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Abstract

The mathematical formalization of a neurological mechanism
in the fruit-fly olfactory circuit as a locality sensitive hash
(FlyHash) and bloom filter (FBF) has been recently pro-
posed and “reprogrammed” for various learning tasks such as
similarity search, outlier detection and text embeddings. We
propose a novel reprogramming of this hash and bloom filter
to emulate the canonical nearest neighbor classifier (NNC) in
the challenging Federated Learning (FL) setup where training
and test data are spread across parties and no data can leave
their respective parties. Specifically, we utilize FlyHash and
FBF to create the FlyNN classifier, and theoretically establish
conditions where FlyNNmatches NNC. We show how FlyNN
is trained exactly in a FL setup with low communication over-
head to produce FlyNNFL, and how it can be differentially
private. Empirically, we demonstrate that (i) FlyNN matches
NNC accuracy across 70 OpenML datasets, (ii) FlyNNFL
training is highly scalable with low communication overhead,
providing up to 8× speedup with 16 parties.

Introduction
Biological systems (such a neural networks (Kavukcuoglu
et al. 2010; Krizhevsky, Sutskever, and Hinton 2012), con-
volutions (Lecun and Bengio 1995), dropout (Hinton et al.
2012), attention mechanisms (Larochelle and Hinton 2010;
Mnih et al. 2014)) have served as inspiration to modern deep
learning systems, demonstrating amazing empirical perfor-
mance in areas of computer vision, natural language program-
ming and reinforcement learning. Such learning systems are
not biologically viable anymore, but the biological inspira-
tions were critical. This has motivated a lot of research into
identifying other biological systems that can inspire develop-
ment of new and powerful learning mechanisms or provide
novel critical insights into the workings of intelligent sys-
tems. Such neurobiological mechanisms have been identified
in the olfactory circuit of the brain in a common fruit-fly, and
have been re-used for common learning problems such as
similarity search (Dasgupta, Stevens, and Navlakha 2017;
Ryali et al. 2020), outlier detection (Dasgupta et al. 2018),
and more recently for word embeddings (Liang et al. 2021)
and centralized classification (Sinha and Ram 2021). More
precisely, in the fruit-fly olfactory circuit, an odor activates
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a small set of Kenyon Cells (KC) which represent a “tag”
for the odor. This tag generation process can be viewed as a
natural hashing scheme (Dasgupta, Stevens, and Navlakha
2017), termed FlyHash, which generates a high dimen-
sional but very sparse representation (2000 dimensions with
95% sparsity). This tag/hash creates a response in a specific
mushroom body output neuron (MBON) – the MBON-α′3
– corresponding to the perceived novelty of the odor. Das-
gupta et al. (2018) “interpret the KC→MBON-α′3 synapses
as a Bloom Filter” that creates a “memory” of all the odors
encountered by the fruit-fly, and reprogram this Fly Bloom
Filter (FBF) as a novelty detection mechanism that performs
better than other locality sensitive Bloom Filter-based novelty
detectors for neural activity and vision datasets.

We build upon the reprogramming of the KC→MBON-
α′3 synapses as the FBF to create a supervised classifica-
tion scheme. We show that this classifier mimics a nearest-
neighbor classifier (NNC). This scheme possesses several
unique desirable properties that allows for nearest-neighbor
classification in the federated learning (FL) setup with a low
communication overhead. In FL setup the complete train-
ing data is distributed across multiple parties and none of
the original data (training or testing) is to be exchanged be-
tween the parties. This is possible because of the unique
high-dimensional sparse structure of the FlyHash. We
consider this an exercise of leveraging “naturally occur-
ring” algorithms to solve common learning problems (which
these natural algorithms were not designed for), resulting in
schemes with unique capabilities. Nearest neighbor classi-
fication (NNC) is a fundamental nonparametric supervised
learning scheme, with various theoretical guarantees and
strong empirical capabilities (especially with an appropriate
similarity function). FL has gained a lot of well-deserved
interest in the recent years as, on one hand, models become
more data hungry, requiring data to be pooled from various
sources, while on the other hand, ample focus is put on data
privacy and security, restricting the transfer of data. However,
the very nature of NNC makes it unsuitable for FL – for any
test point at a single party, obtaining the nearest neighbors
would naively either require data from all parties to be col-
lected at the party with the test point, or require the test point
to be sent to all parties to obtain the per-party neighbors; both
these options violate the desiderata of FL.

We leverage the ability of the FBF to summarize a data
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distribution in a bloom filter to develop a classifier where
every class is summarized with its own FBF, and inference
involves selecting the class whose distribution (represented
by its own FBF) is most similar to the test point. We the-
oretically and empirically show that this classifier, which
we name FlyNN (Fly Nearest Neighbor) classifier, approxi-
mately agrees with NNC. We then perform NNC with FlyNN
on distributed data under the FL setup with low communica-
tion overhead. The key idea is to train a FlyNN separately
on each party – that is, have a “colony of fruit-flies” – and
then perform a low communication aggregation at training
time without having to exchange any of the original data.
This enables low communication federated nearest-neighbor
classification with FlyNNFL. One unique capability enabled
by this neurobiological mechanism is that FlyNNFL can per-
form NNC without transferring the test point to other parties
in any form. We make the following contributions1:
I We present the FlyNN classifier utilizing the FBF and

FlyHash, and theoretically present precise conditions
under which FlyNN matches the NNC.

I We present an algorithm for training FlyNN with dis-
tributed data in the FL setting, with low communication
overhead and differential privacy, without requiring ex-
change of the original data.

I We empirically compare FlyNN to NNC and other rel-
evant baselines on 70 classification datasets from the
OpenML (Van Rijn et al. 2013) data repository.

I We demonstrate the scaling of the data distributed FlyNN
training on datasets of varying sizes to highlight the low
communication overhead of the proposed scheme.

The paper is organized as follows: We detail the FlyNN
classifier and analyze its theoretical properties in the next
section, and present federated kNNC via distributed FlyNN
in the following section. Then, we empirically evaluate our
proposed methods against baselines, discuss related work and
conclude with a discussion on limitations and future work.
The theoretical and implementation details are presented in
the extended version (Ram and Sinha 2021a).

The FlyNN Classifier
In our presentation, we use lowercase letters (x) for scalars
and functions (with arguments), boldface lowercase letters
(x) for vectors, lowercase SansSerif letter (h) for Booleans,
boldface lowercase SansSerif letter (h) for Boolean vectors,
and uppercase SansSerif letter (M) for Boolean matrices. For
a vector x, x[j] denotes its jth index. For any positive integer
k ∈ N, we use [k] to denote the set {1, . . . , k}.

We start this section by recalling k-nearest neighbor clas-
sification (kNNC). Given a dataset of labeled points S =
{(xi, yi)}ni=1 ⊂ Rd × [L] from L classes, and a similar-
ity function s : Rd × Rd → R+, a test point x ∈ Rd
is labeled by the kNNC based on its k-nearest neighbors
Sk(x) = argmaxR⊂S : |R|=k

∑
(xi,yi)∈R s(x,xi) as:

ŷ ← argmax
y∈[L]

∣∣{(xi, yi) ∈ Sk(x) : yi = y
}∣∣ , (1)

1A preliminary version (Ram and Sinha 2021b) was presented
at a recent FL@ICML’21 workshop.

In the federated version of kNNC, the data is distributed
across τ parties, each with a chunk of the data St, t ∈ [τ ]. For
a test point x at a specific party tin, the classification should
be based on the nearest-neighbors of x over the pooled data
S1 ∪ S2 · · · ∪ Sτ . A critical desiderata in FL is to be robust
to the fact that the per-party data St are not obtained from
identical distributions for all t ∈ [τ ] – the distributions that
generate St and St′ for t 6= t′ can be significantly different.
We refer to this as the “non-IID-ness of the per-party data”.

We leverage the locality sensitive FlyHash (Dasgupta,
Stevens, and Navlakha 2017) in our proposed scheme, fo-
cusing on the binarized version (Dasgupta et al. 2018). For
x ∈ Rd, the FlyHash h : Rd → {0, 1}m is defined as,

h(x) = Γρ(Mx), (2)

where M ∈ {0, 1}m×d is the randomized sparse lifting bi-
nary matrix with s � d nonzero entries in each row, and
Γρ : Rm → {0, 1}m is the winner-take-all function convert-
ing a vector in Rm to one in {0, 1}m by setting the highest
ρ� m elements to 1 and the rest to zero. FlyHash projects
up or lifts the data dimensionality (m� d).

The Fly Bloom Filter (FBF) w ∈ (0, 1)m summarizes a
dataset and is subsequently used for novelty detection (Das-
gupta et al. 2018) with novelty scores for any point x pro-
portional to w>h(x) – higher values indicate high novelty
of x. To learn w from a set S, all its elements are initially
set to 1. For an “inlier” point xin ∈ S with FlyHash hin, w
is updated by “decaying” (with a multiplicative factor) the
intensity of the elements in w corresponding to the nonzero
elements in hin. This ensures that some x ≈ xin receives
a low novelty score w>h(x). For a novel point xnv (with
FlyHash hnv) not similar to any x ∈ S, the locality sensi-
tivity of FlyHash implies that, with high probability, the
elements of w corresponding to the nonzero elements in hnv
will be close to 1 since their intensities will not have been
decayed much, implying a high novelty score w>hnv.

FlyNN Algorithm: Training and Inference
We leverage this mechanism for classification by using the
FBF to summarize each class l ∈ [L] separately – the per-
class FBF encodes the local neighborhoods of each class,
and the high dimensional sparse nature of FlyHash (and
consequently FBF) summarizes classes with multi-modal
distributions while reducing inter-class FBF overlap.

FlyNN training. Given a training set S ⊂ Rd × [L], the
learning of the per-class FBFs wl ∈ (0, 1)m, l ∈ [L] is
detailed in the TrainFlyNN subroutine in Algorithm 1. We
initialize the FlyHash by randomly generating the M (line
2). The per-class FBF wl are initialized to 1m (line 3). For a
training example (x, y) ∈ S, we first generate the FlyHash
h = h(x) ∈ {0, 1}m using equation 2 (line 5). Then, the
FBF wy (corresponding to x’s class y) is updated with the
FlyHash h as follows – the elements of wy corresponding
to the nonzero bit positions of h are decayed, and the rest
of the entries of wy are left as is (line 6); the remaining
FBFs wl, l 6= y ∈ [L] are not updated at all. The decay is
achieved by multiplication with a factor of γ ∈ [0, 1) – large
γ implies slow decay in the FBF intensity; a small value of
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Algorithm 1: FlyNN training with training set S ⊂
Rd× [L], lifted dimensionality m ∈ N, s� d nonze-
ros in each row of the lifting matrix M, ρ� m nonze-
ros in the FlyHash, decay rate γ ∈ [0, 1), random
seed R, and inference with test point x ∈ Rd.

1 TrainFlyNN(S,m, ρ, s, γ,R)
2 Sample M ∈ {0, 1}m×d with seed R
3 Initialize w1, . . . ,wL ← 1m ∈ (0, 1)m

4 for (x, y) ∈ S do
5 h← Γρ(Mx)
6 wy[i]← γ ·wy[i] ∀i ∈ [m] : h[i] = 1
7 end
8 return M, {wl}l∈[L]

9 end
10 InferFlyNN(x,M, ρ, {wl, l ∈ [L]})
11 h← Γρ (Mx)

12 return argminl∈[L] w
>
l h

13 end

γ triggers rapid decay (γ = 0 makes the FBFs binary). This
whole process ensures that x (and points similar to x) are
considered to be an “inlier” with respect to wy .

FlyNN inference. The FBF wl for class l ∈ [L] are
learned such that a point x with label l appears as an in-
lier with respect to wl (class l); the example (x, y) does not
affect the other class FBFs wl, l 6= y, l ∈ [L]. This implies
that a point x′ similar to x will have a low novelty score
w>y h(x′) motivating our inference rule – for a test point
x, we compute the per-class novelty scores and predict the
label as ŷ ← arg minl∈[L] w

>
l h(x). This is detailed in the

InferFlyNN subroutine in Algorithm 1.

Analysis of FlyNN
We first present the computational complexities of Algo-
rithm 1. All proofs are presented in Ram and Sinha (2021a,
Appendix A).

Lemma 1 (FlyNN training). Given a training set S ⊂
Rd × [L] with n examples, the TrainFlyNN subroutine in
Algorithm 1 with the lifted FlyHash dimensionalitym, num-
ber of nonzeros s in each row of M ∈ {0, 1}m×d, number of
nonzeros ρ in FlyHash h(x) for any x ∈ Rd, and decay
rate γ ∈ [0, 1) takes time O(nm ·max{s, log ρ}) and has a
memory overhead of O(m ·max{s, L}).

Lemma 2 (FlyNN inference). Given a trained FlyNN, the
inference for x ∈ Rd with the InferFlyNN subroutine in
Algorithm 1 takes time O (m ·max {s, log ρ, ρL/m}) with a
memory overhead of O(max{m,L}).

Remark 1. For any test point x ∈ Rd with FlyHash
h(x), and a large number of labels (large L), if the
arg minl∈[L] w

>
l h(x) can be solved via fast maximum

inner product search (Koenigstein, Ram, and Shavitt
2012; Ram and Gray 2012) in time β(L) sublinear in L,
then the overall inference time for x would be given by

O (m ·max {s, log ρ, ρβ(L)/m}) which is sublinear in L.2

Next we present learning theoretic properties of FlyNN.
The novelty score w>l h(x) of any test point x in FlyNN
corresponds to how “far” x is from the distribution of class l
encoded by wl, and using the class with the minimum novelty
score to label x is equivalent to labeling x with the class
whose distribution is “closest” to x. With this intuition, we
identify precise conditions where FlyNN mimics kNNC. All
proofs are presented in Ram and Sinha (2021a, Appendix B).

We present our analysis for binary classification with
γ = 0, where the FlyNN is trained on training set S =
{(xi, yi)}ni=1 ⊂ Rd × {0, 1}. Let S0 = {(x, y) ∈ S : y =
0}, S1 = {(x, y) ∈ S : y = 1} and let w0,w1 ∈ {0, 1}m be
the FBFs constructed using S0 and S1 respectively. Without
loss of generality, for any test point x, assume that the major-
ity of its k nearest neighbors from S has class label 1. Thus
kNNC will predict x’s class label to be 1. We aim to show that
EM(w>1 h(x)) < EM(w>0 h(x)) (expectation of the random
M matrix) so that FlyNN will predict, in expectation, x’s
label to be 1. A high probability statement will then follow
using standard concentration bounds. If x’s nearest neighbor
is arbitrarily close to x and has label 0 (while the label of
the majority of its k nearest neighbors still being 1) then
we would expect w>0 h(x) < w>1 h(x) with high probability,
thereby, FlyNN will label x as 0. To avoid such a situation,
we assume a margin η > 0 between the classes (Gottlieb,
Kontorovich, and Nisnevitch 2014) defined as:
Definition 1. We define the margin η of the training set S to
be η ∆

= minx∈S0,x′∈S1 ‖x− x′‖∞.
If dk+1/2e of x’s nearest neighbors from S are at a distance

at most η/2 from x, then all of those dk+1/2e examples must
have the same class label to which kNNC agrees. This also
ensures that the closest point to x from S having opposite
label is at least η/2 distance away. We show next that this is
enough to ensure that prediction of FlyNN on any test point
x from a permutation invariant distribution agrees with the
prediction of kNNC with high probability (the training set
can be from any distribution). Note that P is a permutation
invariant distribution over Rd if for any permutation σ of [d]
and any x ∈ Rd, P (x1, . . . , xd) = P (xσ(1), . . . , xσ(d)).
Theorem 3. Fix s, ρ,m and k. Given a training set S of
size n and a test example x ∈ Rd sampled from a per-
mutation invariant distribution, let x∗ be its (dk+1/2e)th
nearest neighbor from S measured using `∞ metric. If
‖x− x∗‖∞ ≤ min{η/2, O(1/s)} then, ŷFlyNN = ŷkNNC with
probability ≥ 1 −

(
O(ρn/m) + e−O(ρ)

)
, where ŷFlyNN and

ŷkNNC are respectively the predictions of FlyNN and kNNC.
Remark 2. For any δ ∈ (0, 1), the failure probability of
the above theorem can be restricted to at most δ by setting
ρ = Ω(log 1/δ) and m = Ω(nρ/δ).
Remark 3. We established conditions under which the pre-
dictions of FlyNN agrees with that of kNNC with high prob-
ability. kNNC is a non-parametric classification method with

2For example, β(L) ∼ O(logL) using randomized partition
trees (Keivani, Sinha, and Ram 2017, 2018) or cover trees (Curtin,
Ram, and Gray 2013).
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Algorithm 2: Federated Differentially Private
FlyNN training with τ parties Vt, t ∈ [τ ] each with
training set St with DP parameters ε and number of
samples T . The Boolean IS DP toggles DP.

1 TrainFlyNNFLDP({St}t∈[τ ],m, ρ, s, γ, IS DP, ε, T )
2 Generate seed R & broadcast to Vt, t ∈ [τ ]
3 for each party Vt, t ∈ [τ ] do
4 M,{wt

l}l∈[L] ←TrainFlyNN(St,m, ρ, s, γ,R)
5 if IS DP then
6 {wt

l}l∈[L] ← DP({wt
l}l∈L, ε/τ, T )

7 end
8 end
9 ŵl[i]← γ

∑
t∈[τ] logγ wt

l [i]∀i ∈ [m], ∀l ∈ [L]
10 return M, {ŵl}l∈[L] on each party Vt, t ∈ [τ ]
11 end
12 DP({wl, l ∈ L}, ε, T )
13 w ← [(w1)>, . . . , (wL)>]>

14 c[i]← logγ w[i] ∀i ∈ [m× L]

15 R ← {}
16 for j ∈ [T ] do
17 Sample ij ∈ [m× L] w.p. ∝ exp (εc[ij ]/4T )
18 c[ij ]← (c[ij ] + η)+, η ∼ Laplace(2T/ε)
19 R ← R∪ {i}
20 end
21 c[i]← 0, ∀i ∈ [m× L] \ R
22 w̃[i]← γc[i], ∀i ∈ [m× L]

23 [(w̃1)>, . . . , (w̃L)>]> ← w̃
24 return ({w̃l, l ∈ [L]})
25 end

strong theoretical guarantee: as |S| = n → ∞, the kNNC
almost surely approaches the Bayes optimal error rate. There-
fore, by establishing the connection between FlyNN and
kNNC, FlyNN has the same statistical guarantee under the
conditions of Theorem 3.
Remark 4. For k = 1, prediction of 1NNC on any x ∈ Rd
agrees with the label of its nearest neighbor x′ and any
point in the training set having class label different from the
label of x′ is farther away from x. Here we do not need any
dependence on margin η and the condition ‖x − x′‖∞ =
O(1/s) is enough to get a statement similar to Theorem 3 that
relate FlyNN to 1NNC.

Federated NNC via Distributed FlyNN
For federated learning where the data S is spread across τ
parties with each party Vt, t ∈ [τ ] having its own chunk St,
we present a distributed FlyNNFL learning scheme in Algo-
rithm 2. The Boolean IS DP toggles the differential privacy
(DP) of the training. This scheme ensures inter-party privacy,
protecting against leakage even with colluding parties. The
proofs for the analyses in this section are presented in Ram
and Sinha (2021a, Appendix C).

In TrainFlyNNFLDP, all the parties Vt, t ∈ [τ ] have the
complete FlyNN model at the conclusion of the training,
and are able to perform no-communication inference on any

new test point x independent of the other parties using the
InferFlyNN subroutine in Algorithm 1. The learning com-
mences by generating and broadcasting a random seed R
to all parties Vt, t ∈ [τ ] (line 2); we assume that all par-
ties already have knowledge of the total number of labels L.
Then each party Vt independently invokes TrainFlyNN (Al-
gorithm 1) on its chunk St and obtains the per-class private
or non-private FBF {wt

l , l ∈ [L]} depending on the status
of the Boolean variable IS DP and the invocation of the DP
subroutine (lines 3-8). Finally, a specialized all-reduce aggre-
gates all the per-class FBFs {wt

l , l ∈ [L]} across all parties
t ∈ [τ ] to obtain the final FBFs ŵl, l ∈ [L] on all parties
(line 9). In the DP module, the input FBF {wl, l ∈ [L]} are
concatenated and the element-wise log values (counts) are
stored in a vector c (lines 13-14). Then the largest T indices
of c are selected iteratively using an exponential mechanism
and Laplace noise are added to these selected entries (lines
16-20). The remaining (m × L) − T entries of c are set to
zero (line 21), all the entries of c are exponentiated and the
differentially private FBF {w̃t

l , l ∈ [L]} are returned (lines
22-24). The following claim establishes exact parity between
the non-DP federated and original training of FlyNN:
Theorem 4 (Non-private Federated training parity). Given
training sets St ⊂ Rd × [L] on each party Vt, t ∈ [τ ], and a
FlyNN configured as in Lemma 1, if the Boolean variable
IS DP is False, then the per-party final FlyNN {ŵl, l ∈ [L]}
(Algorithm 2, line 9) output by TrainFlyNNFLDP ({St, t ∈
[τ ]},m, s, ρ, γ, IS DP, ε, T ) with random seed R in Algo-
rithm 2 is equal to the FlyNN {wl, l ∈ [L]} (Algorithm 1,
line 8) output by TrainFlyNN (S,m, s, ρ, c, R) subroutine
in Algorithm 1 with the pooled training set S = ∪t∈[τ ]St.

This implies that the FlyNNFL training (i) does not incur
any approximation, and (ii) does not require any original
training data to leave their respective parties, and these ag-
gregated per-class FBFs are now available on every party Vt
and used to (iii) perform inference on test points on each
party with no communication to other parties using the In-
ferFlyNN subroutine in Algorithm 1. The unique capabilities
are enabled by the learning dynamics of the FBF in FlyNN.
Remark 5 (Agnostic to non-IID-ness of per-party data). The-
orem 4 implies that the proposed FlyNNFL is completely
agnostic to the non-IID-ness of the data across parties. The
proposed scheme approximates the ideal kNNC (which has
unrestricted access to data from all the parties) regardless
of the non-IID-ness of the per-party data.

The computational complexities of FlyNNFL training are
as follows:
Lemma 5 (FlyNNFL training). Given the setup in
Theorem 4 with |St| = nt, TrainFlyNNFLDP (Al-
gorithm 2) takes O(m · max{s, L}) memory, with
(a) O (ntm ·max {s, log ρ, L/nt log τ}) time per-party and
O(mLτ) communication with DP disabled (IS DP=false),
and (b) O (ntm ·max {s, log ρ, LT/nt}+ T log τ) time per-
party and O(Tτ) communication with DP enabled.

The following result establishes the DP property of
TrainFlyNNFLDP, which prevents leakage between parties
during the training procedure. The proof leverages the expo-
nential mechanism.
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Theorem 6. With the DP module enable (IS DP=true),
TrainFlyNNFLDP is (ε, 0) differentially private.

Communication setup. The TrainFlyNNFLDP algorithm
is presented here in a peer-to-peer communication setup.
However, it will easily transfer to a centralized setup with
a “global aggregator” that all parties communicate to. In
that case, for FlyNNFL training, the aggregator (i) gener-
ates and broadcasts the seed, and (ii) gathers & computes
{ŵl, l ∈ [L]}, and (iii) broadcasts them to all parties.

Effect of timed-out parties (“Stragglers”) in FL. The
ability to be robust to stragglers is of critical importance in FL.
Stragglers play an important role in iterative algorithms with
multiple rounds of communication. In TrainFlyNNFLDP,
there is only a single round of communication in the training
scheme (Algorithm 2, line 9), we do not anticipate there to
be any stragglers. For inference, all computations are local
to each party, and hence, there is no notion of stragglers. We
leave further study of stragglers for future work.

Empirical Evaluation
In this section, we evaluate the empirical performance
of FlyNN. First, we compare FlyNN to NNC to vali-
date its ability to approximate NNC. Then, we demon-
strate the scaling of FlyNNFL training on data distributed
among multiple parties. Finally, we present the privacy-
performance tradeoff of FlyNNFL. Various details and
additional experiments are presented in Ram and Sinha
(2021a, Appendix D). The implementation details and
compute resources used are described in Ram and Sinha
(2021a, Appendix D.1) and relevant code is available at
https://github.com/rithram/flynn.

Datasets. For the evaluation of FlyNN, we consider three
groups of datasets:
I We consider binary and continuous synthetic data of

varying sizes, designed to favor local classifiers like
NNC (Guyon 2003). See Ram and Sinha (2021a, Ap-
pendix D.2) for further details.

I We consider 70 classification datasets from
OpenML (Van Rijn et al. 2013) to evaluate the
performance of FlyNN on real datasets, thoroughly
comparing FlyNN to NNC. See Ram and Sinha (2021a,
Appendix D.3) for details.

I We consider high dimensional vision datasets MNIST (Le-
Cun 1995), Fashion-MNIST (Xiao, Rasul, and Vollgraf
2017) and CIFAR (Krizhevsky, Hinton et al. 2009) from
the Tensorflow package (Abadi et al. 2016) for evaluat-
ing the scaling of FlyNNFL training when the data is
distributed between multiple parties. See Ram and Sinha
(2021a, Appendix D.4) for details.

Baselines and ablation. We compare our proposed
FlyNN to two baselines:
I kNNC: This is the primary baseline. We tune over the

neighborhood size k ∈ [1, 64]. We also specifically con-
sider 1NNC (k = 1).

I SBFC: To ablate the effect of the high level of sparsity
in FlyHash, we utilize the binary SimHash (Charikar

2002) based locality sensitive bloom filter for each class
in place of FBF to get SimHash Bloom Filter classifier
(SBFC). See Ram and Sinha (2021a, Appendix D.5) for
further details.

FlyNN hyper-parameter search. For a dataset with d
dimensions, we tune across 60 FlyNN hyper-parameter
settings in the following ranges: m ∈ [2d, 2048d], s ∈
[2, b0.5dc], ρ ∈ [8, 256], and γ ∈ [0, 0.8]. We use this hyper-
parameter space for all experiments, except for the vision sets,
where we use m ∈ [2d, 1024d]. We present various experi-
ments and detailed discussions on the hyper-parameter de-
pendence in Ram and Sinha (2021a, Appendix D.6). To sum-
marize the dependence, (i) increasing m improves FlyNN
performance and can be selected to be as large as compu-
tationally feasible, (ii) when d is large enough (≥ 20), the
FlyNN performance is somewhat agnostic to the choice of
s and any small value (s ∼ 0.05d) suffices, (iii) increasing
ρ improves FlyNN performance up to a point after which it
can hurt performance unless m is increased as well since it
reduces the sparsity of FlyHash, (iv) increasing γ from 0
to > 0 significantly improves FlyNN performance, but oth-
erwise the performance is quite robust to its precise choice.

Evaluation metric to compare across datasets. To obtain
statistical significance and error bars for performance across
different datasets, we compute the “normalized accuracy” for
a method on a dataset as (1−a/ak) where ak is the best tuned
10-fold cross-validated accuracy of kNNC on this dataset and
a is the best tuned 10-fold cross-validated accuracy obtained
by the method on this dataset. Thus kNNC has a normalized
accuracy of 0 for all datasets; negative values denote improve-
ment over kNNC. This “normalization” allows comparison
of the aggregate performance of different methods across
different datasets with distinct best achievable accuracies.

Synthetic data. We first consider synthetic data designed
for strong kNNC performance. We generate data for 5 classes
with 3 clusters per class, and points in the same cluster be-
long to the same class implying that a neighborhood based
classifier will perform well. However, the classes are not
linearly separable. We select such a set to demonstrate that
the proposed FlyNN is able to encode multiple separate
modes of a class within a single FBF while providing enough
separation between the per-class FBFs for high predictive per-

X , n 1NNC SBFC FlyNN

{0, 1}50, 103 0.11± 0.05 0.18± 0.04 −0.05± 0.02
{0, 1}50, 104 0.18± 0.02 0.51± 0.02 −0.03± 0.01
{0, 1}100, 103 0.07± 0.03 0.58± 0.03 −0.04± 0.02
R50, 103 0.09± 0.03 0.68± 0.01 −0.07± 0.02
R50, 104 0.11± 0.00 0.78± 0.00 0.07± 0.02
R100, 103 0.11± 0.03 0.66± 0.02 −0.05± 0.03

Table 1: Comparison of FlyNN with NNC and SBFC on
synthetic data. We report normalized accuracy aggregated
over 30 random synthetic datasets. Normalized accuracy for
kNNC is zero hence elided from the results.
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Figure 1: Performance of baselines relative to FlyNN on
OpenML datasets. The scatter plots compare the best tuned
FlyNN accuracy against that of kNNC, 1NNC and SBFC with
a point for each dataset, and the red dashed diagonal marking
match to FlyNN accuracy.

METHOD (i) W/T/L (ii) IMP. (iii) TT (iv) WSRT

kNNC 39/2/30 0.35% 5.30E-2 7.63E-2
1NNC 47/2/22 2.36% 1.55E-5 2.81E-5
SBFC 70/0/1 25.4% <1E-8 <1E-8

Table 2: Evaluating FlyNN on OpenML datasets with
(i) Number of datasets FlyNN has wins(W)/ties(T)/losses(L)
over baselines, (ii) Median improvement in normalized ac-
curacy by FlyNN over baseline, (iii) p-values for the paired
2-sided t-test (TT), (iv) p-values for the 2-sided Wilcoxon
signed rank test (WSRT).

formance. We consider binary synthetic data in {0, 1}d and
synthetic data in general Rd. We consider d = 50, 100 and
n = 103, 104. For each configuration, we create 30 datasets.
The performances of all baselines are presented in Table 1.
The results indicate that FlyNN is able to match kNNC perfor-
mance significantly better than all other baselines, including
1NNC, by being closest to zero (FlyNN appears to improve
upon NNC but the improvements are not significant over-
all). FlyNN significantly outperforms SBFC, highlighting
the need for sparse high dimensional hashes to summarize
multi-modal distributions while avoiding overlap between
per-class FBFs. The small standard errors indicate the stabil-
ity of the relative performances across different datasets.

OpenML data. We consider 70 classification (binary
and multi-class) datasets from OpenML with d numerical
columns and n samples; d ∈ [20, 1000], n ∈ [1000, 20000].
Unlike the synthetic sets, these datasets do not guarantee
strong kNNC performance. The results are presented in Fig-
ure 1. In Table 2, the normalized accuracy of all baselines are
compared to FlyNN with paired two-sided t-tests (TT) and
two-sided Wilcoxon signed rank test (WSRT). In Figure 1,
we can see on the left figure (kNNC vs FlyNN) that most
points are near the diagonal (implying kNNC and FlyNN
parity) with some under (better FlyNN accuracy) and some
over (worse FlyNN accuracy). With 1NNC in the center plot
of Figure 1, we see that, in most cases, 1NNC either matches
FlyNN or does worse (being under the diagonal) since kNNC
subsumes 1NNC. But the right plot for SBFC in Figure 1 indi-
cates that SBFC is quite unable to match FlyNN (and hence
kNNC). We quantify these behaviours in Table 2. FlyNN

Figure 2: Scaling of FlyNNFL training with τ parties over
single-party training. The gray line marks linear scaling.

performs comparably to kNNC (median improvement of only
0.35%) with p-values of 0.0536 (TT) and 0.0763 (WSRT),
while improving the normalized accuracy over 1NNC by a
median of around 2.36% across all 70 sets (p-values∼ 10−5).
These results demonstrate that the proposed FlyNN has com-
parable performance to properly tuned kNNC and this be-
haviour is verified with a large number of datasets. FlyNN
significantly outperforms SBFC (> 25% median improve-
ment, p-values < 10−8), again highlighting the value of high
sparsity in the FlyHash on real datasets.

Methods learned through gradient-descent (such as linear
models or neural networks) have been widely studied in the
FL setting. However, it is hard to compare nearest-neighbor
methods against gradient-descent-based methods with proper
parity. We present one comparison on these OpenML datasets
in Ram and Sinha (2021a, Appendix D.7).

Scaling. We evaluate the scaling of the FlyNNFL training
– Algorithm 2, TrainFlyNNFLDP – with the number of par-
ties τ . For fixed hyper-parameters, we average runtimes (and
speedups) over 10 repetitions for each of the 6 datasets (see
Ram and Sinha (2021a, Appendix D.4)) and present the re-
sults in Figure 2. The results indicate that TrainFlyNNFLDP
scales very well for up to 8 parties for the larger datasets,
and shows up to 8× speed up with 16 parties. There is sig-
nificant gain (up to 2×) even for the tiny DIGITS dataset
(with < 2000 total rows), demonstrating the scalability of the
FlyNN training with very low communication overhead.

Differential privacy. To study the privacy-performance
tradeoff of FlyNN, we again consider the previously de-
scribed synthetic data in Rd. For a fixed setting FlyNN
hyper-parameters (namely m, s, ρ, γ) and 2-party federated
training (τ = 2), we study the effect of the privacy param-
eters on FlyNNFL performance in Figure 3. In Figure 3a,
we see the effect of varying the number of sampled entries
T . We observe the intuitive behaviour where, for a fixed pri-
vacy level ε, increasing T initially improves performance,
but eventually hurts because of the high noise level obfuscat-
ing the FBF entries too drastically. In Figure 3b, we report
the effect of varying ε. For each ε, we select the T corre-
sponding to the best performance (based on Figure 3a). This
shows the expected trend of increasing performance with
increasing ε, where the DP FlyNN can match the non-DP
FlyNN (IS DP=false) with ε close to 1. We present further
experimental details and results for different dataset sizes and
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(a) Effect of T for different ε. (b) Dependence on ε.

Figure 3: The effect of the DP parameters T and ε on the
performance of FlyNNFL (higher is better).

different FlyNN hyper-parameter configurations in Ram and
Sinha (2021a, Appendix D.8).

Related Work
The k nearest neighbor classification method (kNNC) is a
conceptually simple, non-parametric and popular classifica-
tion method which defers its computational burden to the
prediction stage. The consistency properties of kNNC are
well studied (Fix and Hodges 1951; Cover and Hart 1967;
Devroye et al. 1994; Chaudhuri and Dasgupta 2014). Tra-
ditional kNNC assumes training data is stored centrally in
a single machine, but such central processing and storing
assumptions become unrealistic in the big data era. An ef-
fective way to overcome this issue is to distribute the data
across multiple machines and use specific distributed comput-
ing environment such as Hadoop or Spark with MapReduce
paradigm (Anchalia and Roy 2014; Mallio, Triguero, and Her-
rera 2015; Gonzalez-Lopez, Ventura, and Cano 2018). Zhang
et al. (2020) proposed a kNNC algorithm based on the con-
cept of distributed storage and computing for processing large
datasets in cyber-physical systems where k-nearest neighbor
search is performed locally using a kd-tree. Qiao, Duan, and
Cheng (2019) analyzed a distributed kNNC in which data
are divided into multiple smaller subsamples, kNNC predic-
tions are made locally in each subsamples and these local
predictions are combined via majority voting to make the
final prediction. Securely computing kNNC is another closely
related field when data is stored in different local devices.
Majority of the frameworks that ensure privacy for kNNC
often use some sort of secure multi-party computation (SMC)
protocols (Zhan, Chang, and Matwin 2008; Xiong, Chitti,
and Liu 2006; Qi and Atallah 2008; Schoppmann et al. 2020;
Shaul, Feldman, and Rus 2020; Chen et al. 2020).

The federated learning framework involves training statisti-
cal models over remote devices while keeping data localized.
Such a framework has recently received significant attention
with the growth of the storage and computational capabilities
of the remote devices within distributed networks especially
because learning in such setting differs significantly from
tradition distributed environment requiring advances in areas

such as security and privacy, large-scale machine learning
and distributed optimization. Excellent survey and research
questions on this new field can be found in (Li et al. 2020;
Kairouz and McMahan 2021). In federated learning, the pa-
rameters of a global model is learned in rounds, where in
each round a central server sends the current state of the
global algorithm (model parameters) to all the parties, each
party makes local updates and sends the updates back to the
central server (McMahan et al. 2017).

Current distributed kNNC schemes do not directly translate
to the federated learning setting since the test point needs to
be transmitted to all parties. In most secure kNNC settings
considered in the literature, the goal is to keep the training
data secure from the party making the test query (Qi and
Atallah 2008; Shaul, Feldman, and Rus 2018; Wu et al. 2019)
and it is not clear how those approaches extend to the multi-
party federated setting where the per-party data (train or test)
should remain localized. Of particular relevance is Schopp-
mann et al. (2020) which proposed a scheme to compute a
secure inner-product between any test point and all training
points (distributed across parties) and then perform a secure
top-k protocol to perform kNNC. This procedure explicitly
computes the neighbors for a test point, which involves n
secure similarity computations for each test point (on top
of the secure top-k protocol). Both these steps require sig-
nificant communication at inference time. In contrast, our
proposed scheme do not require any explicit computation
of the nearest-neighbors and hence requires no top-k selec-
tion (secure or otherwise). In fact the inference requires no
communication and the training can be made DP. Moreover,
this paper focuses on document classification and leverages
the significantly sparse feature representations of training
examples. The high sparsity allows the use of correlated per-
mutations to compute inner-products. However, the critical
use of correlated permutations of the non-sparse indices aug-
mented with padding does not translate to general dense data
– in the absence of sparsity, the required correlated permu-
tations would be very large and require multiple rounds of
computation for a single similarity computation. Hence it is
not clear if these techniques translate to the general kNNC.

Limitations & Future Work

A high-level limitation of our work is that we are not present-
ing a state-of-the-art result, but rather demonstrating how nat-
urally occurring algorithms (FlyHash and FBF) can expand
the scope of a canonical ML scheme (NNC) to more learning
environments (FL). Our motivations are not to achieve state-
of-the-art, but rather to explore and understand the novel
unique capabilities of this neurobiological motif.

Another limitation is that the current theoretical connection
between FlyNN and kNNC requires assumptions on the class
margins and on the distribution of the data (the test point
is from a permutation invariant distribution). This limits the
scope of the theoretical result though we try to verify the
theory with a large number of synthetic and real datasets. We
plan to remove such assumptions in our future work.
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