
Deformable Graph Convolutional Networks

Jinyoung Park, Sungdong Yoo, Jihwan Park, Hyunwoo J. Kim*

Department of Computer Science and Engineering, Korea University
{lpmn678, ysd424, jseven7071, hyunwoojkim}@korea.ac.kr

Abstract

Graph neural networks (GNNs) have significantly improved
the representation power for graph-structured data. Despite
of the recent success of GNNs, the graph convolution in
most GNNs have two limitations. Since the graph convolu-
tion is performed in a small local neighborhood on the in-
put graph, it is inherently incapable to capture long-range
dependencies between distance nodes. In addition, when a
node has neighbors that belong to different classes, i.e.,
heterophily, the aggregated messages from them often neg-
atively affect representation learning. To address the two
common problems of graph convolution, in this paper, we
propose Deformable Graph Convolutional Networks (De-
formable GCNs) that adaptively perform convolution in mul-
tiple latent spaces and capture short/long-range dependencies
between nodes. Separated from node representations (fea-
tures), our framework simultaneously learns the node posi-
tional embeddings (coordinates) to determine the relations
between nodes in an end-to-end fashion. Depending on node
position, the convolution kernels are deformed by deforma-
tion vectors and apply different transformations to its neigh-
bor nodes. Our extensive experiments demonstrate that De-
formable GCNs flexibly handles the heterophily and achieve
the best performance in node classification tasks on six het-
erophilic graph datasets. Our code is publicly available at
https://github.com/mlvlab/DeformableGCN.

Introduction
Graphs are flexible representations for modeling relations
in data analysis problems and are widely used in vari-
ous domains such as social network analysis (Wang, Cui,
and Zhu 2016), recommender system (Berg, Kipf, and
Welling 2017), chemistry (Gilmer et al. 2017), natural lan-
guage processing (Erkan and Radev 2004), and computer
vision (Johnson et al. 2015). In recent years, Graph Neu-
ral Networks (GNNs) have achieved great success in many
graph-related applications such as node classification (Kipf
and Welling 2017; Hamilton, Ying, and Leskovec 2018),
link prediction (Zhang and Chen 2018; Schlichtkrull et al.
2018), and graph classification (Errica et al. 2019; Ying
et al. 2018). Most existing GNNs learn node representa-
tions via message passing schemes, which iteratively learn

*is the corresponding author.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the hidden representation of each node by aggregating mes-
sages from its local neighborhoods. For example, Graph
Convolution Networks (GCNs) (Kipf and Welling 2017) op-
erate convolutions on input graphs inspired by first-order
approximation of spectral graph convolutions (Hammond,
Vandergheynst, and Gribonval 2011).

However, most graph convolution that aggregates mes-
sages from local neighborhoods implicitly assumes that in-
put graphs are homophilic graphs, where connected nodes
have similar features or belong to the same class. So the
smoothing over the input graphs effectively removes noise
in the input features and significantly improve the represen-
tational power when the assumption holds. However, on het-
erophilic graphs where connected nodes have dissimilar fea-
tures and different labels, the conventional graph convolu-
tional neural networks often underperform simple methods
such as a multi-layer perceptron (MLP) that completely ig-
nores the graph structure. In addition, since the conventional
graph convolution receives messages from local neighbors,
it has the limited capability to capture long-range dependen-
cies between distant yet relevant nodes for the target tasks.

To address these limitations, we propose a Deformable
Graph Convolutional Network (Deformable GCN) that
softly changes the receptive field of each node by adaptively
aggregating the outputs of deformable graph convolution in
multiple latent spaces. Started from a general definition of
the discrete convolution with finite support, we extend the
deformable 2D convolution (Dai et al. 2017) to a latent
space for graph-structured data. Similar to the convolution
defined on a grid space for images, our convolution ker-
nel generates different transformations for various relations.
Our framework models useful relations between nodes rep-
resented by the difference of learned node positional embed-
dings. Our contributions are as follows:
• We propose a Deformable Graph Convolution (De-

formable GConv) that performs convolution in a latent
space and adaptively deforms the convolution kernels to
handle heterophily and variable-range dependencies be-
tween nodes.

• We propose novel architecture Deformable Graph Con-
volution Networks (Deforamble GCN) that simultane-
ously learn node representations (features) and node po-
sitional embeddings (coordiantes) and efficiently per-
form Deformable GConv in multiple latent spaces using

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

7949

latent neighborhood graphs.

• Our experiments demonstrate the effectiveness of De-
formable GCN in the node classification task on ho-
mophily and heterophily graphs. Also, the interpretable
attention scores in our framework provide insights which
relation (or latent space) is beneficial to the target task.

Related Works

Graph Neural Networks. Graph neural networks have
been studied for representing graph-structured data in recent
years. Based on spectral graph theory, ChebyNet (Deffer-
rard, Bresson, and Vandergheynst 2016) designed fast local-
ized convolutional filters and reduced computational cost.
Motivated by it, (Kipf and Welling 2017) proposed GCN,
which is simplified convolutional networks based on the
first-order approximation of the spectral convolutions. There
are several studies to improve the performance by message
passing processes (Hamilton, Ying, and Leskovec 2018; Xu
et al. 2018) and attention-based models (Veličković et al.
2017; Yun et al. 2019).

However, the studies introduced above have been devel-
oped based on the homophily assumption that connected
nodes have similar characteristics. This assumption often
leads to performance degradation on heterophilic graphs.
Moreover, most existing GNNs cannot capture the long-
range dependencies between distant nodes because they ag-
gregate messages only in a local neighborhood. Recently,
there are several studies have attempted to address the prob-
lems (Bo et al. 2021; Liu, Wang, and Ji 2020; Zhu et al.
2020, 2021). Geom-GCN (Pei et al. 2020) proposed a novel
geometric aggregation scheme in a latent space that cap-
tures long-range dependencies through structural informa-
tion. However, Geom-GCN has some limitations that they
define convolution on a grid that is a manually divided la-
tent space and require pre-trained embedding methods in the
geometric aggregation step. Unlike Geom-GCN, our mod-
els apply deformable convolution kernel on the latent space
with the relation vectors defined in a continuous latent space
and utilize learnable multiple embeddings to softly grant re-
lations in an end-to-end fashion.

Deformable Convolution. Convolutional neural networks
(CNNs) have achieved great success in various fields (He
et al. 2016, 2017). However, the convolution kernels are
limited to model large and unknown transformations since
they are defined in a fixed structure. To address these limita-
tions, (Dai et al. 2017; Zhu et al. 2019) proposed deformable
convolution networks that adaptively change the shape of
convolution kernels by learning offsets for deformation Be-
cause of the feasibility and effectiveness, deformable con-
volution networks are used in various fields, such as point
cloud (Thomas et al. 2019), image generation (Siarohin et al.
2018), and video tasks (Wang et al. 2019). Inspired by this
line of work, we study a deformable graph convolution to
adaptively handle diverse relations between an ego-node and
its neighbors.

Method
The goal of our framework is to address the limitations
of existing graph convolutions that learn node represen-
tations in a small neighborhood with the homophily as-
sumption. In other words, existing GNNs often poorly per-
form when neighbors belong to different classes and have
dissimilar features. Also, most GNNs with a small num-
ber of layers cannot model the long-range dependency be-
tween distant nodes. To address the limitations, we pro-
pose Deformable Graph Convolutional Networks that per-
form deformable convolution on latent graphs. Our frame-
work softly changes the shape (or size) of the receptive field
for each node. This allows our framework to adaptively han-
dle homophilic/heterophilic graphs as well as short/long-
range dependency. Before introducing our frameworks, we
first briefly summarize notations and the basic concepts of
graph neural networks.

Preliminaries
Notations. Let G = (V,E) denote an input graph with
a set of nodes V and a set of edges E ⊆ V × V . Each
node v ∈ V has a feature vector xv ∈ Rdx and the edge
between node u and node v is represented by (u, v) ∈ E.
The neighborhoods of node v on input graph is denoted by
N (v) = {u ∈ V | (u, v) ∈ E}.

Graph Neural Networks. To learn representation
for graph-structured data, most existing GNNs perform
message-passing frameworks as the following equa-
tion (Gilmer et al. 2017; Xu et al. 2018):

h(l)
v = σ

(
W(l) · AGGREGATE

(
h(l−1)
u : u ∈ Ñ (v)

))
,

(1)

where h(0)
v = xv , h(l)

v ∈ Rd
h(l) is a hidden representation of

node v in a l-th layer, Ñ (v) = {v} ∪ {u ∈ V |(u, v) ∈ E}
indicates neighbors of node v with a self-loop, W(l) is a
learnable weight matrix at the l-th layer, AGGREGATE is an
aggregation function characterized by the particular model,
and σ is a non-linear activation function. Ñ (v) determines
the receptive field of the graph convolution and it is usually
a one-hop ego-graph. For example, GCN (Kipf and Welling
2017) is a specific instance of (1). GCN can be written as

h(l)
v = σ

 ∑
u∈Ñ(v)

(deg(v) deg(u))−1/2 W(l)h(l−1)
u

 ,

(2)
where deg(v) is the degree of node v.

Even GNNs such as GCN (Kipf and Welling 2017) and
GAT (Veličković et al. 2017) have been successfully ap-
plied to various graph-based tasks, their success is limited
to homophilic graphs (Pei et al. 2020; Zhu et al. 2020),
which are graphs that linked nodes often have similar prop-
erties (McPherson, Smith-Lovin, and Cook 2001). Recent
works (Li, Han, and Wu 2018; Wu et al. 2019) showed that
GCN makes node embeddings smoother within their periph-
erals since GCN can be a specific form of Laplacian smooth-
ing (Li, Han, and Wu 2018). For this reason, graph neural

7950

Figure 1: Overall structure of Deformable GCN and Deformable GConv. (a) In Deformable GCN, at the beginning of training,
latent neighborhood graphs, {G(l)}L+1

l=0 , are constructed to define neighborhoods for the Deformable Graph Convolution (De-
formable GConv). Then, Deformable GConv is applied on each latent neighborhood graph and the outputs of the convolution
{y(l)

v }l are adaptively aggregated for representing h̃v using an attention mechanism. (b) Our Deformable GConv performs
graph convolution in a latent (position) space. For more flexible graph convolution, Deformable GConv adaptively deforms
convolution kernels gdeform(·, ·) for each center node v by kernel vector deformation ∆k(ev).

networks have difficulty adapting to graphs that linked nodes
often have different properties, called heterophilic graphs.

In our work, we consider both heterophilic and ho-
mophilic graphs, unlike standard graph neural networks that
have mainly focused on homophilic graphs. To have enough
representation power on heterophilic graphs, we generate la-
tent graphs for linking distant nodes with similar property
according to their latent embeddings.

Deformable Graph Convolution
We here introduce a Deformable Graph Convolution (De-
formable GConv), which softly changes the receptive fields
and adaptively aggregates messages from neighbors on the
multiple latent graphs. The overall structure of Deformable
GConv is illustrated in Figure 1. Our Deformable Graph
Convolution can be derived from a general definition of the
discrete convolution by a kernel with finite support. The con-
volution of a feature map H by a kernel g at a node v is given
as:

yv = (H ∗ g) (v) =
∑

u∈Ñ (v)

g (ru,v)hu, (3)

where yv ∈ Rdy is the output of the convolution, hu ∈
Rd is a feature at u, and relation vector ru,v represent the

relation between u and v, Ñ (v) is the neighborhood of v that
coincides with the finite support of g centered at v. g(ru,v) is
a linear function to transform hu and it varies depending on
the relation vector. For example, in a 2D convolution with
a 3 × 3 kernel, ru,v = ϕu − ϕv , where ϕu, ϕv are the
coordinates of u and v. For each relative position, a linear
function g(ru,v) ∈ Rdy×dh is applied.

In the graph domain, a GCN layer defined in (2) (without
the activation function) can be viewed as a specific instan-
tiation of (3) with g(ru,v) = (deg(v) deg(u))−1/2W. So,
the GCN relations are determined by the degree of node u
and v. Also, except for the normalization, GCN performs
the same linear transformation for all the relations different
from standard 2D convolution.

Our framework extends the graph convolution to more
flexible and deformable graph convolutions defining a re-
lation vector ru,v , a kernel function g(·), and its support (or
a neighborhood). To extend the relation of nodes beyond the
adjacency on the input graph G, we first embed nodes in a
position space, which is a latent space to determine the coor-
dinates of nodes using a node positional embedding. Then,
we compute the relation vector of the nodes by a function of
the node positional embeddings.

7951

Node positional embedding. In our framework, each
node is embedded in a latent space called position space us-
ing a node embedding method. Since the node embeddings
are used only for the coordinates of nodes and their relations,
we name this node positional embedding. For each node, our
framework learns both node positional embeddings (coordi-
nates) and node representations (features).

Node positional embedding is computed by a simple pro-
cedure. Given a node v, its node positional embedding ϕ

(l)
v

is the projected input features after smoothing l times on the
original input graph G. It can be written as

ϕ(l)
v = W

(l)
ϕ e(l)v , where

e(0)v = xv, e(l)v =
1

d̃eg(v)

∑
u∈Ñ(v)

e(l−1)
u ,

(4)

where W
(l)
ϕ is a learnable project matrix, d̃eg (v) indicates

a degree of node v with self-loop and elv is the l-time
smoothed input features of node v. Each node has L + 1
node positional embeddings. Alternatively, for node posi-
tional embedding ϕv , other node embedding methods can
be used such as LINE (Tang et al. 2015), Node2Vec (Grover
and Leskovec 2016), distance encoding (Li et al. 2020),
Poincare embedding in hyperbolic geometry (Nickel and
Kiela 2017), and other various node embedding methods.
But our preliminary experiment showed that our simple node
positional embedding was sufficient for our model. So in this
paper, we did not use any external node embedding method.

Relation vector. The relation between nodes is repre-
sented by a relation vector ru,v . One natural choice is the
relative position of neighbor node u from node v in the
position space. In our framework, we use normalized rela-
tion vectors with an extra dimension to encode the relation
of nodes with identical positional embeddings. The relation
vector for a neighbor node u of node v with node positional
vectors ϕu,ϕv ∈ Rdϕ is given as

ru,v =

{[
r′u,v||0

]
∈ Rdϕ+1 , if ϕu ̸= ϕv

[0, 0, · · · , 1] ∈ Rdϕ+1 , otherwise
(5)

where r′u,v = ϕu−ϕv

∥ϕu−ϕv∥2
and [||] is concatenation operator.

Kernel function. As discussed with (3), a kernel function
g yields linear functions to transform hidden representations
of neighbor nodes. Our kernel function g on ru,v is defined
as:

g (ru,v) =
K∑

k=1

au,v,kWk,

where au,v,k = exp
(
r⊤u,vϕ̃k

)
/Z.

(6)

ϕ̃k ∈ Rdϕ+1 is a kernel vector and Wk ∈ Rdy×dh is a
corresponding transformation matrix. Both are learnable pa-
rameters. Z ∈ R is a normalization factor. The function
value of g, which is a linear transformation, varies depend-
ing on the relation vector ru,v but for the same relation, the
same linear transformation is returned when Z is a constant.

This is the same as a standard 2D convolution that applies
the identical linear transformation at the same relative po-
sition from the center of the kernel. One interesting differ-
ence is that since a standard 2D convolution kernel has a
linear transformation matrix for each relative position, the
number of its transformation matrices increases as the kernel
size increases whereas our kernel g differentially combines
a fixed number of {Wk}Kk=1 matrices depending on the re-
lation vector ru,v . Thereby the number of parameters of our
convolution does not depends on the kernel size anymore.

Deformable Graph Convolution. The kernel function
can be further extended for a more flexible and deformable
convolution. We first normalize the weight au,v,k for a trans-

formation matrix Wk by Z =
∑

u′ exp
(
r⊤u′,vϕ̃k

)
. Then the

kernel becomes adaptive. This is similar to the dot-product
attention in (Vaswani et al. 2017). We found that the dot-
product attention can be viewed as a variant of convolu-
tion. For more details, see the supplement. Now the ker-
nel yields a transformation matrix for each neighbor con-
sidering not only the relation between a center node v and
a neighbor node u but also the relations between neigh-
bor nodes. In addition, the kernel vector ϕ̃k is dynamically
translated by deformation vector ∆k(ev) ∈ Rdϕ+1 depend-
ing on the smoothed input features ev ∈ Rdx of the cen-
ter node v. Putting these pieces together, we define our De-
formable Graph Convolution as:

yv =
∑

u∈Ñ (v)

gdeform (ru,v,∆k (ev))hu, (7)

where gdeform (ru,v,∆k (ev)) =
∑K

k=1 âu,v,kWk and

âu,v,k =
exp(r⊤u,v(ϕ̃k+∆k(ev)))∑

u′ exp
(
r⊤
u′,v(ϕ̃k+∆k(ev))

) . In our experiments, the

deformation vector is generated by a simple MLP network
with one hidden layer.

Latent Neighborhood Graph. The Deformable Graph
Convolution is computed within a neighborhood Ñ (v). To
efficiently compute the neighborhoods, k-nearest neighbors
for each node are computed with respect to ℓ2 distance of
smoothed input features, i.e., ∥eu−ev∥2. Since in our frame-
work the input feature smoothing does not have any learn-
able parameters, the smoothed features {eu} do not change
during training. Thereby, the kNN graph generation is per-
formed once at the beginning of training. Due to the kNN
graphs, our Deformable Graph Convolution can be viewed
as a graph convolution on the kNN graphs. Seemingly, the
neighborhood computed by node positional embedding, ϕv ,
is more plausible following (Dai et al. 2017). But, it requires
huge computational costs for pairwise distance computation
of all nodes at every iteration. Also, in practice, the drastic
changes of neighborhoods caused by positional embedding
learning often lead to unstable numerical optimization. So,
in this work, we use the smoothed input features {ev}v for
the neighborhood computation.

7952

Deformable Graph Convolutional Networks
With our Deformable Graph Convolution, we design our De-
formable Graph Convolution Network (Deformable GCN).
The overall structure is depicted in Figure 1. Deformable
GCN utilizes multiple node positional embeddings. In other
words, it generates multiple neighborhood graphs. Let e(l)v

denote the input features at node v that are smoothed l
times on the original graph G. A Latent Neighborhood
Graph, i.e., kNN graph, constructed based on {e(l)v }v∈V

is denoted by G(l). Deformable GCN generates L+1 kNN
graphs {G(l)}l=L

l=0 . Combining with the original input graph
G(L+1) = G, Deformable GCN performs the Derformable
GConv on each neighborhood graph. The outputs of convo-
lution on G(l), denoted by y

(l)
v , are adaptively aggregated on

each node by a simple attention mechanism as:

h̃v =
L+1∑
l=0

s(l)v ỹ(l)
v , s(l)v =

exp
(
z⊤ỹ

(l)
v

)
∑L+1

l′=0 exp
(
z⊤ỹ

(l′)
v

) , (8)

where ỹ
(l)
v =

y(l)
v

∥y(l)
v ∥2

and z ∈ Rdy is a learning parameter.

The score s
(l)
v indicates which neighborhood (with its De-

formable GConv) is suitable for node v. For each node, De-
formable GCN softly chooses a suitable neighborhood with
node positional embeddings, and Deformable GConv per-
forms convolution with a deformed convolution kernel.

Loss functions. To learn more effective deformable graph
convolution in a latent space without collapsed kernel vec-
tors, we impose two regularizers: a separating regular-
izer and a focusing regularizer. The separating regulariza-
tion loss maximizes the distance between kernel vectors
{ϕ̃k}k=K

k=1 so that our kernel differentially yields transfor-
mation matrices against diverse relations. It is formulated as

Lsep. = − 1

K

∑
k1 ̸=k2

∥∥∥ϕ̃k2 − ϕ̃k1

∥∥∥2
2
. (9)

In addition, to avoid extreme changes of the deformable ker-
nel gdeform and the collapse of kernel vectors after deforma-
tions, we use a focusing regularizer that penalizes the ℓ2-
norm of deformation vectors ∆k (ev) as

Lfocus =
1

K · |V |
∑
v∈V

K∑
k=1

∥∆k(ev)∥22 . (10)

With these two regularizer losses, our Graph Deformable
Convolutional Network properly generates the kernel vec-
tors and deformation vectors. Since we mainly conduct ex-
periments on node classification tasks, we use the standard
cross-entropy loss function Lcls with the two regularizers.
The total loss function is as follows:

L = Lcls + α · Lsep. + β · Lfocus, (11)

where α and β are hyperparameters for the strength of regu-
larizations, Lsep. and Lfocus.

Experiments
In this section, we validate the effectiveness of our frame-
work, Deformable GCN, using heterophily and homophily
graph datasets.

Dataset
For validating our model, we use six heterophilic graph
datasets and three homophilic graph datasets, which can
be distinguished by the homophily ratio (Zhu et al. 2020)
h = |{(u,v):(u,v)∈E∧yu=yv}|

|E| , where yv is the label of node
v. Statistics of each dataset are in Table 1. More details on
datasets are in the supplementary material.

Baselines and Implementation Details
Baselines. For baseline models, we include widely-used
GNN-based methods: GCN (Kipf and Welling 2017),
GAT (Veličković et al. 2017), and ChebyNet (Defferrard,
Bresson, and Vandergheynst 2016). We also include a 2-
layer MLP as a baseline since MLP models show compa-
rable performance under heterophily when existing meth-
ods for graph-structured data do not use the graph topol-
ogy effectively. To compare our models with state-of-the-art
models on heterophilic graphs, we include JKNet (Xu et al.
2018), MixHop (Abu-El-Haija et al. 2019), H2GCN (Zhu
et al. 2020), and Geom-GCN (Pei et al. 2020). We use the
best models among the three variants of Geom-GCN from
the paper (Pei et al. 2020).

Implementation details. We use the Adam opti-
mizer (Kingma and Ba 2014) with ℓ2-regularization and
500 epochs for training our model and the baselines. The
performance is reported with the best model on the vali-
dation datasets. For all datasets, we apply the splits (48%/
32%/ 20%)1 of nodes per class for (train/ validation/ test)
provided by (Pei et al. 2020) for a fair comparison as (Zhu
et al. 2020). All experiments are repeated 10 times as (Pei
et al. 2020; Zhu et al. 2020) and accuracy is used as an
evaluation metric. More implementation details are in the
supplementary materials.

Results on Node Classification
Table 2 shows the results of Deformable GCN and other
baselines on node classification tasks. The best model for
each dataset is highlighted with boldface. Overall, De-
formable GCN achieves the highest performance on all
heterophilic graphs compared to all baselines including
H2GCN, which is specifically proposed for heterophilic
graphs. Note that on some heterophilic graph datasets such
as Texas, Wisconsin, Actor, and Cornell, MLP outperforms
various GNNs such as GCN, GAT, and Geom-GCN by sig-
nificant margins without utilizing any graph structure infor-
mation. It might seem that graph structure information is
harmful to representation learning on heterophilic graphs for
most existing GNN models, but on other heterophilic graph
datasets such as Squirrel and Chameleon, MLP underper-
forms most GNN models. In contrast to the existing GNN

1https://github.com/graphdml-uiuc-jlu/geom-gcn.

7953

Heterophilic Graphs Homophilic Graphs
Dataset Texas Wisconsin Actor Squirrel Chameleon Cornell Citeseer Pubmed Cora

Classes 5 5 5 5 5 5 6 3 7
Nodes 183 251 7600 5201 2277 183 3327 19717 2708
Edges 279 450 26659 198353 31371 277 4552 44324 5278

Features 1703 1703 932 2089 2325 1703 3703 500 1433
Avg deg. 3.05 3.59 7.02 76.28 27.55 3.03 3.03 4.50 3.90

Hom. ratio h 0.11 0.21 0.22 0.22 0.23 0.30 0.74 0.80 0.81

Table 1: Dataset statistics.

Dataset Texas Wisconsin Actor Squirrel Chameleon Cornell Citeseer Pubmed Cora
Hom. ratio h 0.11 0.21 0.22 0.22 0.23 0.30 0.74 0.80 0.81

MLP 82.16±2.64 84.90±1.82 36.78±0.56 30.77±1.68 47.87±1.31 81.08±3.62 72.86±1.42 87.62±0.19 75.09±1.45

GCN 64.32±2.60 62.94±4.19 30.47±0.64 46.65±0.99 64.98±0.69 60.27±2.37 76.66±1.12 87.59±0.36 87.44±0.83

GAT 60.81±4.62 64.31±3.48 29.92±0.43 45.47±1.38 66.56±0.99 59.46±1.58 76.54±1.00 86.55±0.34 87.46±0.77

ChebyNet 76.49±3.45 77.84±3.29 35.03±0.73 45.42±0.06 61.80±1.19 72.97±4.61 76.20±1.12 89.16±0.30 83.44±2.04

JKNet 62.97±5.18 60.78±3.29 30.78±0.60 53.78±1.25 68.53±1.59 59.19±2.16 76.05±1.00 88.64±0.34 87.12±0.81

MixHop 83.78±3.35 85.10±2.57 33.80±0.89 39.32±2.16 63.09±1.07 81.08±4.61 75.86±1.20 89.02±0.26 87.20±0.85

Geom-GCN 68.11±3.04 64.51±2.53 31.48±0.64 38.00±0.60 60.99±1.74 60.54±3.55 77.48±0.87 89.51±0.33 85.51±0.92

H2GCN 82.16±4.12 86.67±2.18 36.96±0.55 54.51±0.94 65.42±1.58 80.54±3.77 77.05±0.9 89.38±0.26 87.48±0.93

Deformable GCN 84.32±3.42 87.06±2.16 37.07±0.79 62.56±1.31 70.90±1.12 85.95±2.71 76.83±1.15 89.49±0.29 87.48±0.82

Table 2: Evaluation results on node classification task (Mean accuracy (%) ± 95% confidence interval). The best-performing
models are highlighted with boldface.

models, our Deformable Graph Convolution in various po-
sition spaces with node positional embeddings allows De-
formable GCN to consistently achieve the best performance
on all the heterophilic graph datasets.

Similar to our method, Geom-GCN also performs convo-
lution in a latent space. But it significantly underperforms
our method by 17.4% on average on heterophilic graph
datasets and especially on Cornell the gap is 25.4%. We be-
lieve that our node positional embeddings, which are simul-
taneously learned with node representations for the target
task in an end-to-end fashion, are more effective than the
node embeddings in Geom-GCN that are obtained from pre-
trained external embedding methods. On homophilic graphs,
Deformable GCN shows comparable performance. Since
most existing GNNs have been proposed based on the ho-
mophily assumption, the performance gap between GNN-
based models is small.

Ablation Study and Analysis
We conduct additional experiments to verify the contribu-
tions of our node positional embedding, deformable graph
convolution layer, deformation, and regularization for De-
formable GCN and analyze the attention score

{
s(l)

}
l
.

Node positional embedding. To verify the efficacy of our
node positional embedding method, we compare it with
other node embedding methods such as node2vec (Grover
and Leskovec 2016) and Poincare embedding (Nickel and
Kiela 2017) by using them for ϕv in (4) on four datasets

Positional Dataset
embedding Wisconsin Actor Squirrel Pubmed

node2vec 67.57 35.04 45.27 88.35
PoinCare 68.1 35.15 46.31 87.26

Ours 87.06 37.07 62.56 89.49

Table 3: Comparison of our node positional embeddings
with other node embedding methods on four datasets.

Dataset
Layer Wisconsin Actor Squirrel Pubmed

GAT Layer 70.54 36.26 61.62 88.04
Deformable GConv 87.06 37.07 62.56 89.49

Table 4: Comparison of our Deformable GConv with GAT
Layer on four datasets.

in Table 3. The result shows that our proposed embedding
method outperforms two other embedding methods for each
dataset. Specifically, our proposed embedding method im-
proves over node2vec and Poincare embedding by 9.9%
and 9.8% on average, respectively. Unlike node2vec and
Poincare embeddings that require separate pre-training, our
positional embedding can be simultaneously trained with
GNNs in an end-to-end fashion. We believe that our embed-
ding scheme is much easier to train and allows more opti-
mized positional embeddings for target tasks.

7954

(a) Wisconsin (b) Pubmed

Figure 2: Ablations for deformation of deformable graph
convolution. We compare Deformable GCN and the model
without deformation (w/o Deformation) on (a) Wisconsin
and (b) Pubmed according to number of the kernel vectors.

Regularizer Dataset
Lsep. Lfocus Wisconsin Actor Squirrel Pubmed

84.12 36.67 60.31 89.02
✓ 86.08 36.70 60.43 88.86

✓ 86.08 36.67 61.83 88.79
✓ ✓ 87.06 37.07 62.56 89.49

Table 5: Ablations for two regularizer losses (Lsep.,Lfocus)
on four datasets.

Deformable graph convolution. In Table 4, we con-
duct an experiment to examine the contribution of de-
formable graph convolution (Deformable GConv) by sub-
stituting it with the GAT Layer in Graph Attention Net-
works (Veličković et al. 2017) on four datasets. From the
table, Deformable GConv consistently shows better perfor-
mance compared to GAT Layer. In particular, on Wiscon-
sin dataset, Deformable GConv improves 16.52% over GAT
Layer. It means that Deformable GConv contributes to the
performance improvements of Deformable GCN.

Deformation. To reveal the effectiveness of deformation,
we compare the results of Deformable GCN and the model
without deformation (w/o Deformation) on node classifi-
cation task with Wisconsin and Pubmed datasets accord-
ing to the number of kernel vectors. Figure 2 shows that
Deformable GCNs consistently achieve superior perfor-
mance (2 ∼ 6% on average) than the models without de-
formation (w/o Deformation) on both a heterophilic graph
Wisconsin and a homophilic graph Pubmed in the various
settings with different numbers of kernel vectors.

Regularizers. To verify contribution of regularizers, we
conduct an ablation study on regularizers such as Lsep.

and Lfocus on four datasets. Table 5 summarizes the re-
sults of the ablation study of our regularizers. From the ta-
ble, each regularizer contributes to improving performance
of Deformable GCN. Moreover, we observe that training
with both regularizers is the most effective. On average, De-
formable GCNs trained with both regularizers outperform
ones without regularizers by 1.5%.

Attention score s
(l)
v . The attention score s

(l)
v in (8) can

be used to understand datasets. An averaged attention score

Figure 3: The attention score s(l) of each latent neigh-
borhood graph G(l). Datasets above the dash line are het-
erophilic graphs and the others homophilic graph datasets.

s(l) = 1
|V |

∑
v∈V s

(l)
v indicates the overall importance of a

latent neighborhood graph G(l). Figure 3 shows the atten-
tion score of a Deformable GCN with L = 5 that utilizes
6 latent neighborhood graphs {G(l)}l=5

l=0 and a original input
graph G(Input). On most heterophilic graph datasets except
for Chameleon and Squirrel, Deformable GCN has the large
attention score for latent graph G(0) and relatively small at-
tention scores for G(Input). Recall that G(0) is the kNN graph
constructed based on the similarity between input features.
This indicates that rather than focusing on the neighborhood
on the input graph, smoothing over the nodes with similar
input features is more helpful for predictions on heterophilic
graphs. Indeed, this coincides with the results in Table 2. On
the heterophilic graphs such as Texas, Wisconsin, Actor, and
Cornell, an MLP, which does not use any graph structure in-
formation, outperforms most existing GNNs. On the other
hand on homophilic graphs, G(Input) plays a more important
role on homophilic graphs compared to heterophilic graphs.

Conclusion

We proposed Deformable Graph Convolutional Networks
for learning representations on both heterophilic and ho-
mophilic graphs. Our approach learns node positional em-
beddings for mapping nodes into latent spaces and ap-
plies deformable graph convolution on each node. The de-
formable graph convolution deforms in latent neighbor-
hoods with weights according to kernel vectors shifted by
deformation vectors. Our experiments show that the De-
formable GCNs are effective for learning representations on
both heterophilic and homophilic graphs.

Acknowledgments

This work was partly supported by MSIT (Ministry of Sci-
ence and ICT), Korea, under the ICT Creative Consilience
program (IITP-2022-2020-0-01819) supervised by the IITP
and Samsung Research Funding&Incubation Center of Sam-
sung Electronics under Project Number SRFC-IT1701-51.

7955

References
Abu-El-Haija, S.; Perozzi, B.; Kapoor, A.; Alipourfard, N.;
Lerman, K.; Harutyunyan, H.; Ver Steeg, G.; and Galstyan,
A. 2019. Mixhop: Higher-order graph convolutional archi-
tectures via sparsified neighborhood mixing. In ICML.
Berg, R. v. d.; Kipf, T. N.; and Welling, M. 2017. Graph
convolutional matrix completion. arXiv:1706.02263.
Bo, D.; Wang, X.; Shi, C.; and Shen, H. 2021. Beyond Low-
frequency Information in Graph Convolutional Networks. In
AAAI.
Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; and Wei,
Y. 2017. Deformable Convolutional Networks. In ICCV.
Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional neural networks on graphs with fast localized
spectral filtering. In NeurIPS.
Erkan, G.; and Radev, D. R. 2004. Lexrank: Graph-based
lexical centrality as salience in text summarization. JAIR,
22: 457–479.
Errica, F.; Podda, M.; Bacciu, D.; and Micheli, A. 2019. A
fair comparison of graph neural networks for graph classifi-
cation. In ICLR.
Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and
Dahl, G. E. 2017. Neural message passing for quantum
chemistry. In ICML.
Grover, A.; and Leskovec, J. 2016. node2vec: Scalable fea-
ture learning for networks. In KDD.
Hamilton, W. L.; Ying, R.; and Leskovec, J. 2018. Inductive
Representation Learning on Large Graphs. In NeurIPS.
Hammond, D. K.; Vandergheynst, P.; and Gribonval, R.
2011. Wavelets on graphs via spectral graph theory. ACHA,
30(2): 129–150.
He, K.; Gkioxari, G.; Dollár, P.; and Girshick, R. 2017. Mask
r-cnn. In ICCV.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In CVPR.
Johnson, J.; Krishna, R.; Stark, M.; Li, L.-J.; Shamma, D.;
Bernstein, M.; and Fei-Fei, L. 2015. Image retrieval using
scene graphs. In CVPR.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. In ICLR.
Kipf, T. N.; and Welling, M. 2017. Semi-supervised classi-
fication with graph convolutional networks. In ICLR.
Li, P.; Wang, Y.; Wang, H.; and Leskovec, J. 2020. Dis-
tance Encoding–Design Provably More Powerful GNNs for
Structural Representation Learning. In NeurIPS.
Li, Q.; Han, Z.; and Wu, X.-M. 2018. Deeper insights into
graph convolutional networks for semi-supervised learning.
In AAAI.
Liu, M.; Wang, Z.; and Ji, S. 2020. Non-local graph neural
networks. arXiv:2005.14612.
McPherson, M.; Smith-Lovin, L.; and Cook, J. M. 2001.
Birds of a feather: Homophily in social networks. Annu.
Rev. Sociol., 27(1): 415–444.
Nickel, M.; and Kiela, D. 2017. Poincaré embeddings for
learning hierarchical representations. In NeurIPS.

Pei, H.; Wei, B.; Chang, K. C.-C.; Lei, Y.; and Yang, B.
2020. Geom-gcn: Geometric graph convolutional networks.
In ICLR.
Schlichtkrull, M.; Kipf, T. N.; Bloem, P.; Van Den Berg, R.;
Titov, I.; and Welling, M. 2018. Modeling relational data
with graph convolutional networks. In ESWC, 593–607.
Siarohin, A.; Sangineto, E.; Lathuilière, S.; and Sebe, N.
2018. Deformable GANs for Pose-Based Human Image
Generation. In CVPR.
Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; and Mei, Q.
2015. Line: Large-scale information network embedding. In
WWW.
Thomas, H.; Qi, C. R.; Deschaud, J.-E.; Marcotegui, B.;
Goulette, F.; and Guibas, L. J. 2019. Kpconv: Flexible and
deformable convolution for point clouds. In ICCV.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is all you need. In NeurIPS.
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio,
P.; and Bengio, Y. 2017. Graph attention networks. In ICLR.
Wang, D.; Cui, P.; and Zhu, W. 2016. Structural deep net-
work embedding. In KDD.
Wang, X.; Chan, K. C. K.; Yu, K.; Dong, C.; and Loy,
C. C. 2019. EDVR: Video Restoration With Enhanced De-
formable Convolutional Networks. In CVPR W.
Wu, F.; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; and Wein-
berger, K. 2019. Simplifying graph convolutional networks.
In ICML.
Xu, K.; Li, C.; Tian, Y.; Sonobe, T.; Kawarabayashi, K.-i.;
and Jegelka, S. 2018. Representation learning on graphs
with jumping knowledge networks. In ICML.
Ying, R.; You, J.; Morris, C.; Ren, X.; Hamilton, W. L.; and
Leskovec, J. 2018. Hierarchical graph representation learn-
ing with differentiable pooling. In NeurIPS.
Yun, S.; Jeong, M.; Kim, R.; Kang, J.; and Kim, H. J. 2019.
Graph Transformer Networks. In NeurIPS.
Zhang, M.; and Chen, Y. 2018. Link prediction based on
graph neural networks. In NeurIPS.
Zhu, J.; Rossi, R. A.; Rao, A.; Mai, T.; Lipka, N.; Ahmed,
N. K.; and Koutra, D. 2021. Graph Neural Networks with
Heterophily. In AAAI.
Zhu, J.; Yan, Y.; Zhao, L.; Heimann, M.; Akoglu, L.; and
Koutra, D. 2020. Beyond Homophily in Graph Neural
Networks: Current Limitations and Effective Designs. In
NeurIPS.
Zhu, X.; Hu, H.; Lin, S.; and Dai, J. 2019. Deformable con-
vnets v2: More deformable, better results. In CVPR.

7956

