find a similar trend as
the previous two tasks. SiCUR performs very well in terms of
both metrics, with performance improving as more landmarks
are added, achieving nearly the same F1 (within 1 point) per-
formance when 90% of the data is used for landmarks and
very competitive performance (within 1.5 points) with just
50%, a drastic reduction in time/space compared to the exact
matrix. SMS-Nyström required additional rescaling for this
task likely due to sensitivity of threshold of agglomerative
clustering. The results indicate that the proposed approxima-
tion could help scale models for which the Ω(n2) similarity
computations would be intractable.

5 Conclusion
We have shown that indefinite similarity matrices arising in
NLP applications can be effectively approximated in sublin-
ear time. A simple variant of the Nyström method, and several
simple CUR approximation methods, all display strong per-
formance in a variety of tasks. We hope that in future work,
these methods can be used to scale text classification and clus-
tering based on cross-encoder, word mover’s distance, and
other expensive similarity functions, to much larger corpora.
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