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Abstract
As neural network classifiers are deployed in real-world ap-
plications, it is crucial that their failures can be detected re-
liably. One practical solution is to assign confidence scores
to each prediction, then use these scores to filter out possible
misclassifications. However, existing confidence metrics are
not yet sufficiently reliable for this role. This paper presents
a new framework that produces a quantitative metric for de-
tecting misclassification errors. This framework, RED, builds
an error detector on top of the base classifier and estimates
uncertainty of the detection scores using Gaussian Processes.
Experimental comparisons with other error detection meth-
ods on 125 UCI datasets demonstrate that this approach is
effective. Further implementations on two probabilistic base
classifiers and two large deep learning architecture in vision
tasks further confirm that the method is robust and scalable.
Third, an empirical analysis of RED with out-of-distribution
and adversarial samples shows that the method can be used
not only to detect errors but also to understand where they
come from. RED can thereby be used to improve trustworthi-
ness of neural network classifiers more broadly in the future.

1 Introduction
Classifiers based on Neural Networks (NNs) are widely de-
ployed in many real-world applications (LeCun, Bengio,
and Hinton 2015; Anjos et al. 2015; Alghoul et al. 2018;
Shahid, Rappon, and Berta 2019). Although good predic-
tion accuracies are achieved, it is usually not clear whether
a particular prediction can be trusted, which is a severe is-
sue especially in safety-critical domains such as healthcare
(Selişteanu et al. 2018; Gupta et al. 2007; Shahid, Rappon,
and Berta 2019), finance (Dixon, Klabjan, and Bang 2017),
and automated driving (Janai et al. 2017; Hecker, Dai, and
Van Gool 2018).

One way to estimate trustworthiness of a classifier predic-
tion is to use its inherent confidence-related score, e.g., the
maximum class probability (Hendrycks and Gimpel 2017),
entropy of the softmax outputs (Williams and Renals 1997),
or difference between the highest and second highest activa-
tion outputs (Monteith and Martinez 2010). However, these
scores are unreliable and may even be misleading: Predic-
tions often have high-confidence but are nevertheless incor-
rect (Provost, Fawcett, and Kohavi 1998; Guo et al. 2017;

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Nguyen, Yosinski, and Clune 2015; Goodfellow, Shlens, and
Szegedy 2014; Amodei et al. 2016). In a practical setting, it
is beneficial to have a detector that can raise a red flag when-
ever the predictions are likely to be wrong. A human ob-
server can then evaluate such predictions, making the classi-
fication system safer.

Such a detector can be constructed by first developing
quantitative metrics for measuring the reliability of pre-
dictions under different circumstances, and then setting a
warning threshold based on users’ preferred precision-recall
tradeoff. Existing such methods can be categorized into
three types based on their focus: error detection, which
aims to detect the natural misclassifications made by the
classifier (Hendrycks and Gimpel 2017; Jiang et al. 2018;
Corbière et al. 2019); out-of-distribution (OOD) detection,
which identifies samples that are from different distributions
compared to training data (Liang, Li, and Srikant 2018; Lee
et al. 2018a; Devries and Taylor 2018); and adversarial sam-
ple detection, which filters out samples from adversarial at-
tacks (Lee et al. 2018b; Wang et al. 2019; Aigrain and De-
tyniecki 2019).

Among these categories, error detection, also called mis-
classification detection (Jiang et al. 2018) or failure predic-
tion (Corbière et al. 2019), is the most challenging (Aigrain
and Detyniecki 2019) and most underexplored. For instance,
Hendrycks and Gimpel (2017) defined a baseline error de-
tection score using the maximum class probability after the
softmax layer. Although this baseline is a good starting
point, it is ineffective in some cases, indicating that there is
room for improvement (Hendrycks and Gimpel 2017). Jiang
et al. (2018) proposed Trust Score, which measures the sim-
ilarity between the original classifier and a modified nearest-
neighbor classifier. The main limitation of this method is
scalability: the Trust Score may provide no or negative im-
provement over the baseline for high-dimensional data. Con-
fidNet (Corbière et al. 2019) builds a separate NN model to
learn the true class probablity, i.e. softmax probability for
the ground-truth class. However, ConfidNet itself is a stan-
dard NN, so its detection scores may be unreliable or mis-
leading: A random input may generate a random detection
score, and ConfidNet does not indicate uncertainty of these
detection scores. Moreover, none of these methods can dif-
ferentiate natural classifier errors from risks caused by OOD
or adversarial samples; if a detector could do that, it would
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be easier for practitioners to fix the problem, e.g., by retrain-
ing the original classifier or by applying better preprocessing
techniques to filter out OOD or adversarial data.

To meet these challenges, a new framework is developed
in this paper for error detection in NN classifiers. The main
idea is to learn to predict the correctness of a classification
result with a Gaussian Process (GP) model. The new sys-
tem, referred to as RED (Residual-based Error Detection),
not only produces an enhanced error detection score based
on the original maximum class probability, but also provides
a quantitative uncertainty estimation of that score. As a re-
sult, misclassification errors can be detected more reliably.
Note that in this manner, RED is different from traditional
confidence calibration methods (Platt 1999; Zadrozny and
Elkan 2001, 2002; Guo et al. 2017), which do not improve
misclassification detection.

The GP model in RED is constructed based on the
RIO method for uncertainty estimation (Residual prediction
with Input/Output kernel; Qiu, Meyerson, and Miikkulainen
2020). It is notable that the modified RIO is only a part
of the RED framework, and RED has several fundamen-
tal differences compared to RIO. First, whereas the origi-
nal RIO is only applicable to regression models, RED works
with classification tasks, which are more common. Second,
whereas RIO calibrates the outputs of base models (thus re-
ducing prediction errors), RED generates a new detection
score for error detection usage only; the original classifier
outputs are unchanged, and the classification accuracy re-
mains the same. Third, whereas RIO quantifies the predic-
tive uncertainty of the base model, RED only quantifies the
uncertainty of the detection score, which is separate from the
base classifier.

RED is compared empirically to state-of-the-art error de-
tection methods on 125 UCI datasets and two vision tasks,
with implementations on one standard NN classifier, two
probabilistic NN classifiers, and two deep NN architectures.
The results demonstrate that the approach is effective and
robust. A further empirical study with OOD and adversar-
ial samples shows the potential of using RED to diagnose
the sources of mistakes as well, thereby paving the way to
a comprehensive approach for improving trustworthiness of
neural network classifiers in the future.

2 Related Work
In the past two decades, a large volume of work was devoted
to calibrating the confidence scores returned by classifiers.
Early works include Platt Scaling (Platt 1999; Niculescu-
Mizil and Caruana 2005), histogram binning (Zadrozny
and Elkan 2001), isotonic regression (Zadrozny and Elkan
2002), with recent extensions like Temperature Scaling (Guo
et al. 2017), Dirichlet calibration (Kull et al. 2019), and
distance-based learning (Xing et al. 2020). These methods
focus on reducing the difference between reported class
probability and true accuracy, and generally the rankings of
samples are preserved after calibration. As a result, the sepa-
rability between correct and incorrect predictions is not im-
proved. In contrast, RED aims at deriving a score that can
differentiate incorrect predictions from correct ones better.

A related direction of work is the development of classi-
fiers with rejection/abstention option. These approaches ei-
ther introduce new training pipelines/loss functions (Bartlett
and Wegkamp 2008; Yuan and Wegkamp 2010; Cortes, De-
Salvo, and Mohri 2016), or define mechanisms for learning
rejection thresholds under certain risk levels (Dubuisson and
Masson 1993; Santos-Pereira and Pires 2005; Chow 2006;
Geifman and El-Yaniv 2017). In contrast, RED assumes an
existing pretrained NN classifier, and provides an additional
metric for detecting potential errors made by this classifier,
without specifying a rejection threshold.

Designing metrics for detecting potential risks in NN clas-
sifiers has become popular recently. While most approaches
focus on detecting OOD (Liang, Li, and Srikant 2018; Lee
et al. 2018a; Devries and Taylor 2018) or adversarial exam-
ples (Lee et al. 2018b; Wang et al. 2019; Aigrain and De-
tyniecki 2019), work on detecting natural errors, i.e., regu-
lar misclassifications not caused by external sources, is more
limited. Ortega (1995) and Koppel and Engelson (1996) con-
ducted early work in predicting whether a classifier is going
to make mistakes, and Seewald and Fürnkranz (2001) built
a meta-grading classifier based on similar ideas. However,
these early works did not consider NN classifiers. More re-
cently, Hendrycks and Gimpel (2017) and Haldimann et al.
(2019) demonstrated that raw maximum class probability is
an effective baseline in error detection, although its perfor-
mance was reduced in some scenarios.

More elaborate techniques for error detection have also
been developed recently. Mandelbaum and Weinshall (2017)
proposed a detection score based on the data embedding de-
rived from the penultimate layer of a NN. However, their
approach requires modifying the training procedure in order
to achieve effective embeddings. Jiang et al. (2018) intro-
duced Trust Score to measure the similarity between a base
classifier and a modified nearest-neighbor classifier. Trust
Score outperforms the maximum class probability base-
line in many cases, but negative improvement over base-
line can be observed in high-dimensional problems, imply-
ing poor scalability of local distance computations. Confid-
Net (Corbière et al. 2019) learns to predict the class prob-
ability of true class with another NN, while Introspection-
Net (Aigrain and Detyniecki 2019) utilizes the logit activa-
tions of the original NN classifier to predict its correctness.
Since both models themselves are standard NNs, the detec-
tion scores returned by them may be arbitrarily high without
any uncertainty information. Moreover, existing approaches
for error detection cannot differentiate natural misclassifica-
tion error from OOD or adversarial samples, making it dif-
ficult to diagnose the sources of risks. In contrast, RED ex-
plicitly reports its uncertainty about the estimated detection
score, providing more reliable error detection. The uncer-
tainty information returned by RED may also be helpful in
clarifying the cause of classifier mistakes, as will be demon-
strated in this paper.

3 Methodology
This section gives the general problem statement, reviews
the RIO method for uncertainty estimation, and describes
the technical details of RED.
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3.1 Problem Statement
Consider a training dataset D = (X ,y) = {(xi, yi)}Ni=1,
and a pretrained NN classifier that outputs a predicted
label ŷi and class probabilities for each class σi =
[p̂i,1, p̂i,2, . . . , p̂i,K ] given xi, where N is the total number
of training points and K is the total number of classes. The
problem is to develop a metric that can serve as a quanti-
tative indicator for detecting natural misclassification errors
made by the pretrained NN classifier.

3.2 RIO
The RIO method (Qiu, Meyerson, and Miikkulainen 2020)
was developed to quantify point-prediction uncertainty in re-
gression models. More specifically, RIO fits a GP to pre-
dict the residuals, i.e. the differences between ground-truth
and original model predictions. It utilizes an I/O kernel, i.e.
a composite of an input kernel and an output kernel, thus
taking into account both inputs and outputs of the original
regression model. As a result, it measures the covariances
between data points in both the original feature space and
the original model output space. For each new data point,
a trained RIO model takes the original input and output of
the base regression model, and predicts a distribution of the
residual, which can be added back to the original model pre-
diction to obtain both a calibrated prediction and the corre-
sponding predictive uncertainty.

SVGP (Hensman, Fusi, and Lawrence 2013; Hensman,
Matthews, and Ghahramani 2015) was used in RIO as an
approximate GP to significantly reduce the computational
cost. Both empirical results and theoretical analysis showed
that RIO is able to consistently improve the prediction accu-
racy of base models as well as provide reliable uncertainty
estimations. It therefore forms a promising foundation for
improving reliability of error detection metrics as well.

3.3 RED
Classification models generate class probabilities as their
outputs. Therefore, the maximum class probability is an in-
herent baseline metric for error detection (Hendrycks and
Gimpel 2017; Haldimann et al. 2019). RED derives a more
reliable detection score from this baseline by incorporating
a GP model based on RIO. Since detecting errors in classifi-
cation models is beyond the scope of the original RIO, two
modifications are made to adapt RIO to this new domain.

First, since RIO was designed for single-output regres-
sion problems, it contains an output kernel only for scalar
outputs. In RED, this original output kernel is extended to
multiple outputs, i.e. to vector outputs such as those of the
final softmax layer of a NN classifer, representing estimated
class probabilities for each class. This modification allows
RIO to access more information from the classifier outputs.
This new variant of RIO is hereinafter referred to as mRIO
(“m” for multi-output).

Second, RIO estimates the point-prediction uncertainty
by predicting the residuals between ground-truths and model
outputs, both of which are limited to one-dimensional con-
tinuous space. However, ground-truth labels in classification
problems are in a categorical space. Therefore, a different

Algorithm 1: RED training and deployment procedures
Require:

(X ,y) = {(xi, yi)}Ni=1: training data
ŷ = {ŷi}Ni=1: labels predicted by original NN classifier on
training data
σ = {σi = [p̂i,1, p̂i,2, . . . , p̂i,K ]}Ni=1: softmax outputs of
original NN classifier on training data
ĉ = {ĉi = max(σi)}Ni=1: maximum class probability returned
by original NN classifier on training data
x∗: data to be predicted
σ∗: softmax outputs of original NN classifier on x∗
ĉ∗: maximum class probability returned by original NN classi-
fier on x∗

Ensure:
ĉ′∗ ∼ N (ĉ∗ + ¯̂r∗, var(r̂∗)): ĉ∗ + ¯̂r∗ can be used as detec-
tion score for error detection, and var(r̂∗) represents the un-
certainty of returned detection score

Training Phase:
1: obtain target detection score c = {ci = δyi,ŷi}

N
i=1, where

δyi,ŷi is the Kronecker delta (δyi,ŷi = 1 if yi = ŷi, otherwise
δyi,ŷi = 0)

2: calculate residuals r = {ri = ci − ĉi}Ni=1

3: for each optimizer step do
4: calculate covariance matrix Kc((X ,σ), (X ,σ)),

where each entry is given by kc((xi, σi), (xj , σj)) =
kin(xi,xj) + kout(σi, σj), for i, j = 1, 2, . . . , N

5: optimize GP hyperparameters by maximizing log marginal
likelihood log p(r|X ,σ) = − 1

2
r>(Kc((X ,σ), (X ,σ)) +

σ2
nI)
−1r− 1

2
log |Kc((X ,σ), (X ,σ)) + σ2

nI| − n
2

log 2π
Deployment Phase:

6: calculate residual mean ¯̂r∗ = k>∗ (Kc((X ,σ), (X ,σ)) +
σ2
nI)
−1r and residual variance var(r̂∗) =

kc((x∗, σ∗), (x∗, σ∗)) − k>∗ (Kc((X ,σ), (X ,σ)) +
σ2
nI)
−1k∗, where k∗ denotes the vector of kernel-based

covariances (i.e., kc(x∗,xi)) between x∗ and all training data
7: return distribution of error detection score ĉ′∗ ∼ N (ĉ∗ +

¯̂r∗, var(r̂∗))

problem needs to be constructed: Instead of learning to reach
the ground-truths directly, RED learns to predict whether the
original prediction is correct or not. A target detection score
is assigned to each training data point according to whether
it is correctly classified by the base model. The residual be-
tween this target score and the original maximum class prob-
ability is calculated, and an mRIO model is trained to predict
these residuals. Given a new data point, the trained mRIO
model combined with the base classifier thus provides an
aggregated score for detecting misclassification errors. Note
that the outputs of base classifiers are not changed.

Figure 1 illustrates the RED training and deployment pro-
cesses conceptually, and Algorithm 1 specifies them in de-
tail. In the training phase, the first step is to define a target
detection score ci for each training sample (xi, yi, ŷi, σi).
In nature, any functions that assign target values to correct
and incorrect predictions differently can be used. For sim-
plicity, the Kronecker delta δyi,ŷi

is used in this work: all
training samples that are correctly predicted by the orig-
inal NN classifier receive 1 as the target detection score,
and those that are incorrectly predicted receive 0. The val-
idation dataset during the original NN training is included
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Figure 1: The RED training and deployment processes. The solid pathways are active in both training and deployment phases,
while the dashed pathways are active only in the training phase. During the training phase, a target detection score c is assigned
to each training sample according to whether it is correctly predicted by the original NN classifier or not. An mRIO model is
then trained to predict the residual between the target detection score c and the original maximum class probability ĉ. The I/O
kernel in mRIO utilizes both the raw feature x and softmax outputs σ to predict the residuals. In the deployment phase, given
a new data point, the trained mRIO model provides a Gaussian distribution of estimated residual r̂ defined by the mean ¯̂r and
variance var(r̂). Addition of r̂ and ĉ forms a score for error detection, and var(r̂) indicates the corresponding uncertainty.

in the training dataset for RED. After the target detection
scores are assigned, a regression problem is formulated for
the mRIO model: Given the original raw features {xi}Ni=1
and the corresponding softmax outputs of the original NN
classifier {σi = [p̂i,1, p̂i,2, . . . , p̂i,K ]}Ni=1, predict the resid-
uals r = {ri = ci − ĉi}ni=1 between target detection scores
c = {ci}Ni=1 and the original maximum class probabilities
ĉ = {ĉi = max(σi)}Ni=1.

The mRIO model relies on an I/O kernel consisting of two
components: the input kernel kin(xi,xj), which measures
covariances in the raw feature space, and the modified multi-
output kernel kout(σi, σj), which calculates covariances in
the softmax output space. The hyperparameters of the I/O
kernel are optimized to maximize the log marginal likeli-
hood log p(r|X ,σ). In the deployment phase, given a new
data point x∗, the trained mRIO model provides a Gaussian
distribution for the estimated residual r̂∗ ∼ N (¯̂r∗, var(r̂∗)).
By adding the estimated residual back to the original max-
imum class probability ĉ∗, a distribution of detection score
is obtained as ĉ′∗ ∼ N (ĉ∗ + ¯̂r∗, var(r̂∗)). The mean ĉ∗ + ¯̂r∗
can be directly used as a quantitative metric for error detec-
tion, and the variance var(r̂∗) represents the corresponding
uncertainty of the detection score.

4 Empirical Evaluation
In this section, the error detection performance of RED is
evaluated comprehensively on 125 UCI datasets, comparing
it to other related methods. Its generality is then evaluated by
applying it to two other base models, and its scale-up proper-
ties measured in two larger deep learning architectures solv-
ing two vision tasks. Finally, RED’s potential to improve ro-
bustness more broadly is demonstrated in an empirical study
involving OOD and adversarial samples.

4.1 Comparisons with Related Approaches
As a comprehensive evaluation of RED, an empirical
comparison with seven related approaches on 125 UCI

datasets (Dua and Graff 2017) was performed. These ap-
proaches include maximum class probability (MCP) base-
line (Hendrycks and Gimpel 2017), three state-of-the-art ap-
proaches, namely Trust Score (T-Score; Jiang et al. 2018),
ConfidNet (C-net; Corbière et al. 2019), and Introspection-
Net (I-net; Aigrain and Detyniecki 2019), as well as
three earlier approaches, i.e. entropy of the original soft-
max outputs (Steinhardt and Liang 2016), DNGO (Snoek
et al. 2015), and the original SVGP (Hensman, Fusi,
and Lawrence 2013; Hensman, Matthews, and Ghahramani
2015). The 125 UCI datasets include 121 datasets used by
Klambauer et al. (2017) and four more recent ones. Prelimi-
nary tests indicate that RED is not sensitive to the choice of
kernel functions, so the standard RBF (Radial Basis Func-
tion) kernel is used in the current RED implementation. See
Appendix (in arXiv) for full details about the datasets and
parametric setup of all tested algorithms. Source codes are
provided in https://github.com/cognizant-ai-labs/red-paper.

Following the experimental setup of Hendrycks and Gim-
pel (2017); Corbière et al. (2019); Aigrain and Detyniecki
(2019), the task for each algorithm is to provide a detection
score for each testing point. An error detector can then use
a predefined fixed threshold on this score to decide which
points are probably misclassified by the original NN classi-
fier. For RED, the mean ĉ∗+¯̂r∗ was used as the reported de-
tection score. Five threshold-independent performance met-
rics were used to compare the methods: AUPR-Error, which
computes the area under the Precision-Recall (AUPR) Curve
when treating incorrect predictions as positive class during
the detection; AUPR-Success, which is similar to AUPR-
Error but uses correct predictions as positive class; AUROC,
which computes the area under receiver operating charac-
teristic (ROC) curve for the error detection task; AP-Error,
which computes the average precision (AP) under different
thresholds treating incorrect predictions as the positive class;
and AP-Success, which is similar to AP-Error but uses cor-
rect predictions as the positive class. AUPR and AUROC are
commonly used in prior work (Hendrycks and Gimpel 2017;
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Method AP-Error AUPR-Error AP-Success AUPR-Success AUROC
mean±std mean±std mean±std mean±std mean±std

RED 1.39±0.61* 1.49±0.78* 1.74±0.97* 1.80±1.03* 1.65±0.82*
MCP 2.93± 0.89 3.06±0.92 2.77±1.07 2.75±1.11 2.80±1.08
T-Score 3.92±2.45 3.86±2.50 3.64±2.25 3.61±2.25 3.76±2.31
C-Net 6.13±1.37 6.33±1.38 6.07±1.51 6.07±1.41 5.97±1.45
I-Net 5.34±1.65 5.38±1.65 5.83±1.46 5.89±1.51 5.71±1.50
Entropy 3.47±1.08 3.59±1.19 3.19±1.26 3.23±1.32 3.26±1.28
DNGO 6.19±1.51 5.46±1.82 6.84±1.33 6.80±1.44 6.57±1.47
SVGP 6.59±1.60 6.80±1.49 5.89±1.54 5.83±1.49 6.24±1.61

* indicates that the differences between the marked entry and all other counterparts are statistically significant at the 5% significance level
for both paired t-test and Wilcoxon test. The best entries that are significantly better than all the others under both tests are in boldface.

Table 1: Mean rank on UCI datasets

RED AP-Error AUPR-Error AP-Success AUPR-Success AUROC
vs. + / = / - + / = / - + / = / - + / = / - + / = / -
MCP 87 / 35 / 0 90 / 32 / 0 58 / 63 / 1 56 / 65 / 1 61 / 60 / 1
T-Score 53 / 44 / 16 49 / 47 / 17 50 / 47 / 16 48 / 49 / 16 59 / 37 / 17
C-Net 100 / 22 / 0 100 / 22 / 0 106 / 16 / 0 106 / 16 / 0 109 / 13 / 0
I-Net 93 / 29 / 0 90 / 32 / 0 98 / 24 / 0 98 / 24 / 0 101 / 21 / 0
Entropy 74 / 47 / 1 75 / 46 / 1 53 / 68 / 1 53 / 68 / 1 52 / 69 / 1
DNGO 92 / 17 / 0 73 / 31 / 5 99 / 10 / 0 97 / 12 / 0 98 / 11 / 0
SVGP 98 / 23 / 1 98 / 23 / 1 97 / 25 / 0 97 / 25 / 0 102 / 19 / 1
BNN-M 102 / 20 / 0 104 / 18 / 0 95 / 26 / 1 88 / 33 / 1 95 / 26 / 1
BNN-E 67 / 53 / 2 68 / 52 / 2 48 / 66 / 8 48 / 66 / 8 53 / 64 / 5
MCD-M 87 / 35 / 0 88 / 34 / 0 70 / 52 / 0 67 / 55 / 0 71 / 51 / 0
MCD-E 54 / 68 / 0 55 / 67 / 0 38 / 77 / 7 38 / 76 / 8 42 / 74 / 6
BLR-res 77 / 43 / 0 76 / 44 / 0 92 / 28 / 0 90 / 30 / 0 88 / 32 / 0

The columns labeled + show the number of datasets on which RED performs significantly better at the 5% significance level in a paired
t-test, Wilcoxon test, or both; those labeled - represent the contrary case; those labeled = represent no statistical significance.

Table 2: A pairwise comparison between RED and other methods on UCI datasets

Corbière et al. 2019; Aigrain and Detyniecki 2019), but as
discussed by Davis and Goadrich (2006) and Flach and Kull
(2015), AUPR may provide overly-optimistic measurement
of performance. Moreover, AUROC is sometimes less in-
formative (Manning and Schütze 1999) and not ideal when
the positive class and negative class have greatly differing
base rates (Hendrycks and Gimpel 2017) (this happens when
the base classifier has high prediction accuracy so there are
only few misclassified examples). To compensate for these
issues, AP-Error and AP-Success are included as additional
metrics. Since the target of all tested approaches is to detect
misclassification errors, the following discussion will focus
more on AP-Error and AUPR-Error.

Ten independent runs were conducted for each dataset.
During each run, the dataset was randomly split into train-
ing dataset and testing dataset, and a standard NN classi-
fier trained and evaluated on them. The same dataset split
and trained NN classifier were used to evaluate all methods.
The testbed covers a diversified collection of dataset sizes
and classifier accuracies, thereby enabling a comprehensive
evaluation of the tested approaches. Full details of the exper-
imental setup are provided in Appendix A.1.

Table 1 shows the ranks of each algorithm averaged over

all 125 UCI datasets (see Appendix A.4 for detailed results).
The rank of each algorithm on each dataset is based on the
average performance over 10 independent runs. RED per-
forms best on all metrics; the performance differences be-
tween RED and all other methods are statistically significant
under paired t-test and Wilcoxon test. Trust Score has the
highest standard deviation, suggesting that its performance
varies significantly across different datasets.

Table 2 shows how often RED performs statistically sig-
nificantly better, how often the performance is not signif-
icantly different, and how often it performs significantly
worse than the other methods. RED is most often signifi-
cantly better, and very rarely worse. In a handful of datasets
Trust Score is better, but most often it is not.

To illustrate the impact of misclassification samples in
training set, Figure 2 shows the performance of RED un-
der different numbers of misclassification samples and base
NN classifier accuracies. RED consistently improves over
the MCP baseline, and this improvement is more signifi-
cant for extreme cases, i.e. when only a limited number of
misclassification samples is provided (i.e. in case of few-
shot learning) or the base NN classifier has high accuracy
(i.e. in case of an imbalanced training set), demonstrating
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Figure 2: Impact of Number of Misclassification Samples (a)
and Impact of Classifier Accuracy (b). Each dot represents
one dataset, averaged over 10 independent runs. In some
runs of a dataset, there are no misclassified samples (100%
accuracy), so the average number of misclassified samples
may be less than 1. The improvement of RED over MCP
baseline is more significant for situations where number of
misclassification samples is small (few-shot learning) or ac-
curacies of base NN classifiers are high (imbalanced train-
ing set), indicating that RED provides the largest advantage
in extreme cases.

the robustness of RED. RED’s AP-Error is generally higher
with low-accuracy classifiers. This is because higher ratio
of misclassification samples naturally leads to higher detec-
tion precision, and an accuracy around 50% leads to a more
balanced training set for the error detector.

To further study the robustness of RED compared to the
baseline and the three state-of-the-art approaches, Figure 3
shows the distribution of the relative rank of RED, MCP
baseline, Trust Score, ConfidNet and Introspection-Net as
a function of the number of samples and the number of fea-
tures in the dataset. These plots are based on the AP-Error
metric; other metrics provide similar results. RED performs
consistently well over different dataset sizes and feature di-
mensionalities. Trust Score performs best in several datasets,
but occasionally also worst in both small and large datasets,
making it a rather unreliable choice. ConfidNet generally ex-

hibits worse performance on datasets with large dataset sizes
and high feature dimensionalities, i.e. it does not scale well
to larger problems.

To evaluate whether GP is indeed an appropriat model for
the RED framework, it was replaced by a Bayesian linear
regressor (BLR; Snoek et al. 2015), with all other compo-
nents unchanged. This BLR-residual (BLR-res) variant was
then compared with the original RED in all 125 UCI datasets
(see Appendix A.1 for the setup). Results in Table 2 (last
row) show that RED dominates BLR-res, indicating that GP
is a good choice for error detection tasks.

4.2 Generality wrt. Base Models

To evaluate generality of RED, it was applied to two
other base models: an NN classifier using Monte Carlo-
dropout (MCD) technique (Gal and Ghahramani 2016) and
a Bayesian Neural Network (BNN) classifier (Wen et al.
2018). They were each trained as base classifiers, and RED
was then applied to each of them (implementation details
are provided in Appendix A.1). Experiments analogous to
those in Section 4.1 were performed on 125 UCI datasets in
both cases. Table 2 (rows starting with ”BNN” or ”MCD”)
summarizes the pairwise comparisons between RED and the
internal detection scores returned by the base models (see
Appendix A.4 for detailed results). ”-M” and ”-E” represent
the maximum class probability and entropy of softmax out-
puts, respectively, after averaging over 100 test-time sam-
plings. RED significantly improves MCD and BNN classi-
fier in most datasets, demonstrating that it is a general tech-
nique that can be applied to a variety of models.

4.3 Scaling up to Larger Architectures

To confirm that the RED approach scales up to large deep
learning architectures, a VGG16 model (Simonyan and
Zisserman 2015) and a Wide Residual Network (WRN)
model (Zagoruyko and Komodakis 2016) was trained on the
CIFAR-10 dataset (Krizhevsky 2009), and a VGG19 model
(Simonyan and Zisserman 2015) was trained on the CIFAR-
100 dataset (Krizhevsky 2009), using state-of-the-art train-
ing pipelines (Bingham and Miikkulainen 2020) (see Ap-
pendix A.2 for details). In order to remove the influence of
feature extraction in image preprocessing and to make the
comparison fair, all approaches used the same logit outputs
of the trained VGG/WRN model as their input features. 10
independent runs are performed. During each run, a VG-
G/WRN model is trained, and all the methods are evaluated
based on this VGG/WRN model.

Table 3 shows the results on the two main error detec-
tion performance metrics (note that the table lists absolute
values instead of rankings along each metric). Trust Score
performs much better than in previous literatures (Corbière
et al. 2019). This difference may be due to the fact that logit
outputs are used as input features here, whereas Corbière
et al. (2019) utilized a higher dimensional feature space for
Trust Score. RED significantly outperforms all the counter-
parts in both metrics. This result demonstrates the advan-
tages of RED in scaling up to larger architectures.
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Figure 3: Performance ranks across dataset sizes and feature dimensionalities on UCI datasets. Each plot represents the distri-
bution of relative ranks for one method (each column) as a function of the dataset size (top row) and the feature dimensionality
(bottom row). Each dot in each plot represents the relative rank in one dataset. RED performs consistently well over datasets
of different sizes and feature dimensionalities. Trust Score performs inconsistently, and ConfidNet performs poorly on larger
datasets.

Task VGG16 on CIFAR-10 WRN-10-4 on CIFAR-10 VGG19 on CIFAR-100

Metric AP-Error(%) AUPR-Error(%) AP-Error(%) AUPR-Error(%) AP-Error(%) AUPR-Error(%)
mean±std mean±std mean±std mean±std mean±std mean±std

RED 49.88±1.99* 49.79±2.00* 52.51±2.81* 52.45±2.82* 73.40±1.05* 73.39±1.05*
MCP Baseline 47.09±2.19 46.99±2.21 48.76±1.47 48.70±1.48 71.78±1.24 71.77±1.25

Trust Score 48.76±2.28 48.68±2.29 51.15±3.29 51.09±3.30 72.63±1.20 72.62±1.20
ConfidNet 45.80±2.85 45.70±2.86 48.34±3.05 48.27±3.05 72.12±1.33 72.10±1.13

Introspection-Net 42.11±1.98 42.01±1.98 40.52±3.64 40.44±3.65 69.73±1.13 69.72±1.13
Entropy 47.91±2.17 47.81±2.19 48.12±1.51 48.06±1.51 72.95±1.19 72.94±1.20
DNGO 33.91±2.94 34.43±2.92 28.96±3.54 29.40±3.60 55.44±1.64 55.44±1.64
SVGP 40.71±2.33 40.60±2.34 6.43±0.32 6.42±0.32 29.24±0.90 33.64±1.24

* indicates that the differences between the marked entry and all other counterparts are statistically significant at the 5% significance level
for both paired t-test and Wilcoxon test. The best entries that are significantly better than all the others under both tests are in boldface.

Table 3: Error detection performance with deep NN models on CIFAR-10 and CIFAR-100

4.4 Distinguishing In-sample Errors from OOD
and Adversarial Samples

In all experiments so far, the mean of detection score ĉ∗+¯̂r∗
was used as RED’s detection metric. Although good per-
formance was observed in error detection by only using the
mean, the variance of detection score var(r̂∗) may be help-
ful if the scenario is more complex, e.g., the dataset includes
some OOD data, or even adversarial data.

RED was evaluated in such a scenario by manually adding
OOD and adversarial data into the test set of all 125 UCI
datasets. The synthetic OOD and adversarial samples were
created to be highly deceptive, aiming to evaluate the perfor-
mance of RED under difficult circumstances. The OOD data
were sampled from a Gaussian distribution with mean 0 and
variance 1. All samples from original dataset were normal-
ized to have mean 0 and variance 1 for each feature dimen-
sion so that the OOD data and in-distribution data had sim-
ilar scales. The adversarial data simulate situations where
negligible modifications to training samples cause the orig-

inal NN classifier to predict incorrectly with highest confi-
dence (Goodfellow, Shlens, and Szegedy 2014). Full setup
details are provided in Appendix A.3.

Figure 4 shows the distribution of mean and variance of
detection scores for testing samples, including correctly and
incorrectly labeled actual samples, as well as the synthetic
OOD and adversarial samples. The mean is a good separa-
tor for correctly classified and incorrectly classified samples,
which tend to cluster on the top and bottom half of the im-
age, respectively. On the other hand, variance is a good in-
dicator of OOD and adversarial samples. RED’s detection
scores of in-distribution samples have low variance because
they covary with the training samples. The variance thus
represents RED’s confidence in its detection score. Samples
with large variance indicate that RED is uncertain about its
detection score, which can be used as a basis for detecting
OOD and adversarial samples.

In order to quantify the potential of RED in detect-
ing OOD and adversarial samples, the variance of detec-
tion scores var(r̂∗) (RED-variance) was used as the de-
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Figure 4: Distinguishing in-sample errors from OOD and adversarial samples based on mean and variance of detection scores.
Each dot represents one sample in the testing set in the corresponding UCI task. The horizontal axis denotes the variance of
RED-returned detection score, and the vertical axis denotes the mean. If an in-distribution sample is correctly classified by
original NN classifier, it is marked as ”correct”, otherwise it is marked ”incorrect”. Mean is a good separator of correct and
incorrect classifications. High variance, on the other hand, indicates that RED is uncertain about its detection score, which can
be used to identify OOD and adversarial samples.

RED-variance AP-OOD AUPR-OOD AP-Adversarial AUPR-Adversarial
vs. + / = / - + / = / - + / = / - + / = / -
MCP baseline 101 / 15 / 9 101 / 13 / 11 122 / 3 / 0 124 / 1 / 0
RED-mean 100 / 14 / 11 100 / 13 / 12 122 / 3 / 0 122 / 3 / 0

The columns labeled + show the number of datasets on which RED performs significantly better at the 5% significance level in a paired
t-test, Wilcoxon test, or both; those labeled - represent the contrary case; those labeled = represent no statistical significance.

Table 4: A pairwise comparison between RED-variance and other methods on detection of OOD and adversarial samples

tection metric, and detection performance compared with
MCP baseline and stardard RED (RED-mean) in all 125
UCI datasets (10 independent runs each). The performance
in detecting OOD samples was measured by AP-OOD and
AUPR-OOD, which treat OOD samples as the positive class.
Similarly, AP-Adversarial and AUPR-Adversarial were used
as measures in detecting adversarial samples. The RED
training pipeline was exactly the same as in Section 4.1.
A summary of the experimental results is shown in Ta-
ble 4 (see Appendix A.3 for setup details, and Appendix A.5
for detailed results). Intriguingly, RED-variance performs
well in both OOD and adversarial sample detection even
though it was not trained on any OOD/adversarial samples.
In contrast, the original MCP baseline performs significantly
worse in both scenarios. The original NN classifier always
returns highest class probabilities on deceptive adversarial
samples; as a result, MCP makes a purely random guess,
resulting in a consistent AP-Adversarial/AUPR-Adversarial
of 50%/25%. In addition, the comparison between RED-
variance and RED-mean verifies that the variance var(r̂∗) is
a more discriminative metric than mean ĉ∗+ ¯̂r∗ in detecting
OOD and adversarial samples.

The scalability of RED-variance was evaluated in a more
complex OOD detection task: Images from the SVHN
dataset (Netzer et al. 2011) were treated as OOD samples
for VGG16 classifiers trained on CIFAR-10 dataset. The
same RED and VGG16 models as in Section 4.3 were used
without retraining. Experimental results in Table 5 show that
RED-variance consistently outperforms the MCP baseline.

Thus, the empirical study in this subsection shows that
RED provides a promising foundation not just for detecting
misclassifications, but for distinguishing them from other er-
ror types as well. This is a new dimension in reliability and
interpretability in machine learning systems. RED can there-
fore serve as a step to make deployments of such systems
safer in the future.

5 Discussion and Future Work
One interesting observation from the experiments is that
RED almost never performs worse than the MCP baseline.
This result suggests that there is almost no risk in applying
RED on top of an existing NN classifier. Since RED is based
on a GP model, the estimated residual ¯̂r∗ is close to zero if
the predicted sample is far from the distribution of the orig-
inal training samples, resulting in a negligible change to the
original MCP. In other words, RED does not make random
changes to original MCP if it is very uncertain about the pre-
dicted sample, and this uncertainty is explicitly represented
in the variance of the estimated detection score. Moreover,
the distance-awareness ability of GP also substantially im-
proves the quality of uncertainty estimation (Liu et al. 2020).
These properties make RED a particularly reliable technique
for error detection.

Another inspiring observation is that the variance is also
helpful in detecting OOD and adversarial samples. This re-
sult follows from the design of the GP model. Since mRIO in
RED has an input kernel and a multi-output kernel, lower es-
timated variance requires that the predicted sample is close
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AP-OOD(%) AUPR-OOD(%)
RED-variance / MCP baseline RED-variance / MCP baseline

86.282±2.212* / 82.964±1.850 86.276±2.213* / 82.958±1.851
The symbol * indicates that the difference between the RED-variance and the MCP baseline is statistically significant at the 5% significance

level for both paired t-test and Wilcoxon test. The significantly better entries under both tests are in boldface.

Table 5: Performance on detecting OOD samples (SVHN data) from CIFAR-10 data (mean±std over 10 runs)

to training samples in both the input feature space and the
classifier output space. This requirement is difficult for OOD
and adversarial attacks to achieve, providing a basis for de-
tecting them.

In a real-world deployment, it is necessary to define a
threshold for triggering error warning based on RED’s de-
tection scores. A practical way is to use a validation dataset
to determine how the precision/recall tradeoff changes over
different thresholds. The user can then select a threshold
based on their preference.

The main limitation of RED is that it is not applicable to
classifiers that have 100% prediction accuracy in both train-
ing and validation datasets, as might happen in some cases
of overfitting to small datasets. In this case, there are no mis-
classification samples for RED to learn. In practice, this sit-
uation is easy to identify by directly looking at the train-
ing and validation performance of the original NN classifier.
One potential solution is to reserve a portion of data that in-
clude at least one misclassification sample for training RED.

The most compelling direction of future work is to extend
the capability of RED in distinguishing errors further. In-
stead of using a single dimensional score for error detection,
it is possible to use mean and variance simultaneously, lead-
ing to a two dimensional detection space. Further separation
between OOD and adversarial samples may be possible by
adding one more dimension, such as the ratio between input
kernel output and multi-output kernel output. Also, instead
of using a hard target detection score (i.e. either 0 or 1), it
may be possible to define a soft target score that is more
informative. Further, RED may be used on top of other ex-
isting detection metrics, such as the Trust Score, which may
lead to a further improvement in detection performance.

6 Conclusion

This paper introduced a new framework, RED, for error
detection in neural network classifiers that can produce a
more reliable detection score than previous methods. RED
is able to not only provide a detection score, but also report
the uncertainty of that score. Experimental results show that
RED’s scores consistently outperform state-of-the-art meth-
ods in separating the misclassified samples from correctly
classified samples. Further empirical studies also demon-
strate that the approach is applicable to various types of base
classifiers, scales up to large deep learning architectures, and
can form a basis for detecting OOD and adversarial samples
as well. It is therefore a promising foundation for improving
robustness of neural network classifiers.
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Janai, J.; Güney, F.; Behl, A.; and Geiger, A. 2017. Computer Vi-
sion for Autonomous Vehicles: Problems, Datasets and State-of-
the-Art. ArXiv, abs/1704.05519.

Jiang, H.; Kim, B.; Guan, M. Y.; and Gupta, M. 2018. To Trust or
Not to Trust a Classifier. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems, NIPS’18,
5546–5557.

Klambauer, G.; Unterthiner, T.; Mayr, A.; and Hochreiter, S. 2017.
Self-Normalizing Neural Networks. In Proceedings of the 31st In-
ternational Conference on Neural Information Processing Systems,
NIPS’17, 972–981.

Koppel, M.; and Engelson, S. P. 1996. Integrating Multiple Clas-
sifiers By Finding Their Areas of Expertise. In In: AAAI-96 Work-
shop On Integrating Multiple Learning Models, 53–58.

Krizhevsky, A. 2009. Learning Multiple Layers of Features from
Tiny Images. University of Toronto.

Kull, M.; Perello Nieto, M.; Kängsepp, M.; Silva Filho, T.; Song,
H.; and Flach, P. 2019. Beyond temperature scaling: Obtaining
well-calibrated multi-class probabilities with Dirichlet calibration.
In Advances in Neural Information Processing Systems 32, 12316–
12326.

LeCun, Y.; Bengio, Y.; and Hinton, G. 2015. Deep learning. Na-
ture, 521(7553): 436–444.

Lee, K.; Lee, H.; Lee, K.; and Shin, J. 2018a. Training Confidence-
calibrated Classifiers for Detecting Out-of-Distribution Samples.
In International Conference on Learning Representations.
Lee, K.; Lee, K.; Lee, H.; and Shin, J. 2018b. A Simple Unified
Framework for Detecting Out-of-Distribution Samples and Adver-
sarial Attacks. In Bengio, S.; Wallach, H.; Larochelle, H.; Grau-
man, K.; Cesa-Bianchi, N.; and Garnett, R., eds., Advances in Neu-
ral Information Processing Systems 31, 7167–7177. Curran Asso-
ciates, Inc.
Liang, S.; Li, Y.; and Srikant, R. 2018. Enhancing The Reliabil-
ity of Out-of-distribution Image Detection in Neural Networks. In
International Conference on Learning Representations.
Liu, J.; Lin, Z.; Padhy, S.; Tran, D.; Bedrax Weiss, T.; and Laksh-
minarayanan, B. 2020. Simple and Principled Uncertainty Estima-
tion with Deterministic Deep Learning via Distance Awareness. In
Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan, M. F.; and Lin,
H., eds., Advances in Neural Information Processing Systems, vol-
ume 33, 7498–7512.
Mandelbaum, A.; and Weinshall, D. 2017. Distance-based
Confidence Score for Neural Network Classifiers. ArXiv,
abs/1709.09844.
Manning, C. D.; and Schütze, H. 1999. Foundations of Statistical
Natural Language Processing.
Monteith, K.; and Martinez, T. R. 2010. Using multiple measures
to predict confidence in instance classification. The 2010 Interna-
tional Joint Conference on Neural Networks (IJCNN), 1–8.
Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; and Ng,
A. Y. 2011. Reading Digits in Natural Images with Unsupervised
Feature Learning. NIPS Workshop on Deep Learning and Unsu-
pervised Feature Learning.
Nguyen, A.; Yosinski, J.; and Clune, J. 2015. Deep neural networks
are easily fooled: High confidence predictions for unrecognizable
images. 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 427–436.
Niculescu-Mizil, A.; and Caruana, R. 2005. Predicting Good Prob-
abilities with Supervised Learning. In Proceedings of the 22nd
International Conference on Machine Learning, ICML ’05, 625–
632. New York, NY, USA.
Ortega, J. 1995. Exploiting Multiple Existing Models and Learning
Algorithms. In In AAAI 96 - Workshop in Induction of Multiple
Learning Models, 239–266.
Platt, J. C. 1999. Probabilistic Outputs for Support Vector Ma-
chines and Comparisons to Regularized Likelihood Methods. In
Advances in Large Margin Classifiers, 61–74. MIT Press.
Provost, F. J.; Fawcett, T.; and Kohavi, R. 1998. The Case against
Accuracy Estimation for Comparing Induction Algorithms. In
Proceedings of the Fifteenth International Conference on Machine
Learning, ICML ’98, 445–453. San Francisco, CA, USA.
Qiu, X.; Meyerson, E.; and Miikkulainen, R. 2020. Quantifying
Point-Prediction Uncertainty in Neural Networks via Residual Es-
timation with an I/O Kernel. In International Conference on Learn-
ing Representations.
Santos-Pereira, C. M.; and Pires, A. M. 2005. On Optimal Reject
Rules and ROC Curves. Pattern Recogn. Lett., 26(7): 943–952.
Seewald, A. K.; and Fürnkranz, J. 2001. An Evaluation of Grading
Classifiers. In Proceedings of the 4th International Conference on
Advances in Intelligent Data Analysis, IDA ’01, 115–124. Berlin,
Heidelberg.
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