The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

Spiking Neural Networks with Improved Inherent Recurrence Dynamics
for Sequential Learning

Wachirawit Ponghiran, Kaushik Roy

School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906
wponghir, kaushik @purdue.edu

Abstract

Spiking neural networks (SNNs) with leaky integrate and fire
(LIF) neurons, can be operated in an event-driven manner and
have internal states to retain information over time, providing
opportunities for energy-efficient neuromorphic computing,
especially on edge devices. Note, however, many representa-
tive works on SNNs do not fully demonstrate the usefulness
of their inherent recurrence (membrane potential retaining in-
formation about the past) for sequential learning. Most of the
works train SNNs to recognize static images by artificially
expanded input representation in time through rate coding.
We show that SNNs can be trained for practical sequential
tasks by proposing modifications to a network of LIF neu-
rons that enable internal states to learn long sequences and
make their inherent recurrence resilient to the vanishing gra-
dient problem. We then develop a training scheme to train the
proposed SNNs with improved inherent recurrence dynam-
ics. Our training scheme allows spiking neurons to produce
multi-bit outputs (as opposed to binary spikes) which help
mitigate the mismatch between a derivative of spiking neu-
rons’ activation function and a surrogate derivative used to
overcome spiking neurons’ non-differentiability. Our exper-
imental results indicate that the proposed SNN architecture
on TIMIT and LibriSpeech 100h speech recognition dataset
yields accuracy comparable to that of LSTMs (within 1.10%
and 0.36%, respectively), but with 2x fewer parameters than
LSTMs. The sparse SNN outputs also lead to 10.13x and
11.14x savings in multiplication operations compared to
GRUs, which are generally considered as a lightweight alter-
native to LSTMs, on TIMIT and LibriSpeech 100h datasets,
respectively.

1 Introduction

Spiking neural networks (SNNs) have been considered as
a promising solution for low-power neuromorphic comput-
ing. Inspired by the biological neural networks, neurons
in the SNNs communicate asynchronously with each other
through binary values that aim to represent the actual neu-
ron spiking activity. On event-driven hardware, the asyn-
chronous binary communication of the neurons leads to po-
tential power savings by requiring computation units to be
activated only when the spikes occur. This makes SNNs ap-
pealing for applications on edge devices. As operations on

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

8001

Backward

Surrogate |ts derivative
out function it

OT 1 W [
in in in
0+ 0 ‘
0 ih

th ‘

Forward

Threshold |ts derivative
out function

1.

" th

Figure 1: Technique to overcome non-differentiability of the
spiking neurons with a straight-through estimator. The ac-
tivation function of the spiking neuron with an ill-defined
derivative (left) is replaced with a surrogate function (right)
during backward pass. The substitution enables the use of
backpropagation to train SNNs; however, it leads to a dis-
crepancy between actual and surrogate gradients. The gra-
dient mismatch results in noisy gradient updates and con-
sequently degrades learning performance. The shaded area
highlights the difference between the activation function of
the spiking neuron and its surrogate function. The role of
threshold on generating outputs is discussed in Section 2.

mobile/edge devices are typically limited by power/energy
constraints, exploiting common techniques to improve effi-
ciency such as batch computation may not always be possi-
ble. SNNs provide an opportunity to process inputs sequen-
tially at low-power consumption by computing in an event-
driven manner. In addition, SNNs also have internal states
(membrane potentials) to retain information over time. Such
inherent recurrence in SNNss is suitable for sequential learn-
ing, but its usefulness still has not been well demonstrated
on suitable applications.

Many prior works on training SNNs for energy-efficient
computing focus on recognition problems from static im-
ages, where the inputs are expanded in time through rate
coding (Diehl et al. 2015; Rueckauer et al. 2017; Sengupta
et al. 2019). Each pixel is mapped to a binary sequence
where the occurrence of ones in the sequence is proportional
to the pixel intensity. Even though the rate-coded inputs are
sequential, such synthetic tasks neither signify the impor-
tance of learning “time” with SNN’s inherent recurrence, nor
represent practical sequential learning problems. Recently,
Cramer et al. (2020) has successfully trained a network of
leaky integrate-and-fire (LIF) spiking neurons with back-
propagation through time (BPTT) for a sequential recog-

nition task. Nonetheless, the task is small-vocabulary key-
word spotting for spoken digits. Training SNNs for larger
sequential tasks remains a difficult problem. We show that
the issue partially stems from vanishing gradients. Gradients
that propagate along synaptic currents and membrane poten-
tials, which are both neuron internal states, quickly diminish
with time-steps. Note each time-step represents how far in
the input sequences that have been processed by the SNN.
Since we do not expand each input sequence in time, a to-
tal number of time-steps is equivalent to the length of input
sequences.

In this work, we propose SNNs with improved inherent
recurrence dynamics to effectively learn long sequences. We
identify that gradients mostly flow along the synaptic cur-
rents and a constant decay of the synaptic currents is a cause
of diminishing gradients. Simply making the synaptic cur-
rents retain values without any leak does not eliminate the
problem and in fact, leads to an uncontrollable growth in
the values during the forward pass. Hence, we introduce
the concept of “forget gate” as in the gate-recurrent units
(GRUs) and long-short term memory units (LSTMs) to en-
able selective updates of the synaptic currents during for-
ward pass. This is an empirically shown method to sus-
tain gradients through multiple time-steps (Hochreiter and
Schmidhuber 1997; Cho et al. 2014). We show that the pro-
posed modifications lead to improvement in speech recogni-
tion accuracy on both TIMIT and LibriSpeech 100h speech
recognition dataset. We also come up with a scheme to train
the proposed SNNs and at the same time address the gra-
dient mismatch problem which arises from the use of surro-
gate gradient during training. The trick to overcome the non-
differentiability of spiking neurons with a straight-through
estimator (Courbariaux et al. 2016) leads to a discrepancy
between the presumed and the actual activation function as
shown in Fig. 1. This mismatch results in noisy gradient
updates and has been shown to affect the learning perfor-
mance (Lin and Talathi 2016). To alleviate this problem, we
extend spiking neurons to output multi-bit values (as op-
posed to binary spikes). We follow observations from the
existing literature that increasing output precision helps re-
duce gradient mismatch (Lin and Talathi 2016; Kim et al.
2019). We show that the learning performance of SNNs with
multi-bit outputs is better than the network with binary out-
puts. Importantly, we demonstrate that the proposed SNNs
achieve similar speech recognition accuracy to the LSTMs
on TIMIT and LibriSpeech 100h dataset but with only half
the number of parameters. The benefit of SNNs that commu-
nicate sparsely with many zero messages leads to savings in
the number of multiplication operations, which govern the
overall operations.

The remainder of the paper is organized as follows. Sec-
tion 2 provides background on the spiking LIF neurons and
a method to train them using BPTT. We then discuss the
potential benefit of executing them on an event-driven plat-
form. Section 3 shows the vanishing gradient problem that
arises when a layer of LIF neurons is used to learn long se-
quences. We then propose SNNs with improved inherent re-
currence dynamics for mitigating the diminishing gradients
and present a method to train them. Experimental results are

8002

D)

Y[n

gradient

@

LIF L{ LIF sz LIF LIF LIF m
neuron neurons neurons neurons neurons

@%é\ 5 BB B

Figure 2: (a) An example of LIF neuron which receives
X;(t) as inputs and produces Y () as an output. w; denotes
the weight of each connection to the neuron. (b) Diagram
representing operations of spiking neurons that form a neu-
ron layer in a discrete-time. The neurons receive input vec-
tor X[n] and produce output vector Y[n| at time-step n. (c)
Equivalent representation when the operations are unrolled
into n time-steps.

presented in Section 4, where we show the effectiveness of
the proposed network in learning and compare accuracy and
computation savings to LSTMs and GRUs. The paper is con-
cluded in Section 5.

2 Background

In this section, we introduce the dynamics of LIF neurons, a
popular spiking neuron model in the field of computational
neuroscience, and explain a method to train a network of the
LIF neurons using BPTT. We then discuss a benefit of ex-
ecuting SNNs (that produce many zero outputs) on suitable
event-driven hardware.

Dynamics of LIF Neurons

Suppose an LIF neuron receives input X (¢) from input neu-
roni€{1,2,...,a} at time ¢ as shown in Fig. 2(a). Each input
would go through a synapse and gets modulated with the as-
sociated weight w; before being integrated into a synaptic
current I(t) that decays exponentially according to a con-
stant 7y,,,. Note, I(¢) is one internal state of the spiking neu-
ron and behaves like a leaky integrator of the inputs. We can
express it mathematically as:

dI(r) _
dt

9, Z
The increase in synaptic current leads to an increase in mem-
brane potential V' (¢), another internal state of the spiking
neuron. If the membrane potential crosses a firing thresh-
old +, the neuron produces an output spike. Otherwise, the
membrane potential decays exponentially with a time con-
stant T,,em. We can express the dynamics of the neuron as:

av(it) V()
dt B Tmem,

where 7) represents an input resistance and Y (¢) is an output
of the neuron at time ¢. Since the output of the spiking neu-
ron is constrained to a binary value, Y (¢) = 1 indicates that
the neuron produces an output spike at time ¢. The last term
of the Eq. 2 accounts for an instantaneous decrease in the

(D

Tsyn

+nl(t) =Y (t) 2

membrane potential after the neuron produces output. For
simplicity, we assume input resistance (1) is 1 throughout
this work.

Computing neuron states by directly solving the above
equations is expensive, and hence, it is generally done by
discretely evaluating the equations over small time-steps.
The neuronal dynamics can be then approximated as:

Iln) = BIln — 1]+ Y w;X;[n]

' 3)
Vin] =aVin—1] + }[n] — Y [n — 1] (€]
Y[n] = U(VIn] —9) Q)

where n represents an index of simulation time-step. 5 and
« are decaying factors for the synaptic current and the mem-
brane potential, respectively. U(-) denotes a unit step func-

tion:
Ula) = {é

From Eq. 5-6, threshold is a hyperparameter that dictates
a distribution of spiking neuron outputs. Setting threshold to
zero leads to a neuron that always spikes (i.e. always gen-
erates one as output), thus making the neuron not useful for
learning. Having high threshold value leads to many zero
outputs. However, excessive zero outputs may harm learn-
ing as only connections to active neuron get updated in the
backward pass. Hence, threshold has to be chosen carefully.
We discuss a method for threshold selection that simplifies
the SNN training in the next section.

ifz >0

ifx <0 ©

Training a Network of LIF Neurons with BPTT

To understand the training process, let’s continue with
the previous example. We denote a vector of inputs as
X[n] = (X1[n], X2[n), ..., Xs[n]). Suppose there are other
b — 1 spiking neurons that also receive input vector X[n]
and together form a neuron layer. We represent opera-
tions of this neuron layer at time-step n as illustrated in
the Fig. 2(b). We denote a vector of outputs as Y[n]
(Yi[n], Ya[n], ..., Yp[n]) given that Y;[n] is an output of neu-
ron j at time-step n. We introduce a connection matrix W
which has an element W;; in row 7 and column j indicat-
ing a weight of the connection between neuron ¢ and j. The
dynamics of the neuron layer in a discrete time can then be
expressed as:

I[n] = BI[n — 1] + X[n]W @)
Vin] = aV[n — 1] + I[n] — 4Y[n — 1] (8)
Y[n] = U(V[n] —) ©)

Since the internal states of the neurons (i.e. V[n] and I[n])
depend on the current inputs and their previous values at
the last time-step, we can recursively apply the equations
and BPTT algorithm to compute gradients. The operations
of the neuron layer are unfolded in time by creating several
copies of the LIF neurons and treat them as a feed-forward
network with tied weights such that W[n] is treated as W
for every time-step n. Fig. 2(c) shows the operations after

8003

the unrolling. The gradient can be computed and propagated
backward through each time-step after completing the for-
ward pass. During the backward pass, the non-differentiable
behavior of the unit step function is overcome by substitut-
ing the ill-defined differential with a smooth function (Zenke
and Ganguli 2018; Bellec et al. 2018; Shrestha and Orchard
2018; He et al. 2020). Such concept is commonly known
as straight-through estimator (Courbariaux et al. 2016). The
use of surrogate function is popular as it does not require any
change to the optimization algorithm.

Benefits of Computing with SNNs

Benefits of computing with SNNs comes in two different
ways. One is the reduction in the number of parameters and
another is a computational saving resulting from sparse in-
puts which ideally incur little or no energy consumption on
an event-driven hardware. To quantify the benefits, we com-
pare SNNs with GRUs and LSTMs, which are recurrent neu-
ral networks widely used for sequential learning.

Let us first consider parameter reduction. Suppose an in-
put and output vector have a size of m and n, respectively.
The number of parameters for SNNs is (m-n) (previous sub-
section). GRUs and LSTMs have higher number of parame-
ters as they have multiple signals to control the flow of infor-
mation through them. Specifically, GRUs have 3(m -n+n?)
parameters while LSTMs have 4(m-n+n?) parameters. The
difference in the number of parameters leads to a reduction
in memory.

To demonstrate computational saving, we compute a cost
for the neuron layer to update its internal states and gen-
erate outputs given a sparse input vector. We assume that
the input vector to spiking neuron is sparse because we
stack the spiking neuron layer to form a multiple-layer net-
work and increase network capacity. Outputs from each
layer are typically full of zeros as a result of the thresh-
old function as in Eq. 9, and the outputs from one layer
are fed to the next layer as inputs. We compare the updat-
ing cost with SNNs against a computation with GRUs and
LSTMs given a dense input vector. Let Cp,qr5c denotes the
cost of sparse computing with SNNs. Eq. 7-9 involve fetch-
ing synaptic weights, matrix-vector multiplications, vector-
constant multiplications, and vector-vector additions. Actual
cost for each operation depends strongly on the underlying
hardware and implementation. For algorithmic development
purpose, we assume that a suitable implementation mini-
mize the memory access and only focus on arithmetic op-
erations. We use number of multiplications which mainly
govern overall operations as a cost metric and have:

Osparse = (n +s-m- n) + (371) (10)
—_——— ~—~
of multiplications for updating I[n], updating V[n]

where s represents a ratio of zeros in the input vector. Fol-
lowing the same logic, the cost of computing with GRUs
and LSTMs are 3n + 3(m + n)n and 3n + 4(m + n)n.
Hence, if inputs and outputs have the same dimension, the
computation saving is roughly be 6/s and 8/s for GRUs and
LSTMs. This significant computational reduction of SNNs
potentially leads to faster execution and less energy con-
sumption.

Backward paths
for computing
AJ/OW[N-1]

)
0)[©;

Figure 3: (a) Computational graph of the spiking neuron
layer. Input vector X[n] is sequentially fed to the neuron
layer for N time-steps. Synaptic currents [[n] are updated
based on the input vector, and the new values are added to
membrane potentials V[r]. Output vector Y[n] is then gener-
ated according to Eq. 9. Finally, values of synaptic currents
and membrane potentials are carried over to the next time-
step while decaying with a factor 8 and «.. Feedback connec-
tion from outputs to membrane potentials lead to a reduction
in the membrane potentials whenever non-zero outputs are
generated. (b) Graph demonstrating all backward paths as-
sociated with computing gradient 9.J/0W[N — 1].

3 Vanishing Gradient Problem and
the Proposed SNNs with Improved
Inherent Recurrence Dynamics

Vanishing Gradient Problem

To demonstrate the vanishing gradient problem of the spik-
ing neuron layer, we derive a gradient for updating connec-
tion matrix W based on the computational graph illustrated
in Fig. 3(a). Suppose J is an objective that we would like to
minimize at time-step N. The equation for calculating the
gradient is:

o1

(1D

Since we treat all Wn| as the same weight matrix, gradi-
ent for updating W is a summation of all 8.J /O0W|[n] from all
time-steps. To make sure that the gradient does not vanish,
the term V[N]/W[n] should remain significant. However,
we show that the term diminishes for large value of N — n.
Plugging Eq. 8 and 9 into the last term of Eq. 11 gives:

AVIN] 8 (aV[N — 1] +I[N] — yU(V[N — 1] — 7))
OWn] — OW[n]
= PIN — 1}8%@[;] 1 ggy\\% (12)
where
Pln] = 9 (aV[n] —yU(V[n] — 7)) (13)

8004

Continuing substitution V[n] leads to a closed-form expres-

sion:
oviN] (N aV[n]
T = (T v)

OW([n]

N—(n+1) l
S (H PIN — k]) 8%[”]”
=1 k=1
OI[N]
W] (14

Intuitively, the expression above is equivalent to summing
partial gradients through all possible backward paths from
V[N] to W[n]. Fig. 3(b) shows an example whenn = N —1.
There are 3 possible backward paths from V[N] to W[N —1],
i.e. D through Y[N — 1], @ directly through V[N — 1], and
@ through I[N]. With a piecewise linear surrogate function,
P[n] becomes a term with a small value. Hence, the last term
in Eq. 14 remains the most significant term implying that the
gradients mostly flow along the synaptic currents. Substitut-
ing Eq. 7 into the last term gives:

SIN] OI[N] QI[N —1] 9l[n]
OW[n] ~ OI[N —1]0I[N —2] 0W[n]
(A ok 41 oNem
= <k_n 311““]) X[n] =p"""X[n] (15)

As decaying rate (3 is typically a constant and set to a value
less than 1, Eq. 15 converges to zero for sufficiently large
N — n. This indicates that the spiking neuron layer suffers
from a vanishing gradient problem which prevents it from
learning a long sequence. Note, the same derivation holds
even the decaying rate 3 is a learnable parameter (Fang et al.
2021). However, we can modify the internal state update
equations of the neuron layer to avoid the problem. The fol-
lowing subsection talks about internal states of the spiking
neuron layer and the proposed modifications in details.

Improving Inherent Recurrence Dynamics

There are two distinct internal states of the spiking neuron
layer as discussed earlier: synaptic currents and membrane
potentials. Synaptic currents carry information over time as
they are the main path for gradients to flow backward. Mem-
brane potentials keep track of errors when the spiking neu-
rons produce outputs. Since spiking neurons have a thresh-
old, outputs are not always transmitted, leading to their
event-driven characteristic. Keeping track of the blocked
outputs (so-called residual errors) was shown to improve
performance when stacking the spiking neurons into multi-
ple layers (Rueckauer et al. 2017). To retain significant gra-
dients for a long time which is one of the focus in this study,
we only modify the synaptic current equation while leaving
the equation for updating membrane potential the same.
From Eq. 7, note that the synaptic currents of the spiking
neurons are multiplied by the same constant every time-step.
This leads to fast diminishing gradients during backward
pass as we have shown in the previous subsection. Selec-
tively updating neuron states like GRUs and LSTMs is an

empirical method to maintain magnitudes of the gradients.
We follow the same technique to update synaptic currents
and propose equations for updating synaptic currents as fol-
lows:

F[n] = o(X[n]Wy;) (16)
Cln] = ReLU(X[n|W;) (17)
I[n] =F[n] ©®In — 1]+ (1 — Fn]) © C[n] (18)

where © signifies element-wise multiplication. W¢; and
W, are weight matrices for input messages to determine
forget and candidate signal, respectively. As in GRUs and
LSTMs, the forget signal controls amount of information
passed from the previous time-step. The candidate signal
represents potential information to be added to the synap-
tic currents at each time-step. Throughout this work, we call
SNNs after this modification as “the SNNs with improved
dynamics v1” for short.

From the Eq. 18, updates on the synaptic currents are de-
termined solely based on the inputs at every time-step re-
gardless of the existing synaptic current values. The existing
values of the synaptic currents may provide useful informa-
tion about the past and overwriting them can be avoided by
using previous synaptic current for forget and candidate sig-
nal computation. In other words, we can choose to compute
forget signals based on the present inputs and the previous
synaptic currents (denoted by I[n — 1]). However, doing so
would eliminate the benefit of having sparse inputs. This is
because I[n — 1] is a dense vector. We can use Y|[n| instead
as it is sparse and provides an approximation of I[n]. Sim-
ilar logic also applies to the computation of the candidate
signal. Therefore, we propose a new set of equations to up-
date synaptic currents as follows:

Fln] = o (X[nWy; + Yl — 1[Wy,) (19
C[n] = ReLU (X[n]W.; + Y[n — 1]W,,) (20)
I[n] = Fln] ©I[n — 1] + (1 — F[n]) ® C[n] (21)

where W, and W, are weight matrices for previous out-
puts to determine forget and candidate signal, respectively.
We refer to SNNs after this modification as “the SNNs with
improved dynamics v2”. We later show that the proposed
modification further leads to higher recognition accuracy.
The cost of computation using the proposed spiking neu-
ron layer is increased roughly fourfold because the modifi-
cations lead to 4 x more matrix-vector multiplications than
the original spiking neuron layer. However, we show in the
results section that proper selection of threshold in SNNs
lead to sparse outputs, which ideally incur few computations
on event-driven hardware. Thus, we can still expect benefit
of sparse communications during inference.

Training Method for the Proposed SNNs with
Improved Inherent Recurrence Dynamics

The step to generate outputs of the traditional spiking neu-
rons can be thought as a mapping between membrane po-
tentials and binary values (see Fig. 4(a)). Membrane poten-
tials below threshold (denoted by «) are translated to zeros
and the values above threshold are translated to ones. De-
pending on threshold and the maximum value of the mem-
brane potentials (denoted by b), there are infinitely many

8005

o
o :
[T !

| ‘vmem

/ Y b
[oF
(] :
= i
H outputs
0 1

(@)

Figure 4: (a) Activation function of the spiking neuron maps
membrane potentials, which are real values, to binary out-
puts. However, the mapping depends on the choice of thresh-
old () and the maximum value of membrane potentials (b).
Existing works generally set threshold as a constant prior to
training. (b) The activation function after a modification to
produce 2-bit outputs. Threshold is set to 2b/4; values below
the threshold are mapped to zeros. (c) The activation func-
tion after a modification to produce 3-bit outputs. Threshold
is set to 3b/8.

ways to come up with a mapping. Existing works on train-
ing SNNs generally choose threshold arbitrarily. However,
we found that using a constant threshold does not work well
across different learning problems. This is because the maxi-
mum range of the membrane potentials changes for different
datasets. Hence, the same threshold does not guarantee sim-
ilar mapping or similar learning performance. We simplify
the threshold selection step by setting v as a linear function
of b and estimating value of b during training. Specifically,
we use an exponential moving average (EMA) to keep track
of the membrane potential statistic as in Jacob et al. (2018).
We observe the membrane potentials of spiking neurons on
each layer during every batch computation and aggregate
their maximum value into the EMA.

Another problem that can be handled during training is the
gradient mismatch arisen from the use of surrogate function
to overcome spiking neurons’ non-differentiability. Gradient
mismatch has been previously shown to be prominent when
output precision is low (Lin and Talathi 2016). To make
spiking neurons produce multi-bit outputs and to alleviate
gradient mismatch issue, we can come up with a multi-level
mapping, where membrane potentials are mapped multiple
values (as opposed to zeros and ones shown in Fig. 4(a)).
We can then apply the proposed technique for threshold se-
lection. As illustrated in Fig. 4(b-c), values below the thresh-
old are mapped to zeros. Only sufficiently large membrane
potentials lead to non-zero outputs. In order to express the
mapping mathematically, we simplify the output computa-
tion by imposing two constraints. First, we limit thew thresh-
old () to be a multiple of b/ 2Nbits where Ny;.s is the num-
ber of bits for output representation. For example, threshold
is set to 2b/4 in Fig. 4(b) where outputs are 2-bit values.
Threshold is set to 3b/8 in Fig. 4(c) where outputs are 3-bit
values. This constraint helps reducing the space for param-
eter search during training. Second, we assume a uniform
mapping between membrane potentials and outputs. As il-
lustrated in Fig. 4(b), membrane potentials between [0, b)
are mapped to {0, 1, 2, 3} while the values below v = 2b/4

Prediction accuracy (%)

of zero outputs (%) | Avg ops/inf (normalized)

Architecture proel;tils)iuotn zﬁl éf d | TIMIT Librligg}cltech TIMIT Librlig([))lel:ech TIMIT Librligggech
LSTMs Full - 82.68 89.95 <0.01 <0.01 1.00 1.00
GRUs Full - 82.26 89.77 <0.01 <0.01 0.81 0.83
Traditional SNNs 6-bit b/16 70.66 78.39 59.90 59.96 0.13 0.16
Improved SNNs vl 6-bit b/16 79.64 87.36 70.89 67.80 0.15 0.19
Improved SNNs v2 6-bit b/16 81.28 88.25 84.29 86.33 0.08 0.08

Table 1: Column 4-5 shows speech recognition performance on TIMIT and LibriSpeech 100h dataset obtained from the GRUs,
LSTMs, traditional SNNs, and SNNs with improved inherent recurrence dynamics (Improved SNNs). Column 6-7 shows the
percentage of zeros in outputs from all architectures while Column 8-9 shows the average number of multiplication operations

per inference (avg ops/inf) normalized to that of the LSTMs

are mapped to zeros. With the two constraints, the activation
function of the spiking neuron can be written as follows:

Y[n] = {L

0
4 Experimental Results

We demonstrated the effectiveness of the proposed SNNs
with improved inherent recurrence dynamics on two speech
recognition problems, namely phoneme recognition on
TIMIT dataset (Garofolo et al. 1993) and word recogni-
tion on 100 hours samples of LibriSpeech dataset (Lib-
riSpeech 100h) (Panayotov et al. 2015). For convenience, we
call networks of LIF neurons before the proposed modifica-
tions as traditional SNNs throughout this work. We extended
PyTorch-Kaldi framework (Ravanelli, Parcollet, and Bengio
2019) to simulate the behavior of SNNs and performed the
training.

Vin]

- 2Nb7',tsj

if V[n] >~

if Vin] <~ @2)

Experimental Setup

Because we target edge devices where the inputs arrive and
are processed sequentially, unidirectional LSTMs and GRUs
were used as baseline architectures. All architectures used
in this section were set up similarly unless otherwise stated.
LSTMs, GRUs, and spiking neurons were stacked into dif-
ferent two-layer networks where each layer consisted of
550 non-spiking or spiking units. Final outputs from those
stacked units were fed to a fully connected layer to produce a
probability of the most likely phonemes or words for speech
recognition purpose. Inputs to neural networks were gener-
ated according to Kaldi recipe (Povey et al. 2011), a popu-
lar toolkit for speech recognition. Raw audios were trans-
formed into acoustic features by feature space maximum
likelihood linear regression (commonly known as fMLLR)
that provides a speaker adaptation. The features were com-
puted using windows of 25 ms with an overlap of 10 ms. Be-
fore training, we initialized all weight matrices with Glorot’s
scheme (Glorot and Bengio 2010) except recurrent weight
matrices that had orthogonal initialization. We used Adam as
an optimizer and recurrent dropout as a regularization tech-
nique (Semeniuta, Severyn, and Barth 2016). Dropout rate
of 0.1 was found to give the best performance on all archi-
tectures. Batch normalization was applied to control the dis-

8006

tribution of weight-sums after multiplying synaptic weights
with inputs. Batch size of 64 was used throughout the train-
ing and all architectures were trained for 24 epochs. The er-
ror on the development set was monitored every epoch and
the learning rate was halved after 3 epochs of improvement
less than 0.1. The initial learning rate was set to 1 x 1073
for all architectures.

Speech Recognition Accuracy

Columns 4-5 of Table 1 report the speech recognition per-
formance obtained from LSTMs, GRUs, and SNNs on the
TIMIT and LibriSpeech 100h dataset. To account for any
variability during training, prediction accuracy was the aver-
age of the training results obtained from 5 experiments with
different initial random seeds. Standard derivation is not dis-
played in the table but is less than 0.25% and 0.38% on
TIMIT and LibriSpeech 100h dataset for all architectures.
We did not constrain the range of outputs for LSTMs and
GRUEs. In other words, we kept outputs in a floating-point
representation during the training and inference. Hence, we
denote precision of those architectures at inference as full
precision. In case of the SNNs, we limited the outputs to
6 bits and the threshold to /16 during the training and in-
ference. We arbitrarily chose this setting of SNNs for com-
parison with baseline architectures; the impact of the out-
put ranges is later discussed in detail. Prediction accuracies
from the baseline architectures were lower than previously
reported in the literature because we considered only uni-
directional models. LSTMs outperformed GRUs by a small
margin. The SNNs with improved dynamics v1 boosted the
prediction accuracy of the traditional SNNs by 8.98% and
9.84% on TIMIT and LibriSpeech 100h dataset. This im-
provement highlighted the benefit of learning without a van-
ishing gradient and gradient mismatch problem. The SNNs
with improved dynamics v2 further increased the predic-
tion accuracy on top of vl by 1.64% and 5.57% on TIMIT
and LibriSpeech 100h dataset. Determining the forget and
candidate signal based on the previous synaptic current
thus helped to maximize the recognition accuracy. With all
the proposed architecture and training scheme, the gap in
the recognition accuracy between SNNs and the baseline
LSTMs essentially became 1.10% and 0.36% on TIMIT and
LibriSpeech 100h dataset, with 2x improvement in the num-

< x

<100 <100 - 32-bit

74 8 754 T3 o5-bit

T 50 T 50 Rt
. & 1-bit

_5 Large diff _5

5 25 5 25

g o e g 0 A—bD—h———A

& 1b73b"5b'32b" F 1x 15X 2x 3x'

Output precision

(@)

Number of neurons/layer

(b)

Figure 5: Speech recognition performance of the the SNN
with improved dynamics v2 on TIMIT dataset: (a) prediction
accuracy with various output precisions and (b) prediction
accuracy with various output precisions and network sizes.

ber of parameters.

Computational Saving

Columns 6-7 of Table 1 report the percentage of zeros in
the outputs from all architectures. Only a few outputs from
the LSTMs and GRUs were zeros because there was no
constraint on how the outputs were generated. SNNs, on
the other hand, had many zero outputs because of thresh-
olds that gated small membrane potentials. To support our
claim that those zero outputs potentially lead to substan-
tial computation saving on event-driven hardware, we mea-
sured the average number of multiplication operations per
inference from all architectures and normalized each value
to the measurement from LSTMs as illustrated in Column
8-9. The operation of the GRUs was cheaper than the op-
eration of LSTMs as GRU computation involved only 3/4
vector-matrix multiplications of LSTM computation. The
simpler dynamics of the traditional SNN and its high out-
put sparsity led to higher computation saving (5.20-6.32x
more than the GRUs); however, using the traditional SNN
came at a cost of lower recognition accuracy (11.60-15.48%
worse than the GRUs). SNNs with improved dynamics vl
alleviated this shortcoming by reducing the gap in the recog-
nition accuracy between SNNs and GRUs while it main-
tained the benefit of the sparse computation. Sparse outputs
of the proposed SNN led to 4.37-5.40x fewer number of
multiplications than GRUs. Note, the traditional SNNs and
the SNNs with improved dynamics v1 updated synaptic cur-
rents solely based on the inputs. We found that the average
number of operations per inference further reduced if spik-
ing neurons updated their synaptic currents as introduced in
the SNN with improved dynamics v2. The SNN with im-
proved dynamics v2 had the highest output sparsity (i.e. have
highest percentage zeros in the outputs) among all the archi-
tectures. Hence, the SNN with improved dynamics v2 re-
duced the number of multiplication operations by 10.13x
and 11.14x compared to the GRUs for speech recognition
task on TIMIT and LibriSpeech 100h datasets, respectively.

Effect of the Output Precision on Speech
Recognition Accuracy

Fig. 5(a) compares the speech recognition performance ob-
tained from the SNN with improved dynamics v2 with var-
ious output precisions. The threshold was assumed to be

8007

b/2Nvits in each case to minimize the effect of the thresh-
old on the output generation step and to follow our pro-
posed simplification that limits threshold to be a multiple
of b/ 2Nvits where Ny;;s is the number of bits for output rep-
resentation. For instance, the threshold was set to b/2 for
1-bit outputs and was set to b/8 for 3-bit outputs. Reduc-
ing the number of output precision from 3-bit to 1-bit led
to a large drop in the accuracy of the SNN from 70.18% to
8.80%. Once we increased the output precision to 4 bits or
more, we achieved the recognition accuracy close to training
accuracy without any constraint on the outputs. One may
argue that the sharp accuracy drop occurs because of the
limited capacity of the SNN with binary outputs that is not
large enough for a given task. The capacity of the SNN with
binary outputs may be improved by increasing more neu-
rons per layer and allow the network to learn successfully.
Hence, we conducted another set of experiments by varying
the size of the spiking neurons in each layer to increase the
network capacity. As illustrated in Fig. 5(b), the large ac-
curacy drop still existed between the SNN with binary and
3-bit outputs. Even if the number of spiking neurons is in-
creased by 3x per layer, the SNN with binary outputs still
performed poorly compared to the SNN with 3-bit outputs.
Similar results were also observed from a speech recogni-
tion task on Librispeech 100h dataset. We used these exper-
imental results to argue that sharp accuracy drop for binary
output stems from inefficiency in the training method rather
than the limited capacity of SNN. The experimental results
also showed that increasing output precision is one way to
improve the recognition accuracy of the SNN on sequential
learning.

5 Conclusion

SNNs have been considered as a potential solution for the
low-power machine intelligence due to their event-driven
nature of computation and the inherent recurrence that helps
retain information over time. However, practical applica-
tions of SNNs have not been well demonstrated due to an
improper task selection and the vanishing gradient problem.
In this work, we proposed SNNs with improved inherent
recurrence dynamics that are able to effectively learn long
sequences. The benefit of the proposed architectures is 2x
reduction in number of the trainable parameters compared
to the LSTMs. Our training scheme to train the proposed
architectures allows SNNs to produce multiple-bit outputs
(as opposed to simple binary spikes) and help with gradient
mismatch issue that occurs due to the use of surrogate func-
tion to overcome spiking neurons’ non-differentiability. We
showed that SNNs with improved inherent recurrence dy-
namics reduce the gap in speech recognition performance
from LSTMs and GRUs to 1.10% and 0.36% on TIMIT
and LibriSpeech 100h dataset. We also demonstrated that
improved SNNs lead to 10.13-11.14x savings in multi-
plication operations over standard GRUs on TIMIT and
LibriSpeech 100h speech recognition problem. This work
serves as an example of how the inherent recurrence of
SNNs can be used to effectively learn long temporal se-
quences for applications on edge computing platforms.

Acknowledgements

This work was supported in part by the Center for Brain
Inspired Computing (C-BRIC)—one of the six centers in
Joint University Microelectronics Program (JUMP), in part
by the Semiconductor Research Corporation (SRC) Program
sponsored by Defense Advanced Research Projects Agency
(DARPA), in part by Semiconductor Research Corporation,
in part by the National Science Foundation, in part by Intel
Corporation, in part by the Department of Defense (DoD)
Vannevar Bush Fellowship, in part by the U.S. Army Re-
search Laboratory, and in part by the U.K. Ministry of De-
fence under Agreement W911NF-16-3-0001.

References

Bellec, G. E. F; Salaj, D.; Subramoney, A.; Legenstein, R.;
and Maass, W. 2018. Long short-term memory and learning-
to-learn in networks of spiking neurons. In Advances in Neu-
ral Information Processing Systems: NeurlPS.

Cho, K.; Van Merriénboer, B.; Bahdanau, D.; and Ben-
gio, Y. 2014. On the properties of neural machine
translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259.

Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; and
Bengio, Y. 2016. Binarized neural networks: Training deep
neural networks with weights and activations constrained to
+1 or -1. arXiv preprint arXiv:1602.02830.

Cramer, B.; Stradmann, Y.; Schemmel, J.; and Zenke, F.
2020. The heidelberg spiking data sets for the systematic
evaluation of spiking neural networks. IEEE Transactions
on Neural Networks and Learning Systems.

Diehl, P. U.; Neil, D.; Binas, J.; Cook, M.; Liu, S.-C.; and
Pfeiffer, M. 2015. Fast-classifying, high-accuracy spiking
deep networks through weight and threshold balancing. In
2015 International Joint Conference on Neural Networks
(IJCNN), 1-8. IEEE.

Fang, W.; Yu, Z.; Chen, Y.; Masquelier, T.; Huang, T.; and
Tian, Y. 2021. Incorporating learnable membrane time con-
stant to enhance learning of spiking neural networks. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2661-2671.

Garofolo, J. S.; Lamel, L. F.; Fisher, W. M.; Fiscus, J. G.;
and Pallett, D. S. 1993. DARPA TIMIT acoustic-phonetic
continous speech corpus CD-ROM. NIST speech disc 1-1.1.
NASA STI/Recon technical report n, 93: 27403.

Glorot, X.; and Bengio, Y. 2010. Understanding the diffi-
culty of training deep feedforward neural networks. In Pro-
ceedings of the 13th International Conference on Artificial
Intelligence and Statistics, 249-256. JMLR Workshop and
Conference Proceedings.

He, W.; Wu, Y,; Deng, L.; Li, G.; Wang, H.; Tian, Y.; Ding,
W.; Wang, W.; and Xie, Y. 2020. Comparing SNNs and
RNNs on neuromorphic vision datasets: similarities and dif-
ferences. Neural Networks, 132: 108-120.

Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural computation, 9(8): 1735-1780.

8008

Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard,
A.; Adam, H.; and Kalenichenko, D. 2018. Quantization and
training of neural networks for efficient integer-arithmetic-
only inference. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2704-2713.
Kim, H.; Kim, K.; Kim, J.; and Kim, J.-J. 2019. BinaryDuo:
Reducing Gradient Mismatch in Binary Activation Network
by Coupling Binary Activations. In International Confer-
ence on Learning Representations.

Lin, D. D.; and Talathi, S. S. 2016. Overcoming challenges
in fixed point training of deep convolutional networks. arXiv
preprint arXiv:1607.02241.

Panayotov, V.; Chen, G.; Povey, D.; and Khudanpur, S. 2015.
LibriSpeech: an ASR corpus based on public domain audio
books. In 2015 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 5206-5210.
IEEE.

Povey, D.; Ghoshal, A.; Boulianne, G.; Burget, L.; Glem-
bek, O.; Goel, N.; Hannemann, M.; Motlicek, P.; Qian,
Y.; Schwarz, P.; et al. 2011. The Kaldi speech recogni-
tion toolkit. In IEEE 2011 Workshop on Automatic Speech
Recognition and Understanding, CONF. IEEE Signal Pro-
cessing Society.

Ravanelli, M.; Parcollet, T.; and Bengio, Y. 2019. The
pytorch-kaldi speech recognition toolkit. In ICASSP 2019-
2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 6465-6469. IEEE.
Rueckauer, B.; Lungu, I.-A.; Hu, Y.; Pfeiffer, M.; and Liu,
S.-C.2017. Conversion of continuous-valued deep networks
to efficient event-driven networks for image classification.
Frontiers in neuroscience, 11: 682.

Semeniuta, S.; Severyn, A.; and Barth, E. 2016. Recurrent
Dropout without Memory Loss. In Proceedings of COLING
2016, the 26th International Conference on Computational
Linguistics: Technical Papers, 1757-1766.

Sengupta, A.; Ye, Y.; Wang, R.; Liu, C.; and Roy, K. 2019.
Going deeper in spiking neural networks: VGG and residual
architectures. Frontiers in neuroscience, 13: 95.

Shrestha, S. B.; and Orchard, G. 2018. SLAYER: spike layer
error reassignment in time. In Proceedings of the 32nd In-
ternational Conference on Neural Information Processing
Systems, 1419-1428.

Zenke, F.; and Ganguli, S. 2018. SuperSpike: Supervised

learning in multilayer spiking neural networks. Neural com-
putation, 30(6): 1514-1541.

