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Abstract

This paper proposes a new sequential model learning archi-
tecture to solve partially observable Markov decision prob-
lems. Rather than compressing sequential information at every
timestep as in conventional recurrent neural network-based
methods, the proposed architecture generates a latent variable
in each data block with a length of multiple timesteps and
passes the most relevant information to the next block for pol-
icy optimization. The proposed blockwise sequential model
is implemented based on self-attention, making the model
capable of detailed sequential learning in partial observable
settings. The proposed model builds an additional learning
network to efficiently implement gradient estimation by using
self-normalized importance sampling, which does not require
the complex blockwise input data reconstruction in the model
learning. Numerical results show that the proposed method
significantly outperforms previous methods in various partially
observable environments.

Introduction
Reinforcement learning (RL) in partially observable environ-
ments is usually formulated as partially observable Markov
decision processes (POMDPs). RL solving POMDPs is a
challenging problem since the Markovian assumption on ob-
servation is broken. The information from the past should
be extracted and exploited during the learning phase to com-
pensate for the information loss due to partial observability.
Partially observable situations are prevalent in real-world
problems such as control tasks when observations are noisy,
some part of the underlying state information is deleted, or
long-term information needs to be estimated (Han, Doya, and
Tani 2020b; Meng, Gorbet, and Kulic 2021).

Although many RL algorithms have been devised and
state-of-the-art algorithms provide outstanding performance
in fully observable environments, relatively fewer methods
have been proposed to solve POMDPs. Previous POMDP
methods use a recurrent neural network (RNN) either to com-
press the information from the past in a model-free manner
(Hausknecht and Stone 2015; Zhu, Li, and Poupart 2017;
Goyal et al. 2021) or to estimate the underlying state informa-
tion and use the estimation result as an input to the RL agent
(Igl et al. 2018; Han, Doya, and Tani 2020b). These methods
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Figure 1: Overview: self-attention and RNN are used to pro-
cess each block of sequential data instead of processing at
every timestep in partially observable (PO) environments.

compress observations in a step-by-step sequential order in
time, which may be inefficient when partiality in observation
is high and less effective in extracting contextual information
within a time interval.

We conjecture that observations at specific timesteps in a
given time interval contain more information about decision-
making. We propose a new architecture to solve partially
observable RL problems by formalizing this intuition into a
mathematical framework. Our contributions are as follows:

• As shown in Fig. 1, we propose a new learning archi-
tecture based on a block of sequential input rather than
estimating a latent variable at every timestep by jointly
using self-attention (Vaswani et al. 2017) and RNN and
exploiting the advantage of each structure.

• To learn the proposed architecture, we present a block-
wise sequential model learning based on direct gradient
estimation using self-normalized importance sampling
(Bornschein and Bengio 2015; Le et al. 2019), which
does not require input data reconstruction in contrast to
usual variational methods to POMDPs (Chung et al. 2015;
Han, Doya, and Tani 2020b).

• Using the proposed blockwise representations of the pro-
posed model and feeding the learned block variables to
the RL agent, we significantly improved the performance
over existing methods in several POMDP environments.
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Related Work
In partially observable RL, past information should be ex-
ploited appropriately to compensate for the information loss
in the partial observation. RNN and its variants (Hochreiter
and Schmidhuber 1997; Cho et al. 2014) have been used to
process the past information. The simplest way is that the
output of RNN driven by the sample sequence is directly fed
into the RL agent as the input capturing the past information
without further processing, as considered in previous works
(Hausknecht and Stone 2015; Zhu, Li, and Poupart 2017).
The main drawback of these end-to-end approaches is that it
requires considerable data for training RNN and is subopti-
mal in some complicated environments (Igl et al. 2018; Han,
Doya, and Tani 2020b).

Goyal et al. (2021) proposed a variant of RNN in which the
hidden variable is divided into multiple segments with equal
length. First, a fixed number of the segments are selected
using attention (Vaswani et al. 2017). Then, only the selected
segments are updated with independent RNNs followed by
self-attention, and the remaining segments are not changed.
Our approach is substantially different from this method in
that we use attention over a time interval, while the struc-
ture of Goyal et al. (2021) is updated stepwise by using the
attention over the segments at the same timestep.

Other methods estimate state information or belief state
by learning a sequential model of stepwise latent variables.
The inferred latent variables are then used as input to the RL
agent. Igl et al. (2018) proposed estimating the belief state by
applying a particle filter (Maddison et al. 2017; Le et al. 2018;
Naesseth et al. 2018) in variational learning. Han, Doya, and
Tani (2020b) proposed a Soft Actor-Critic (Haarnoja et al.
2018) based method (VRM) focusing on solving partially
observable continuous action control tasks. VRM adds action
sequence as additional input and uses samples from the re-
play buffer to maximize the variational lower bound (Chung
et al. 2015). Then, latent variables are generated as input to
the RL agent. To solve the stability issue, however, VRM
concatenates (i) a pre-trained and frozen variable dfreeze, and
(ii) a learned variable dkeep from the distinct model because
using only dkeep as input to the RL agent does not yield per-
formance improvement. In contrast, our method only uses
one block model for learning, which is more efficient.

While previous methods improved performance in par-
tially observable environments, they mostly use RNN. The
RNN architecture suffers two problems when partiality in
observation is high: (i) the forgetting problem and (ii) the
inefficiency of stepwise compressing all the past samples,
including unnecessary information such as noise. Our work
solves these problems by learning our model blockwise by
passing the most relevant information to the next block.

Background
Setup We consider a discrete-time POMDP denoted by
(S,A, P, r, γ,O,Ω), where S and A are the state and action
spaces, respectively, P : S ×A× S → R+ is the state tran-
sition probability distribution, r : S × A × S → R is the
reward function, γ ∈ [0, 1] is the discounting factor, and O
and Ω are the observation space and observation probability,

respectively. Unlike in a usual MDP setting, the agent cannot
observe the state st at timestep t in POMDP, but receives an
observation ot ∈ O which is generated by the observation
probability Ω : S × A × O → R+. Our goal is to opti-
mize policy π to maximize the expected discounted return
Eπ[
∑∞

t=0 γ
trt] by learning π with a properly designed input

variable to π in addition to ot in place of the unknown true
state st at each timestep t.

Self-attention Self-attention (Vaswani et al. 2017) is an
architecture that can perform a detailed process within a
time interval by considering contextual information among
sequential input data in the interval. Consider a sequen-

tial input data of length L, denoted by B = x1:L
△
=

[x1, x2, · · · , xL]
⊤ ∈ RL×d, where xi ∈ Rd (column vec-

tor), 1 ≤ i ≤ L, and (·)⊤ denotes matrix transpose. (The

notation Am1:m2

△
= [Am1

, Am1+1, · · · , Am2
] for any quan-

tity A will be used in the rest of the paper.) Self-attention
architecture transforms each input data xi in B into yi so that
the transformed representation yi contains information in not
only xi but also all other xj ∈ B, reflecting the relevance to
the target task. (See Appendix A for the structure.)

To improve the robustness of learning, self-attention
is usually implemented with m (> 1) multi-head trans-
formation. Let the d × d transform matrices of query,
key, and value be MQ = [MQ

1 ,MQ
2 , · · · ,MQ

m], MK =
[MK

1 ,MK
2 , · · · ,MK

m ], MV = [MV
1 ,MV

2 , · · · ,MV
m ], re-

spectively, where d = mhhead so that MQ
l ,MK

l ,MV
l ∈

Rd×hhead for each 1 ≤ l ≤ m. The l-th query, key, and
value are defined as BMQ

l , BMK
l , BMV

l ∈ RL×hhead , re-
spectively. Using an additional transform matrix MO ∈
Rmhhead×d = Rd×d, the output of multi-head self-attention
MHA(B) ∈ RL×d is given by

MHA(B) = [A1, A2, · · · , Am]MO, where

Al = f

(
(BMQ

l )(BMK
l )⊤√

hhead

)
(BMV

l ) ∈ RL×hhead

(1)

and f is a row-wise softmax function (other pooling methods
can be used in some cases (Richter and Wattenhofer 2020)).

In practice, residual connection, layer normalization (Ba,
Kiros, and Hinton 2016), and a feed-forward neural network
g are used to produce the final L × d representation Y =
[y1, y2, · · · , yL]⊤:

Y = LayerNormalize(g(U) + U), where
U = LayerNormalize(MHA(B) +B). (2)

Note that the self-attention architecture of B → Y can further
be stacked multiple times for deeper representation.

Unlike RNN, however, in self-attention, each data block is
processed without consideration of the previous blocks, and
hence each transformed block data is disconnected. There-
fore, information from the past is not used to process the
current block. In contrast, RNN uses past information by
stepwise accumulation, but RNN suffers the forgetting prob-
lem when the data sequence becomes long.
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Figure 2: Detailed architecture of the proposed model: An analogy to filter theory can be drawn. RNN corresponds to autore-
gressive (AR) filtering, which performs recursive filtering only, attention corresponds to moving-average (MA) filtering, which
performs block processing, and the proposed new architecture corresponds to autoregressive–moving-average (ARMA) filtering.

Proposed Method
We present a new architecture for POMDPs, modeling block-
wise latent variables by jointly using self-attention and RNN
and exploiting the advantage of each structure. The proposed
architecture consists of (i) stepwise RNN for RL input and
(ii) block model. If only the stepwise RNN is used, it corre-
sponds to the naive RNN method. As shown in Figs. 1 and
2, the block model consists of self-attention and blockwise
RNN. After the self-attention compresses block information,
the blockwise RNN passes the information to the next block.

We describe the block model structure including how the
block model is used for the trajectory generation and how the
block information is compressed. We then explain how the
block model is efficiently learned to help the RL update.

Proposed Architecture
We consider a sample sequence {xt, t = 1, · · · , T} of length
T = NL, where the sample xt ∈ Rd at timestep t is given
by the column-wise concatenation xt = [at−1; rt−1; ot] of
action at−1, reward rt−1, and the partial observation ot. We
partition the sample sequence {xt, t = 1, · · · , T} into N
blocks B1, · · · , BN , where the n-th block Bn ∈ RL×d (1 ≤
n ≤ N) is given by

Bn = x(n−1)L+1:nL = [x(n−1)L+1, x(n−1)L+2, · · · , xnL]
⊤.

We then decompose the model-learning objective as

log pθ(x1:T ) =
N∑

n=1

log pθ(Bn|B1:n−1), (3)

instead of conventional sample-by-sample decomposition
log pθ(x1:T ) =

∑T
t=1 log pθ(xt|x1:t−1). Note that the condi-

tioning term in (3) is B1:n−1 not Bn−1 since the full Marko-
vian assumption is broken in partially observable environ-
ments. Based on this block-based decomposition, we define

the generative model pθ(B1:N , b1:N ) and the inference model
qϕ(b1:N |B1:N ) as

pθ(B1:N , b1:N ) =
N∏

n=1

pθ(Bn, bn|B1:n−1),

qϕ(b1:N |B1:N ) =

N∏
n=1

qϕ(bn|Bn, B1:n−1), (4)

where bn is a latent variable containing the information of
the n-th block Bn.

For each block index n, we want to infer the n-th block
variable bn from the amortized posterior distribution qϕ in
(4) by using (i) the information of the current block Bn

and (ii) the information from past blocks B1:n−1 before Bn.
After inferring bn at the n-th block, the information of bn is

used to generate the input variables Zn
△
= z(n−1)L+1:nL to

the RL agent. Then, the RL agent learns policy π based on
{(zt, ot, at, rt), t = 1, 2, 3, · · · }, where zt is extracted from
Zn containing zt. Action at is taken by the agent based on
partial observation ot and additional input zt compensating
for partiality in observation ot according to at ∼ π(·|zt, ot).

Trajectory Generation Fig. 2 shows the proposed archi-
tecture with the n-th block processing as reference. The blue
arrows in the lower part show the block variable inference
network qϕ, and the solid black arrows in the upper part
represent the processing network for RL learning.

Until block index n − 1 (i.e., timestep t = (n − 1)L),
the information from the previous blocks B1:n−1 is com-
pressed into the variable hn−1. The (n − 1)-th block
latent variable bn−1 is generated according to bn−1 ∼
qϕ(·|B1:n−1) = N (µn−1, diag(σ2

n−1)), where µn−1 and
σn−1 are the outputs of two neural networks with input
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hn−1. The information of stochastic bn−1 is summarized
in µn−1 and σn−1, so these two variables together with sam-
ples Bn = x(n−1)L+1:nL are fed into the RL input gener-
ation RNN to sequentially generate the RL input variables
Zn = z(n−1)L+1:nL during the n-th block period. (Note that
µn−1 and σn−1 capture the information in hn−1.)

The stepwise RL processing is as follows: Given the RL
input z(n−1)L and the observation o(n−1)L from the last
timestep t = (n − 1)L of Bn−1, the RL agent selects an
action a(n−1)L ∼ π(·|z(n−1)L, o(n−1)L) (see the dashed
black arrows). Then, the environment returns the reward
r(n−1)L and the next observation o(n−1)L+1. Then, the sam-
ple x(n−1)L+1 = [a(n−1)L; r(n−1)L; o(n−1)L+1] at timestep
t = (n − 1)L + 1 together with µn−1 and σn−1 is fed into
the stepwise RNN to produce the next RL input z(n−1)L+1.
This execution is repeated at each timestep until t = nL to
produce Zn = z(n−1)L+1:nL, and each sample xt is stored in
a current batch (on-policy) or a replay memory (off-policy).

At the last timestep t = nL of the n-th block, the n-th
block data Bn = x(n−1)L+1:nL is fed into the self-attention

network to produce the output Yn
△
= y(n−1)L+1:nL capturing

the contextual information in Bn. The procedure extracting
Yn from Bn follows the standard self-attention processing.
However, instead of using all Yn to represent the information
in Bn, we select k (< L) elements in Yn for data compres-
sion and efficiency. We denote the concatenated vector of the
k elements by Y k

n . Y k
n is fed into the blockwise RNN, which

compresses Y k
n together with hn−1 to produce hn. Thus, hn

has the compressed information up to the n-th block B1:n.
The impact of the self-attention network and the blockwise
RNN is analyzed in the Ablation Study section.

Block Information Compression In order to select k
elements from Yn, we exploit the self-attention structure and

the weighting matrix Wl
△
= f

(
(BnM

Q
l )(BnM

K
l )T√

hhead

)
(1 ≤ l ≤

m,m is the number of multi-heads) appearing in (1). The p-
th column of the j-th row of Wl determines the importance
of the p-th row of BnM

V
l (i.e., data at timestep (n−1)L+p)

to produce the j-th row of the attention Al in (1).
Hence, adding all elements in the p-th column of whole

matrix Wl, we can determine the overall contribution (or
importance) of the p-th row of BnM

V
l to generate Al. We

choose the k positions with largest k contributions in column-
wise summation of 1

m

∑m
l=1 Wl in timestep and choose the

corresponding k positions in Yn as our representative atten-
tion messages, considering the one-to-one mapping from Bn

to Yn. The effect of the proposed compression method is
analyzed the Ablation Study section.

Efficient Block Model Learning
The overall learning is composed of two parts: block model
learning and RL policy learning. First, we describe block
model learning. Basically, the block model learning is based
on maximum likelihood estimation (MLE) to maximize the
likelihood (3) for given data x1:T with the generative model
pθ and the inference model qϕ defined in (4).

In conventional variational approach cases such as vari-
ational RNN (Chung et al. 2015), the generative model pθ

is implemented as the product of a prior latent distribution
and a decoder distribution, and the decoder is learned to re-
construct each input sample xt given the latent variable at
each timestep t. In our blockwise setting allowing attention
processing, however, learning to reconstruct the block input
Bn = x(n−1)L+1:nL with a decoder given a single block vari-
able bn is challenging and complex compared to the stepwise
variational RNN case.

In order to circumvent this difficulty, we approach the
MLE problem based on self-normalized importance sampling
(Bornschein and Bengio 2015; Le et al. 2019), which does
not require an explicit reconstruction procedure. Instead of
estimating the value of pθ(Bn|B1:n−1), we directly estimate
the gradient ∇θ log pθ(Bn|B1:n−1) by using self-normalized
importance sampling to update the generative model parame-
ter θ (as θ → θ + c∇θ log pθ(Bn|B1:n−1)) to maximize the
log-likelihood log pθ(Bn|B1:n−1) in (3).

The detailed procedure is as follows. (The overall learn-
ing procedure is detailed in Appendix B.) To estimate
the gradient ∇θ log pθ(Bn|B1:n−1), we construct a neural
network parameterized by θ which produces the value of
log pθ(Bn, bn|B1:n−1). (The output of this neural network is
the logarithm of pθ(Bn, bn|B1:n−1) not pθ(Bn, bn|B1:n−1)
for convenience.) Using the formula ∇θpθ(Bn|B1:n−1) =∫
∇θpθ(Bn, bn|B1:n−1)dbn, we can express the gradient

gnθ := ∇θ log pθ(Bn|B1:n−1) as

gnθ ≈
Ksp∑
j=1

wj
n∑Ksp

j′=1 w
j′
n

∇θ log pθ(Bn, b
j
n|B1:n−1), (5)

where wj
n =

pθ(Bn,b
j
n|B1:n−1)

qϕ(b
j
n|Bn,B1:n−1)

and bjn ∼ qϕ(bn|Bn, B1:n−1)

for 1 ≤ j ≤ Ksp. (See Appendix B for the full
derivation.) The numerator of the importance sampling ra-
tio wj

n can be computed as exp(log pθ(Bn, b
j
n|B1:n−1))

based on the output of the constructed generative
model yielding log pθ(Bn, bn|B1:n−1). The denominator
qϕ(bn|Bn, B1:n−1) is modeled as Gaussian distribution bn ∼
N (µn, diag(σ2

n)), where µn and σn are functions of hn.
hn itself is a function of the blockwise RNN and the self-
attention module, as seen in Fig. 2. Thus, the parameters of
the blockwise RNN and the self-attention module in addition
to the parameters of the µn and σn neural network with input
hn constitute the whole model parameter ϕ.

Note that proper learning of qϕ is required to estimate
∇θ log pθ(Bn|B1:n−1) accurately in (5). For this, we learn
qϕ to minimize

Dn
△
= DKL[pθ(bn|Bn, B1:n−1)||qϕ(bn|Bn, B1:n−1)]

with respect to ϕ, where DKL(·||·) is the Kullback-Leibler
divergence and pθ(bn|Bn, B1:n−1) = pθ(Bn,bn|B1:n−1)∫

pθ(Bn,b|B1:n−1)db

is the intractable posterior distribution of bn from
pθ(Bn, bn|B1:n−1). To circumvent the intractability of the
posterior distribution pθ(bn|Bn, B1:n−1), we again use the
self-normalized importance sampling technique with the con-
structed neural network for log pθ(Bn, bn|B1:n−1). We esti-
mate the negative gradient −∇ϕDn in a similar way to the
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gradient estimation in (5):

−∇ϕDn ≈
Ksp∑
j=1

wj
n∑Ksp

j′=1 w
j′
n

∇ϕ log qϕ(b
j
n|Bn, B1:n−1),

(6)
where the samples and importance sampling ratio bjn and wj

n
in (5) can be used. (See Appendix B for the full derivation.)

One issue regarding the actual implementation of (5) and
(6) is how to feed the current block information from Bn into
pθ and qϕ. In the case of qϕ modeled as Gaussian distribution
bn ∼ N (µn, diag(σ2

n)), the dependence on Bn, B1:n−1 is
through µn, σn which are functions of hn. hn is a function
of Y k

n and hn−1, where Y k
n is a function Bn and hn−1 is

a function of B1:n−1, as seen in Fig. 2. On the other hand,
in the case of the neural network log pθ(Bn, bn|B1:n−1), we
choose to feed Y k

n and bn. Note that Y k
n is a function of

Bn, bn is a function of B1:n−1, and hence both are already
conditioned on B1:n−1.

The part of RL learning is described as follows. With the
sample xt = [at−1; rt−1; ot] and µn, σn from the learned qϕ,
the zt-generation RNN is run to generate zt at each timestep t.
The input µn, σn is common to the block, whereas xt changes
at each timestep inside the block. Then, the RL policy π is
learned using the sequence {(zt, ot, at, rt), t = 1, 2, 3, · · · }
based on standard RL learning (either on-policy or off-
policy), where zt is the side information compensating for
the partiality in observation from the RL agent perspective.

The RL part and the model part are segregated by stopping
the gradient from RL learning through µn and σn to improve
stability when training the RL agent (Han, Doya, and Tani
2020b). The pseudocode of the algorithm and the details are
described in Appendix C and D, respectively. Our source code
is provided at https://github.com/Giseung-Park/BlockSeq.

Experiments
In this section, we provide some numerical results to evaluate
the proposed block model learning scheme for POMDPs. In
order to test the algorithm in various partially observable
environments, we considered the following four types of
partially observable environments:

• Random noise is added to each state: Mountain Hike (Igl
et al. 2018)

• Some part of each state is missing: Pendulum - random
missing version (Meng, Gorbet, and Kulic 2021)

• Memorizing long history is required: Sequential target-
reaching task (Han, Doya, and Tani 2020a)

• Navigating agent cannot observe the whole map in maze:
Minigrid (https://github.com/maximecb/gym-minigrid)

Note that the proposed method (denoted by Proposed) can
be combined with any general RL algorithm. For the first
three continuous action control tasks, we use the Soft Actor-
Critic (SAC) algorithm (Haarnoja et al. 2018), which is an
off-policy RL algorithm, as the background RL algorithm.
Then, we compare the performance of the proposed method
with (i) SAC with raw observation input (SAC), (ii) SAC
aided by the output of LSTM (Hochreiter and Schmidhuber

(a)
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Figure 3: (a) Distribution of reward function in the Moun-
tain Hike environment (b) Performance comparison in the
Mountain Hike environment (The horizontal black dotted
line shows the mean performance of SAC over five seeds at
50000 timesteps when each observation is fully observable.)

1997), a variant of RNN, driven by observation sequences
(LSTM), (iii) VRM, which is a SAC-based method for par-
tially observable continuous action control tasks (Han, Doya,
and Tani 2020b), and (iv) RIMs as a drop-in replacement
of LSTM. The y-axis in the three performance comparison
figures represent the mean value of the returns of the most
recent 100 episodes averaged over five random seeds.

Since the Minigrid environment has discrete action spaces,
we cannot use SAC and VRM, but instead, we use PPO
(Schulman et al. 2017) as the background algorithm. Then
the proposed algorithm is compared with PPO, PPO with
LSTM, and PPO with RIMs over five seeds. (The details of
the implementations are described in Appendix D.)

Mountain Hike
The goal of the agent in Mountain Hike is to maximize the
cumulative return by moving along the path of the high re-
ward region, as shown in Fig. 3(a). Each state is a position of
the agent, but the observation is received with the addition of
Gaussian noise. (See Appendix E for the details.) In Fig. 3(b),
it is seen that the proposed method outperforms the baselines
in the Mountain Hike environment. The horizontal black dot-
ted line shows the mean SAC performance over five seeds
at 50000 steps without noise. Hence, the performance of the
proposed method nearly approaches the SAC performance in
the fully observable setting.

We applied Welch’s t-test at the end of the training to statis-
tically check the proposed method’s gain over the baselines.
This test is robust for comparison of different RL algorithms
(Colas, Sigaud, and Oudeyer 2019). Each p-value is the prob-
ability that the proposed algorithm does not outperform the
compared baseline. Then the proposed algorithm outperforms
the compared baseline with a 100(1− p)% confidence level.
The proposed method outperforms RIMs and VRM with 73
% and 98 % confidence levels, respectively.

Pendulum - Random Missing Version
We conducted experiments on the Pendulum control problem,
where the pendulum is learned to swing up and stay upright
during every episode. Unlike the original fully-observable
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Figure 4: (a) Performance comparison in the Pendulum en-
vironment (the horizontal black dotted line shows the mean
performance of SAC over five seeds at convergence when
each observation is fully observable) and (b) p-values of the
null hypothesis H0 : µproposed ≤ µbaseline based on Welch’s
t-test, where µproposed and µbaseline are the performance means
of the proposed method and each baseline, respectively

version, each dimension of every state is converted to zero
with probability pmiss = 0.1 when the agent receives observa-
tion (Meng, Gorbet, and Kulic 2021). This random missing
setting induces partial observability and makes a simple con-
trol problem challenging.

It is seen in Fig. 4(a) that the proposed method outper-
forms the baselines. The horizontal black dotted line shows
the mean SAC performance at convergence when pmiss = 0.0.
The performance of the proposed method nearly approaches
the SAC performance in the fully observable setting, as seen
in Fig. 4(a). Fig. 4(b) shows that the proposed method out-
performs LSTM and RIMs with 95 % and 99 % confidence
levels, respectively. Note in Fig. 4(a) that the performance
variance of the proposed method (which is 12.8) is signif-
icantly smaller than that of VRM and LSTM (147.6 and
264.4, respectively). This implies that the proposed method
is learned more stably than the baselines.

Sequential Target-reaching Task
To verify that the proposed model can learn long-term in-
formation effectively, we conducted experiments in the se-
quential target-reaching task (Han, Doya, and Tani 2020a).
The sequential target-reaching task is shown in Fig. 5(a). The
agent has to visit three targets in order of 1 → 2 → 3 as
shown in Fig. 5(a). Visiting the first target only yields r1seq,
visiting the first and the second target yields r2seq, and visiting
all the three target in order of 1 → 2 → 3 yields r3seq, where
r3seq > r2seq > r1seq > 0. Otherwise, the agent receives zero re-
ward. When R(0 < R ≤ 15) increases, the distances among
the three targets become larger, and the task becomes more
challenging. The agent must memorize and properly use the
past information to get the full reward.

In Figs. 5(c) and 5(d), it is seen that the proposed method
significantly outperforms the baselines. Note that the perfor-
mance gap between the proposed method and the baselines
becomes large as the task becomes more difficult by increas-
ing R = 10 to R = 15. Welch’s t-test shows that the pro-
posed method outperforms VRM with 98 % confidence level

1
2

3

R

(a)

Success Rate Success Rate
Method R = 10 (%) R = 15 (%)

Proposed 98.4 91.4
RIMs 32.4 4.2
VRM 68.8 15.6
LSTM 33.8 4.8
SAC 1.2 0.0

(b)
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Figure 5: (a) Sequential target-reaching task, (b) success rate
in the task with R = 10 and R = 15, respectively, and (c)
and (d) performance comparison with R = 10 and R = 15,
respectively

when R = 10. The p-value compared to VRM is 2.84×10−4

when R = 15.
The success rate is an alternative measure other than the av-

erage return, removing the overestimation by reward function
choice in the sequential target-reaching task. After training
the block model and the RL agent, we loaded the trained
models, evaluated 100 episodes for each model, and checked
how many times the models successfully reached all three
targets in the proper order. In Fig. 5(b), it is seen that the
proposed method drastically outperforms the other baselines.

Minigrid

We considered partially observable maze navigation environ-
ments with sparse reward, as seen in Figs. 6(a) and 6(c). The
agent (red triangle) receives a nonzero reward 1 − 0.9

tstep

Nmax

only when it reaches the green square, where Nmax is the max-
imum episode length and tstep(≤ Nmax) is the total timestep
before success. Otherwise, the agent receives zero reward.
A new map with the same size but different shapes is gener-
ated at every episode, and the agent starts to navigate again.
The agent must learn to cross the narrow path with partial
observation and sparse reward. (See Appendix E for more
details.)

In Figs. 6(b) and 6(d), it is seen that the proposed method
outperforms the considered baselines even when the size of
map increases and the difficulty becomes higher. According
to Welch’s t-test, the proposed method outperforms PPO with
RIMs (RIMs), PPO with LSTM (LSTM), and PPO in 6(b)
with 93%, 98%, and 94%, respectively. The p-value of LSTM
in Fig. 6(d) is 0.159.
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Figure 6: (a) A sample map of Minigrid CrossingS9N3 task
and (b) performance comparison in CrossingS9N3. (c) A
sample map of Minigrid CrossingS11N5 task and (d) perfor-
mance comparison in CrossingS11N5. The y-axis represents
the mean value of the returns of the most recent two hundred
iterations over the five seeds

Ablation Study
The proposed block model consists of the blockwise RNN
and self-attention. We investigate the contribution to the per-
formance improvement of the blockwise RNN and the self-
attention. We then replace the proposed compression method
with other methods while using the same self-attention. (See
Appendix F for the effect of hyperparameters L and k.)

Effect of Components
We include the method using only self-attention without
blockwise RNN (denoted by ‘Self-attention only’). Y k

n ∈
Rk·d, a single vector from concatenation of k selected el-
ements, is fed into RL agent instead of µn and σn. The
self-attention is trained end-to-end with the RL agent.

We also add the method using only blockwise RNN with-
out self-attention (‘Blockwise RNN only’) by replacing the
self-attention with a feedforward neural network (FNN). The
replaced FNN maps each d-dimensional input xt ∈ Bn

in a block to an SFNN-dimensional vector. Instead of Y k
n ,

(L · SFNN)-dimensional transformed block is used for the
blockwise RNN input. For fair comparison, we set SFNN such
that L · SFNN is equal to the dimension of Y k

n (= k · d).
In Tab. 1, we observe that blockwise RNN plays an es-

sential role for performance improvement in both sequential
target-reaching task and Pendulum. In Pendulum, the effect

Success Rate Average Return
Method R = 15 (%) in Pendulum

Proposed 91.4 -300.2
Self-attention only 21.4 -342.9

Blockwise RNN only 90.8 -467.7
Best baseline 15.6 (VRM) -402.7 (RIMs)

Table 1: Ablation on effect of components: Sequential target-
reaching task with R = 15 (middle) and Pendulum (right)

Method Average Return p-value
Proposed -300.2 -
Pooling -354.1 0.001

Top-k Average -352.0 0.011
Linear -346.5 0.007

Random -349.6 0.024

Table 2: Performance comparison with other compression
methods in the considered Pendulum environment

of self-attention is critical for performance improvement.

Effect of Compression Methods
To check the effectiveness of the proposed compression
method which selects Y k

n from Yn, we conducted perfor-
mance comparison with other compression methods in the
Pendulum environment. Instead of using Y k

n as an input
to the blockwise RNN in the proposed method, the consid-
ered baselines use (i)

∑nL
i=(n−1)L+1 yi (Pooling), (ii) aver-

aging over the k selected elements in Yn weighted by nor-
malized corresponding contributions (Top-k Average), (iii)
[Mcompy(n−1)L+1; · · · ;McompynL] with a trainable matrix
Mcomp ∈ R kd

L ×d (Linear), or (iv) k randomly chosen ele-
ments in Yn (Random).

The comparison result is shown in Tab. 2. In Pendulum,
self-attention has effective compression ability since all the
considered compression methods using self-attention out-
perform the ‘Blockwise RNN only’ method (with average
-467.7) in Tab. 1. Among the considered compression meth-
ods with self-attention, the proposed method induces the least
relevant information loss.

Conclusion
In this paper, we have proposed a new blockwise sequen-
tial model learning for POMDPs. The proposed model com-
presses the input sample sequences using self-attention for
each data block and passes the compressed information to the
next block using RNN. The compressed information from the
block model is fed into the RL agent with the corresponding
data block to improve the RL performance in POMDPs. The
proposed architecture is learned based on direct gradient esti-
mation using self-normalized importance sampling, making
the learning efficient. By exploiting the advantages of self-
attention and RNN, the proposed method outperforms the
previous approaches to POMDPs in the considered partially
observable environments.
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A. J.; and Pérez-Cruz, F., eds., International Conference on
Artificial Intelligence and Statistics, AISTATS 2018, 9-11
April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain,
volume 84 of Proceedings of Machine Learning Research,
968–977. PMLR.
Richter, O.; and Wattenhofer, R. 2020. Normalized Attention
Without Probability Cage. CoRR, abs/2005.09561.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
CoRR, abs/1707.06347.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. Attention
is All you Need. In Guyon, I.; von Luxburg, U.; Bengio,
S.; Wallach, H. M.; Fergus, R.; Vishwanathan, S. V. N.; and
Garnett, R., eds., Advances in Neural Information Process-
ing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, 5998–6008.
Zhu, P.; Li, X.; and Poupart, P. 2017. On Improving Deep Re-
inforcement Learning for POMDPs. CoRR, abs/1704.07978.

7948


