
Bag Graph: Multiple Instance Learning Using Bayesian Graph Neural Networks

Soumyasundar Pal*, Antonios Valkanas*, Florence Regol, Mark Coates
Department of Electrical and Computer Engineering, McGill University, Montreal, QC, Canada

{soumyasundar.pal, antonios.valkanas, florence.robert-regol}@mail.mcgill.ca, mark.coates@mcgill.ca

Abstract
Multiple Instance Learning (MIL) is a weakly supervised
learning problem where the aim is to assign labels to sets or
bags of instances, as opposed to traditional supervised learn-
ing where each instance is assumed to be independent and
identically distributed (i.i.d.) and is to be labeled individu-
ally. Recent work has shown promising results for neural net-
work models in the MIL setting. Instead of focusing on each
instance, these models are trained in an end-to-end fashion
to learn effective bag-level representations by suitably com-
bining permutation invariant pooling techniques with neural
architectures. In this paper, we consider modelling the inter-
actions between bags using a graph and employ Graph Neu-
ral Networks (GNNs) to facilitate end-to-end learning. Since
a meaningful graph representing dependencies between bags
is rarely available, we propose to use a Bayesian GNN frame-
work that can generate a likely graph structure for scenarios
where there is uncertainty in the graph or when no graph is
available. Empirical results demonstrate the efficacy of the
proposed technique for several MIL benchmark tasks and a
distribution regression task.

Introduction
In numerous supervised learning settings, our aim is to as-
sign a label to a group (or bag) of instances as opposed to
assigning labels to the individual instances. Example appli-
cations include drug activity prediction (Dietterich, Lathrop,
and Lozano-Pérez 1997), disease diagnosis (Quellec et al.
2017), and election outcome prediction (Flaxman, Wang,
and Smola 2015). The number of instances in each group
can vary, and we often only have access to a subset of bag
labels; the instances themselves do not have labels attached.

This task is known as the multiple instance learning prob-
lem. Early MIL methods such as (Ramon and De Raedt
2000) used an instance space approach where instances in
each bag are processed individually and then a bag label is
constructed by aggregating the instances’ predictions. While
this approach leads to explainable predictions, it treats in-
stances as i.i.d. samples from an underlying distribution.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

* These authors contributed equally to this work.
Code to reproduce our experiments is available at:
https://github.com/networkslab/BagGraph

The resulting algorithms cannot model any interaction be-
tween the instances (Zhou, Sun, and Li 2009), so they strug-
gle when strong dependencies exist and provide valuable in-
formation (Quellec et al. 2017). More recently, MIL meth-
ods have embraced bag embedding approaches (Wang et al.
2018). These methods employ pooling to combine instance
representations into an embedding for the entire bag.

The presence of structure between the instances in a bag
motivated the use of a graph to model the dependencies.
In (Zhang et al. 2011), a relational graph was used to spec-
ify similarities between instances. With the recent advances
in graph neural networks (GNNs), there have been efforts
to use these to represent the structure of instances within a
bag (Tu et al. 2019; Yin et al. 2019).

Our key observation is that while graphs have been used
to model relationships between instances, they have not been
employed to specify relationships between bags. In some
applications, side-information provides a clear mechanism
for constructing a graph. For example, in a real estate ap-
plication when the goal is to predict mean neighborhood
rental prices, we may assume that nearby neighborhoods
have similar pricing (Valkanas, Regol, and Coates 2020). A
graph can then be constructed with edges representing geo-
graphic proximity. The identified dependencies are valuable
in a graph-based learning framework, leading to improved
predictive performance. In other cases, there is no graph
available, or the available graph information is noisy. Even
in these circumstances it can be beneficial to explicitly learn
a graph structure to represent dependencies between bags
and to exploit this structure when forming label predictions.

The primary contributions of this paper are:
1. We formulate an end-to-end multiple instance learning

architecture that incorporates (i) neural network based
MIL models (e.g., Deep Sets (Zaheer et al. 2017) or Set
Transformer (Lee et al. 2019)) to model instance interac-
tions within bags; and (ii) a Bayesian graph neural net-
work to jointly learn a graph topology to represent de-
pendencies between bags and to assign labels;

2. We demonstrate that various instantiations of the pro-
posed technique achieve comparable classification per-
formance to state-of-the art methods on MIL benchmark
datasets, outperform competitors in a text categorization
experiment and in electoral result prediction, and offer a
significant advantage in an MIL regression task.

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

7922

Related Work
The task we address can be formulated as a set learning or
multiple instance learning task if we ignore the dependen-
cies between the sets.

Classical MIL methods can be divided into two groups:
(i) instance-level and (ii) bag-level algorithms. Instance level
(or instance space) algorithms classify all individual in-
stances within a bag, then aggregate the instance labels,
and finally assign a label to the bag (Ramon and De Raedt
2000; Raykar et al. 2008). The methods can thus identify
the instances that triggered the bag label (Liu, Wu, and
Zhou 2012). The algorithms typically rely on access to in-
stance level training labels. Instance space methods (e.g.,
mi-SVM (Andrews, Tsochantaridis, and Hofmann 2002)
and EM-DD (Zhang and Goldman 2001)) avoid this by
training models to predict instance labels without supervi-
sion. These methods assume that specific key instances trig-
ger the bag label and often fail in cases where a complex
relationship between instances determines the bag label.

Bag level approaches do not require access to instance la-
bels but lack instance level explainability. Bag space meth-
ods (e.g., (Sun and Lam 2013) and mi-Graph (Zhou, Sun,
and Li 2009)) employ a non-vectorial distance function
to compare bags. The lack of any mechanism to learn
features can harm performance. Embedding space meth-
ods (e.g., (Wang et al. 2018), (Ilse, Tomczak, and Welling
2018)) address this by learning fixed dimension bag embed-
ding vectors. Neural networks have been applied at both the
instance level (Ramon and De Raedt 2000) and more re-
cently to derive bag embeddings (Pathak et al. 2015; Wang
et al. 2018; Ilse, Tomczak, and Welling 2018).

Pooling: Most embedding methods employ an encoder
to embed instances to intermediate representations and then
combine these through a pooling operation to obtain a bag
embedding. Earlier MIL methods employed fixed (non-
trainable) pooling operators, but more recently set learning
and attention have been incorporated (Ilse, Tomczak, and
Welling 2018). Lee et al. (2019) extend this approach, using
transformers and multi-head attention to learn more complex
interactions between set elements.

Graph methods for MIL: Early MIL methods assumed
the instances to be i.i.d., but this was relaxed in subsequent
work. Explicitly modeling the structure between instances
and bags can be beneficial (Deselaers and Ferrari 2010).
Zhang et al. (2011) employ a model where similar instances
are represented as connected nodes in a relational graph.
More recently, graph neural networks (GNNs) have been
employed to model and learn the structure of the instances
within a bag (Tu et al. 2019; Yin et al. 2019).

Our work differs from existing work in that we represent
the relationships between bags using a graph. We combine
existing neural architectures to learn the intra-bag structure
with a graph neural network to learn the inter-bag structure
and train the resulting architecture in an end-to-end fashion.
Furthermore, to account for scenarios where there is uncer-
tainty in the graph or where no graph is available, we use
a Bayesian graph neural network framework, jointly learn-
ing the parameters associated with the bag embedding, the
graph topology, and the GNN weights.

Problem Statement
We address the multiple instance learning task of mapping
sets of instances (bags) to labels. Let V be the set of bags. We
consider a weakly supervised transductive setting, in which
we observe the labels yL = {yi}i∈L for a subset of bags in
a training set L ⊂ V . The labels yi may be categorical in a
classification setting or real-valued in a regression setting.

Each instance has an associated feature vector and we as-
sume these have a common dimension, so that we can asso-
ciate with each bag i ∈ V a feature matrix Xi ∈ Rni×dx ,
where dx is the dimensionality of each instance’s feature
vector and ni is the cardinality of the i-th bag. The number
of instances can vary from bag to bag; ni 6= nj for i 6= j.
We denote the set of training features as XL = {Xi}i∈L.
Our goal is to assign labels to the bags in the test set
L = V \L, for which only the features are accessible. Since
we operate in a transductive setting, features from all bags
XV = XL ∪XL can be used during model training.

We extend the classical MIL task by considering settings
where a graph Gobs = (V , E) is provided or can be con-
structed through some heuristic from the available data. The
nodes i ∈ V in this graph are the bags (both training and
test); and an edge in the edge set E represents the existence
of a relationship between the bags. Our method assumes that
the graph is homophilic, in the sense that an edge between
two nodes i and j is indicative of a higher probability that
the bags represented by these nodes have the same label (or
that the distance between the labels is small in the regres-
sion context). We consider a setting where the edges are not
directed. In general, the adjacency matrix can be weighted.

Our problem formulation encompasses the standard MIL
setting. It is equivalent to the case when the provided edge
set is empty, i.e., E = φ. We include the subscript obs in Gobs
to emphasize that it is an observed graph. We assume that
there is a true, unobserved graph G of which the observed
graph Gobs is a noisy version. We specify the prior for G and
the likelihood relating G and Gobs in the next section.

Methodology
We employ a Bayesian learning framework to account for
uncertainties in the provided graph (or to learn it outright
when one is not provided). A deep learning based MIL
model is applied to the instances within each bag to gen-
erate a set representation. These representations are then ag-
gregated using a Bayesian graph neural network to provide
a final labeling for each bag. The Bayesian formulation pro-
vides a data adaptive mechanism for inferring the true graph.
The architecture is end-to-end trainable, with the parameters
associated with the set representation and the GNN being
learned jointly with the graph topology. The loss functions
are dependent on the task; we employ a cross-entropy loss
for classification and mean-squared error for regression.

We use a typical deep-learning based MIL model which
consists of two modules. First, a representation learning
module is applied to the instances within each bag. This is
followed by a pooling layer which summarizes the instance
representations within a set to obtain a bag embedding. Sub-
sequently, the node-level (bag-level) representations are ag-

7923

gregated using a GNN, which aims to take advantage of the
relationships specified by the graph structure. Our frame-
work can incorporate the vast majority of GNNs; we conduct
experiments using the Graph Convolutional Network (GCN)
of (Kipf and Welling 2017).

The bag representation obtained from the MIL model is
denoted by ZV ∈ R|V|×dz . An L-layer GCN uses ZV as the
input and performs graph convolutions recursively:

H(1) = σ0(ÃZVW
(0)) ,

H(`+1) = σ`(ÃH(`)W(`)) , ` ∈ {1, 2, ..., L− 1}. (1)

Here, H(`) ∈ R|V|×d` represents the output of (` − 1)-th
layer and W(`) ∈ Rd`×d`+1 is the learnable weight matrix
of the `-th layer. The nonlinear activation function at the `-th
layer is denoted by σ`(·). Ã ∈ R|V|×|V|+ is the non-negative,
symmetric, normalized adjacency matrix of graph G and it
is learned using the Bayesian framework detailed below.

Bayesian GNN Framework
In many graph based learning problems, the observed graph
is constructed from noisy data or derived based on heuris-
tics and/or imperfect modelling assumptions. As a result, the
observed graph might not represent the true underlying rela-
tionship among the data on its nodes; it might contain spu-
rious links and important links might be unobserved. How-
ever, most existing GNNs do not account for the uncertainty
of the graph structure during training.

Several recent works such as (Ma et al. 2019; Jiang et al.
2019; Zhang et al. 2019; Pal et al. 2020; Elinas, Bonilla, and
Tiao 2020; Wan et al. 2021) address this issue by incorporat-
ing probabilistic modelling or joint optimization of the graph
during model training. In particular, Zhang et al. (2019) in-
troduce a general Bayesian framework, where the observed
graph is assumed to be a random sample from a paramet-
ric random graph family and posterior inference of the true
graph is considered. Despite the effectiveness of the para-
metric modelling approach, it has several disadvantages. The
algorithm cannot be applied generally since choosing suit-
able random parametric models is difficult in diverse prob-
lem settings. Posterior inference of the graph model param-
eters often scales poorly with the number of nodes in the
graph. Finally, for many parametric random graph models
(e.g. the a-MMSBM in (Zhang et al. 2019)), the posterior
inference of the true graph cannot utilize the information
provided by other known quantities such as node features
or training labels. To alleviate these difficulties, Pal et al.
(2020) consider a non-parametric model of the graph us-
ing a smoothness criterion of the underlying graph structure
without imposing any parametric assumptions on the graph-
generative model. We adopt this approach for our GNNs.

In the Bayesian setting, the task is to approximate the pos-
terior distribution of the unknown test set labels yL con-
ditioned on the training labels yL, the node (bag) features
XV = {Xi}i∈V , and (possibly) the observed graph Gobs.
This can be represented by computing the expectation of the
model likelihood w.r.t. the posterior distributions of the true
graph G, the GNN weights W = {W(`)}L−1`=0 and the MIL

model parameters Θ as follows:

p(yL|yL,XV ,Gobs)=
∫
p(yL|W,G,ZV)p(W|yL,ZV ,G)

p(G|Gobs,ZV ,yL)p(ZV |XV ,Θ)p(Θ) dΘ dZV dW dG .
(2)

Here, p(Θ) is the prior distribution of the MIL model pa-
rameters and p(ZV |XV ,Θ) represents the deterministic op-
eration to obtain the bag representation matrix ZV , which is
used as an input to the Bayesian GNN. We approximate the
integral over Θ and ZV by using a deterministic function:

ẐV = MIL
(
XV ,“Θ) , (3)

where “Θ and ẐV are the MIL model estimates. In a classi-
fication problem, the likelihood p(yL|W,G, ẐV) of the test
set labels is a categorical distribution which can be modelled
by applying a softmax function to the output H(L) of the last
layer of the GNN. A Gaussian likelihood can be used in the
regression setting. Since the integral in eq. (2) is intractable,
a Monte Carlo approximation is formed as follows:

p(yL|yL,XV ,Gobs) ≈
1

S

S∑
s=1

p(yL|Ws, Ĝ, ẐV) . (4)

Here, Ĝ = arg max
G

p(G|Gobs, ẐV ,yL) denotes the max-

imum a posteriori (MAP) estimate of the true graph G.
The posterior of the GNN weights p(W|yL, ẐV , Ĝ) is ap-
proximated by training a Bayesian GNN using the graph
Ĝ and sampling S weight matrices {Ws}Ss=1 using MC
dropout (Gal and Ghahramani 2016). This is equivalent to
sampling Ws from a particular variational approximation
of the true posterior of the weights, if the prior distribution
p(W) is Gaussian.

In the non-parametric graph generative model described
in Pal et al. (2020), the undirected random graph G is spec-
ified in terms of its symmetric adjacency matrix AG ∈
R|V|×|V|+ . The prior distribution for G ensures that there is
no disconnected node in G and it is not extremely sparse.

p(G) ∝

exp

(
α1> log(AG1)− β‖AG‖2F

)
, if AG > 0,

AG = A>G
0 , otherwise .

(5)
Here, ‖ · ‖F denotes the Frobenius norm and the hyperpa-
rameters α and β control the scale and sparsity of AG . The
joint likelihood of Gobs, ẐV , and yL encourages higher edge
weights for similar node pairs and lower edge weights for
dissimilar node pairs. The functional form of the likelihood
is specified as:

p(Gobs, ẐV ,yL|G) ∝ exp
(
− ‖AG ◦D(Gobs, ẐV ,yL)‖1,1

)
.

(6)
Here, ◦ indicates the Hadamard product and ‖ · ‖1,1 stands
for the elementwise `1 norm. D(Gobs, ẐV ,yL) > 0 is a non-
negative, symmetric pairwise distance matrix which mea-
sures the dissimilarity between the nodes. We have:

Dij(Gobs, ẐV ,yL) = dist(zi, zj) , (7)

7924

where, zi denotes some representation of node i and
dist(·, ·) is a distance metric. In our experiments, we form
D by computing the pairwise squared Euclidean distance
between the bag representations from the last layer of a base
model ŷL = fφ(XV ,yL,Gobs), (e.g. an end-to-end deep-
learning based MIL model or an MIL model combined with
a GNN trained on the observed graph Gobs). This flexibility
in construction of the distance matrix D allows the applica-
tion of our Bayesian approach to settings where Gobs is not
available. It also proves useful in cases where we only have
access to a heuristically constructed Gobs, which poorly ex-
presses the true relationships between bags.

Instead of sampling G from a high dimensional posterior
distribution (O(|V|2), where |V| is the number of the nodes),
we adopt a MAP estimation approach as in (Pal et al. 2020).
We estimate the graph as:

Ĝ = arg max
G

p(G|Gobs, ẐV ,yL) , (8)

Solving this is equivalent to learning a |V|×|V| non-negative,
symmetric adjacency matrix of Ĝ. We can re-express the op-
timization task as:

AĜ = arg min
AG∈R|V|×|V|+ ,

AG=A>G

‖AG ◦D‖1,1 − α1> log(AG1)

+ β‖AG‖2F .
(9)

Kalofolias (2016) uses a primal-dual optimization algo-
rithm to solve this problem in the context of learning a graph
from smooth signals. In this work, we use the approximate
algorithm in (Kalofolias and Perraudin 2019). This algo-
rithm allows for a favourable computational complexity for
the graph inference and provides a useful heuristic for hyper-
parameter selection. The overall algorithm is summarized in
Algorithm 1.

Algorithm 1: MIL using Bayesian GNN with non-
parametric graph learning
1: Input: XV , yL, and Gobs
2: Output: p(yL|yL,XV ,Gobs)
3: Train a base model fφ using XV , yL, and (possibly) Gobs to

learn zi for 1 6 i 6 |V|. Compute D using eq. (7).
4: Solve the optimization problem in (9) to obtain A“G (equiva-

lently, Ĝ).
5: Assuming a Gaussian prior distribution p(W) for W, train

the MIL model combined with GNN over the graph Ĝ using a
suitable loss functionL(ŷL,yL) to optimize Θ and W jointly.

6: Keeping Θ fixed at the learned value “Θ, obtain ẐV =

MIL
(
XV ,“Θ).

7: for s = 1 to S do
8: Apply MC dropout in the GNN layers to sample Ws.
9: end for

10: Approximate p(yL|yL,XV ,Gobs) using (4).

Experiments
We perform classification experiments on 5 benchmark MIL
datasets, 20 text datasets from the 20Newsgroups corpus,
and the 2016 US election data. In addition, we also con-
sider a distribution regression task of predicting neighbor-
hood property rental prices in New York City.

Classification of Benchmark MIL Datasets
In this experiment, we evaluate the proposed approach on
five popular benchmark datasets: MUSK1, MUSK2 (Di-
etterich, Lathrop, and Lozano-Pérez 1997), FOX, TIGER,
and ELEPHANT (Andrews, Tsochantaridis, and Hofmann
2002). The detailed description of these datasets are pro-
vided in the supplementary.

We compare our approach with the following baselines:
Instance space methods: mi-SVM and MI-SVM (Andrews,
Tsochantaridis, and Hofmann 2002), EM-DD (Zhang and
Goldman 2001), MI-VLAD and mi-FV (Wei, Wu, and Zhou
2017).
Bag space methods: MI-Kernel (Gärtner et al. 2002), mi-
Graph (Zhou, Sun, and Li 2009).
Embedding space methods: mi-Net and MI-Net (Wang
et al. 2018), Attention Neural Network and Gated Attention
Neural Network (Ilse, Tomczak, and Welling 2018): These
methods use neural networks and attention to learn embed-
dings of the bags.

In order to instantiate the proposed approach, we adopt
the following procedure. We first design a suitable graph ag-
nostic, deep learning based MIL algorithm as a base model.
For this experiment, we consider a row-wise FeedForward
architecture with pooling (rFF+pool) (Zaheer et al. 2017)
as the base model. We equip this architecture with deep
supervision (Wang et al. 2018). Next, we tune the model
based on a 10 fold cross-validation. Once the architecture
and other hyperparameters such as learning rate, number of
training epochs, and weight decay are fixed, we only replace
the last linear layer of the base model with a GCN layer to
form a GCN variant. The proposed Bayesian approach uses
the same architecture. This approach ensures that the GCN
and the BGCN variants have the same number of learnable
parameters, the same hyperparameters, and similar training
complexity as the base model. Moreover, the only difference
between the GCN and the BGCN variants is that the GCN
uses an observed graph Gobs, whereas the Bayesian approach
estimates Ĝ form the data.

Since no graph is specified for these datasets, we apply
a heuristic to create the observed graph Gobs. We follow a
simple k-nearest-neighbor approach, based on the Euclidean
distance between the embeddings obtained from the base
model. Edges are added between nodes with nearby em-
beddings, with each node adding an edge to its nearest k
neighbors. For the proposed Bayesian approach, we have
two hyperparameters k and r associated with the approxi-
mate graph inference technique in (Kalofolias and Perraudin
2019), used in Step 4 of Algorithm 1. A permissible edge set
is first constructed based on a kr-NN graph which greatly al-
leviates the computational complexity of the graph learning
algorithm. Subsequently, a primal-dual algorithm is run on
this reduced edge set to obtain Ĝ, in which each node has ap-
proximately k neighbors. We choose these hyper-parameters
using 10 fold cross-validation. See supplementary for details
of the architecture and the hyperparameters. These general
steps are also followed in other experiments.

We perform 10-fold cross validation for 10 times with
different random data partitions and report the mean accu-

7925

Algorithm MUSK1 MUSK2 FOX TIGER ELEPHANT

mi-SVM 87.4±N/A 83.6±N/A 58.2±N/A 78.4±N/A 82.2±N/A
MI-SVM 77.9±N/A 84.3±N/A 57.8±N/A 84.2±N/A 84.3±N/A
MI-Kernel 88.0±3.1 89.3±1.5 60.3±2.8 84.2±1.0 84.3±1.6
EM-DD 84.9±4.4 86.9±4.8 60.9±4.5 73.0±4.3 77.1±4.3
mi-Graph 88.9±3.3 90.3±3.9 62.0±4.4 86.0±3.7 86.9±3.5
MI-VLAD 87.1±4.3 87.2±4.2 62.0±4.4 81.1±3.9 85.0±3.6
mi-FV 90.9±4.2 88.4±4.2 62.1±4.9 81.3±3.7 85.2±3.6

mi-Net 88.9±3.9 85.8±4.9 61.3±3.5 82.4±3.4 85.8±3.7
MI-Net 88.7±4.1 85.9±4.6 62.2±3.8 83.0±3.2 86.2±3.4
MI-Net (DS) 89.4±4.2 87.4±4.3 63.0±3.7 84.5±3.9 87.2±3.2
MI-Net (RC) 89.8±4.3 87.3±4.4 61.9±4.7 83.6±3.7 85.7±4.0
Attention 89.2±4.0 85.8±4.8 61.5±4.3 83.9±2.2 86.8±2.2
Gated-Attention 90.0±5.0 86.3±4.2 60.3±2.9 84.5±1.8 85.7±2.7

rFF+pool 88.7±3.7 87.1±3.8 61.1±4.1 82.8±2.1 87.5±3.0
rFF+pool-GCN 89.9±3.0 86.0±4.1 62.9±3.4 82.9±2.2 87.5±3.0
B-rFF+pool-GCN 89.9±3.6 87.2±2.6 63.9±2.7 83.0±2.1 84.2±3.4

Table 1: Mean and standard error (when available) of classification accuracy (in %) for benchmark MIL datasets. The best and
the second best results in each column are shown in bold and marked with underline respectively. Higher accuracies are better.

racy with its standard error in Table 1. Ilse, Tomczak, and
Welling (2018) remark that deep learning approaches are not
well suited for these datasets as they are composed of pre-
computed features and the cardinalities of the bags are rela-
tively small. From Table 1, we observe that the base model
rFF+pool achieves comparable performance to the neural
network based approaches (note the standard errors of the
mean accuracies). The rFF+pool-GCN and the proposed B-
rFF+pool-GCN offer a relatively small improvement in ac-
curacy compared to the base model in most cases.

1 2 3 4 5 6 7 8 9 10
Rank

B-Res+pool
-GCN (ours)

MI-Net

MI-Net
with DS

Res+pool

MI-Net
with RC

Res+pool
-GCN

mi-Net

miFV

mi-Graph

MI-Kernel

Figure 1: Boxplot of ranks of the algorithms across the 20
text datasets. The medians and means of the ranks are shown
by the vertical lines and the black triangles respectively;
whiskers extend to the minimum and maximum ranks.

Text Categorization
We evaluate the proposed approach on 20 text
datasets (Zhou, Sun, and Li 2009) derived from the 20
Newsgroup corpus (details in supplementary).

Aside from the classical MIL models such as MI-Kernel,
mi-Graph and mi-FV, we also consider the mi and MI-net
models as baselines, as they are shown to outperform the
classical models on these datasets in (Wang et al. 2018).

For this task, we use a residual architecture with pooling
as the base model (details in supplementary). We conduct 10
fold cross-validation 10 times using the data-splits of (Zhou,
Sun, and Li 2009). The obtained results are summarized in
Table 2. The boxplot of the ranks of the algorithms across
the 20 datasets is shown in Figure 1.

From Table 2 and Figure 1, we observe that all neural net-
work based models outperform the classical MIL models on
average in this task. In particular, MI-Net and MI-Net with
DS algorithms show impressive performance. We also see
that using the k-NN heuristic to construct Gobs does not work
well for this task, as the Res+pool-GCN algorithm shows
worse performance on average compared to the base model.
The proposed B-Res+pool-GCN algorithm outperforms the
base model considerably and achieves the best average and
median ranks among all algorithms across the 20 datasets.

Electoral Results Prediction
In this task, our aim is to learn to predict the voting pat-
tern of the US counties in the 2016 presidential election. The
dataset is obtained from (Flaxman, Wang, and Smola 2015)
(details in supplementary). In this dataset, people (instances)
are associated with the socio-economical features from US
census data and we construct the bags by randomly sampling
100 people from each county.

We consider an extreme data-scarce setting, where the
data from only 2.5% of counties (amounting to approxi-
mately one county per state) are used for training. We con-
duct 100 trials where each trial consists of a random train-
test split and random sampling of people to construct the
bag feature matrix. Gobs is a k-NN graph constructed based
on the locations of the centroids of the counties.

We choose Deep Sets (DS) (Zaheer et al. 2017) as a non-
graph MIL baseline. Its GCN variant DS-GCN uses Gobs for
graph convolution. In order to compute the distance matrix
for the non-parametric graph inference step of the proposed
Bayesian DS-GCN (B-DS-GCN) algorithm, we use the bag

7926

Algorithm MI-
Kernel

mi-
Graph

mi-
FV

mi-
Net

MI-
Net

MI-
Net (DS)

MI-
Net (RC) Res+pool Res+pool-

GCN (ours)
B-Res+pool-
GCN (ours)

Average rank 10.00 8.70 7.50 4.60 3.70 4.05 4.50 4.05 4.55 3.35
Median rank 10.00 9.00 8.00 5.00 4.00 4.00 4.00 3.50 4.50 2.50
alt.atheism 60.2±3.9 65.5±4.0 84.8 83.1±2.3 84.7±1.8 84.4±2.0 83.6±1.5 88.3±2.2 87.6±2.7 88.8±2.0
comp.graphics 47.0±3.3 77.8±1.6 59.4 81.7±0.6 82.0±1.5 81.9±0.5 81.5±0.9 80.0±3.2 78.7±2.3 79.8±3.2
comp.os.ms-windows 51.0±5.2 63.1±1.5 61.5 70.4±1.7 70.7±1.1 70.9±1.1 70.7±1.4 71.7±3.6 71.1±3.9 70.3±3.8
comp.sys.ibm.pc.hard. 46.9±3.6 59.5±2.7 66.5 79.0±1.8 78.6±1.0 78.3±1.3 78.5±1.0 73.1±3.4 73.0±2.9 75.8±3.8
comp.sys.mac.hard. 44.5±3.2 61.7±4.8 66.0 79.4±1.6 79.1±1.5 79.7±1.1 79.2±1.9 79.3±3.1 78.2±2.6 78.7±3.3
comp.windows.x 50.8±4.3 69.8±2.1 76.8 79.9±1.8 80.9±1.9 80.1±1.1 81.2±2.7 84.9±2.7 85.7±2.9 86.1±1.9
misc.forsale 51.8±2.5 55.2±2.7 56.5 67.1±0.9 66.7±1.2 66.0±1.6 67.2±1.2 75.8±3.5 74.0±3.6 74.4±3.6
rec.autos 52.9±3.3 72.0±3.7 66.7 76.5±1.2 76.9±1.6 76.4±1.6 76.1±1.6 78.3±3.3 78.8±2.8 78.5±3.2
rec.motorcycles 50.6±3.5 64.0±2.8 80.2 83.4±1.1 84.2±1.0 83.5±1.5 83.3±1.3 85.0±2.4 84.8±2.9 85.8±2.5
rec.sport.baseball 51.7±2.8 64.7±3.1 77.9 86.0±1.6 86.7±1.7 85.7±2.5 87.1±1.4 80.0±3.1 81.4±3.6 83.4±4.1
rec.sport.hockey 51.3±3.4 85.0±2.5 82.3 89.0±1.7 90.2±1.4 91.1±1.6 89.8±1.1 89.9±2.3 89.4±2.9 90.0±2.9
sci.crypt 56.3±3.6 69.6±2.1 76.0 79.5±1.4 77.9±1.5 77.8±2.6 78.6±2.3 80.1±3.7 81.8±3.0 81.9±3.4
sci.electronics 50.6±2.0 87.1±1.7 55.5 92.1±0.8 93.2±0.4 92.7±0.5 93.1±0.7 90.4±2.9 90.7±3.0 91.4±2.8
sci.med 50.6±1.9 62.1±3.9 78.3 85.5±0.9 84.2±0.7 84.7±1.3 83.8±1.4 78.4±3.2 78.5±2.5 80.2±3.0
sci.space 54.7±2.5 75.7±3.4 81.8 79.8±1.3 79.5±2.8 80.1±2.6 80.3±2.6 88.1±2.6 88.3±2.8 88.9±2.9
soc.religion.christian 49.2±3.4 59.0±4.7 81.4 79.9±1.5 80.7±1.7 80.1±1.4 80.5±2.0 78.7±3.6 78.1±3.3 79.4±2.0
talk.politics.guns 47.7±3.8 58.5±6.0 74.7 76.1±1.9 78.2±1.8 77.0±2.4 77.3±1.0 76.0±4.9 73.6±3.7 77.7±4.2
talk.politics.mideast 55.9±2.8 73.6±2.6 79.3 83.9±1.0 84.0±1.2 83.8±1.0 83.3±2.0 82.1±3.4 81.4±3.9 81.6±3.1
talk.politics.misc 51.5±3.7 70.4±3.6 69.7 76.5±1.5 75.8±2.3 76.8±2.2 75.6±1.9 76.5±5.0 76.8±4.6 77.9±4.7
talk.religion.misc 55.4±4.3 63.3±3.5 73.9 74.4±1.5 76.2±1.7 76.2±1.5 74.3±1.2 79.0±3.6 78.8±4.3 80.0±3.7

Table 2: Mean and std. error (when available) of classification accuracy (in %) along with average and median ranks (lower
ranks are better) of the algorithms for the 20 text categorization datasets derived from the 20 Newsgroups corpus. Higher
accuracies and lower ranks are better.

embeddings obtained from the DS-GCN (details in supple-
mentary). We also compare our results with standard MIL
baselines, such as MI-Kernel and mi-SVM.

MI-Kernel mi-SVM Deep Sets DS-GCN B-DS-GCN

Acc. 63.5±6.1 72.1±9.1 73.2±3.2 74.0±4.5* 74.2±3.1*
ND N/A N/A 22.3±2.6 21.6±3.1 21.4±2.4

Table 3: Average accuracy and ND (in %) of electoral results
prediction reported with std. error over 100 trials.

We conduct a Wilcoxon signed rank test to assess the sta-
tistical significance of the obtained results. For the BGCN
(or GCN) variant of the base model, * indicates that the
performance of the algorithm is significantly better at the
5% level compared to the base model. Similarly, ** for the
BGCN (or GCN) variant refers to significantly better per-
formance compared to both the base model and its (B)GCN
variant. We also follow this followed in the next experiment.

Table 3 reports the classification accuracy (republican vs.
democrat) and the Normalized Deviation (ND) of the pre-
dicted percentage of votes in each county. We observe that
the DS-GCN outperforms Deep Sets, since the latter can-
not incorporate spatial information. The proposed B-DS-
GCN algorithm achieves the highest average accuracy and
the lowest average ND. Figure 2 shows that compared to
the baselines, the predicted voting percentages from the pro-
posed B-DS-GCN algorithm are closer to the ground truth.

Rental Price Prediction
As the last task, we evaluate our model in a distribu-
tion regression setting to predict mean rental price in New

York City neighborhoods. The dataset1 includes features of
50,000 rental properties in New York City along with their
geographical locations. Each listing (instance) is described
by a vector of features such as a text description, the number
of bedrooms, bathrooms, etc. (details in supplementary).

We follow the pre-processing steps described in (Valka-
nas, Regol, and Coates 2020) that include outlier removal,
feature standardization, and removing listings with missing
attributes. An observed graph (Gobs) of 77 nodes is created
using data from the official New York City neighborhood
map2.

We use Root Mean Squared Error (RMSE), Mean Ab-
solute Error (MAE), and Mean Absolute Percentage Error
(MAPE) of the predicted average rent as evaluation metrics.
We repeat the experiment 100 times using a random 70%-
30% train-test split of the bags and random sampling of the
listings in those bags in each trial. We consider Deep Sets
(DS) (Zaheer et al. 2017) and Set Transformer (ST) (Lee
et al. 2019) as the two graph agnostic baselines for this re-
gression task. Their GCN variants DS-GCN and ST-GCN
and BGCN variants B-DS-GCN and B-ST-GCN are con-
structed as in the previous experiment (see supplementary).

The results are summarized in Table 4. We observe that
both DS-GCN and ST-GCN outperform their corresponding
base models significantly, which shows that the utilization
of spatial information encoded by Gobs is beneficial for the

1 https://www.kaggle.com/c/two-sigma-connect-rental-listing-
inquiries

2 https://data.cityofnewyork.us/City-Government/Neighborhood-
Names-GIS/99bc-9p23

7927

Deep Sets DS-GCN

B-DS-GCN True Election Results

Figure 2: Predictions of voting probability from Deep Sets, DS-GCN, and B-DS-GCN for the 2016 US presidential election. A
county is shown in red (or blue) if the majority votes in favor of republican (or democratic) party. The intensity of the red and
blue dots indicates the percentage of the votes obtained by the republican and democratic parties respectively.

task. The proposed B-DS-GCN and B-ST-GCN provide fur-
ther improvement in almost all cases. This suggests that be-
yond simple geographical proximity, the proposed approach
is capable of learning more complex relationships among the
neighborhoods influencing the mean rental prices.

Algorithm RMSE MAE MAPE (%)

Deep Sets 86.37±20.41 65.19±15.72 2.24±0.36
DS-GCN 78.57±16.06* 59.21±10.20* 1.92±0.24*
B-DS-GCN 67.51±16.39** 47.24±10.21** 1.83±0.20**

Set Transformer 76.34±15.04 56.09±9.10 2.02±0.22
ST-GCN 71.86±14.65* 53.56±9.11* 1.81±0.22*
B-ST-GCN 69.44±16.23** 49.72±9.60** 1.83±0.22*

Table 4: Average RMSE, MAE, and MAPE for rental price
prediction reported with std. error over 100 trials.

Algorithm RMSE MAE MAPE (%)

D
S

t. n. d. 75.26±16.99 54.48±12.01 2.03±0.25
t. n. d. (training) 68.15±16.77* 48.08±10.77* 1.85±0.22*
transductive 67.51±16.39* 47.24±10.21* 1.83±0.20**

ST

t. n. d. 89.95±23.23 67.12±18.34 2.29±0.47
t. n. d. (training) 71.72±16.50* 51.66±10.23* 1.88±0.26*
transductive 69.44±16.23** 49.72±9.60** 1.83±0.22**

Table 5: Ablation study for rental price prediction: average
RMSE, MAE, and MAPE with std. error over 100 trials.

We conduct an ablation study to determine if the transduc-
tive setting employed in this work is indeed beneficial. For
both architectures, we consider a scenario with ‘test nodes
disconnected’ (t. n. d.), which refers to the case where graph

inference is carried out for the training nodes only, and dis-
connected test nodes are added to the graph of training nodes
during testing. The other setting is ‘test nodes disconnected
(training)’, where the training is carried out based on the
inferred graph of training nodes, but the learned model is
evaluated on the inferred graph of both training and test set
nodes. From the results in Table 5, we note that both con-
ducting the non-parametric graph inference for training and
test set nodes together and training the model in a transduc-
tive setting contribute positively to the outcome of this task.

Conclusion
In this paper, we have proposed a novel graph-based MIL
method that is capable of addressing learning problems
where there is relational information between the bags to be
labeled. We employ a Bayesian graph neural network frame-
work which allows a graph to be inferred from the data, so
our method is also applicable to the traditional MIL setting
where no graph is specified. The proposed methodology is
generally applicable to diverse MIL problem settings, as it
can incorporate various existing deep learning based MIL
models to learn bag representations and aggregate them us-
ing a Bayesian GNN via end-to-end training. Empirical re-
sults demonstrate that the proposed method achieves perfor-
mance comparable to the state-of-the-art on MIL benchmark
datasets, and offers better performance in text categoriza-
tion, electoral results prediction, and rental price regression.
Some potential future research directions include adapting
the methodology to the inductive setting by using inductive
GNN variants (Hamilton, Ying, and Leskovec 2017) and im-
proving the training efficiency of the models by using node
or graph sampling (Chiang et al. 2019; Zeng et al. 2020).

7928

Acknowledgements
We acknowledge the support of the Natural Sciences and En-
gineering Research Council (NSERC) of Canada, [funding
reference number 260250]. This work was supported by the
Department of National Defence’s Innovation for Defence
Excellence and Security (IDEaS) program, Canada.

References
Andrews, S.; Tsochantaridis, I.; and Hofmann, T. 2002. Sup-
port vector machines for multiple-instance learning. In Proc.
Adv. Neural Info. Process. Syst.
Chiang, W.-L.; Liu, X.; Si, S.; Li, Y.; Bengio, S.; and Hsieh,
C.-J. 2019. Cluster-GCN: An efficient algorithm for training
deep and large graph convolutional networks. In Proc. ACM
SIGKDD Int. Conf. Knowl. Discov. and Data Mining.
Deselaers, T.; and Ferrari, V. 2010. A conditional random
field for multiple-instance learning. In Proc. Int. Conf. Ma-
chine Learning.
Dietterich, T. G.; Lathrop, R. H.; and Lozano-Pérez, T. 1997.
Solving the multiple instance problem with axis-parallel
rectangles. Artificial Intell., 89(1): 31–71.
Elinas, P.; Bonilla, E. V.; and Tiao, L. C. 2020. Variational
inference for graph convolutional networks in the absence
of graph data and adversarial settings. In Proc. Adv. Neural
Info. Process. Syst.
Flaxman, S. R.; Wang, Y.-X.; and Smola, A. J. 2015. Who
supported Obama in 2012? Ecological inference through
distribution regression. In Proc. ACM SIGKDD Int. Conf.
Knowl. Discov. and Data Mining.
Gal, Y.; and Ghahramani, Z. 2016. Dropout as a Bayesian
approximation: Representing model uncertainty in deep
learning. In Proc. Int. Conf. Machine Learning.
Gärtner, T.; Flach, P. A.; Kowalczyk, A.; and Smola, A. J.
2002. Multi-instance kernels. In Proc. Int. Conf. Machine
Learning.
Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. In Proc. Adv. Neural
Info. Process. Syst.
Ilse, M.; Tomczak, J.; and Welling, M. 2018. Attention-
based deep multiple instance learning. In Proc. Int. Conf.
Machine Learning.
Jiang, B.; Zhang, Z.; Tang, J.; and Luo, B. 2019. Graph
optimized convolutional networks. arXiv e-prints : arXiv
1904.11883.
Kalofolias, V. 2016. How to learn a graph from smooth sig-
nals. In Proc. Artificial Intell. and Statist.
Kalofolias, V.; and Perraudin, N. 2019. Large scale graph
learning from smooth signals. In Proc. Int. Conf. Learning
Representations.
Kipf, T.; and Welling, M. 2017. Semi-supervised classifica-
tion with graph convolutional networks. In Proc. Int. Conf.
Learning Representations.
Lee, J.; Lee, Y.; Kim, J.; Kosiorek, A. R.; Choi, S.; and Teh,
Y. W. 2019. Set transformer: A framework for attention-
based permutation-invariant neural networks. In Proc. Int.
Conf. Machine Learning.

Liu, G.; Wu, J.; and Zhou, Z.-H. 2012. Key instance detec-
tion in multi-instance learning. In Proc. Asian Conf. Ma-
chine Learning.

Ma, J.; Tang, W.; Zhu, J.; and Mei, Q. 2019. A flexible gen-
erative framework for graph-based semi-supervised learn-
ing. In Proc. Adv. Neural Info. Process. Syst.

Pal, S.; Malekmohammadi, S.; Regol, F.; Zhang, Y.; Xu, Y.;
and Coates, M. 2020. Non-parametric graph learning for
Bayesian graph neural networks. In Proc. Conf. Uncertainty
Artificial Intell.

Pathak, D.; Shelhamer, E.; Long, J.; and Darrell, T. 2015.
Fully convolutional multi-class multiple instance learning.
In Workshop Track Proc. Int. Conf. Learning Representa-
tions.

Quellec, G.; Cazuguel, G.; Cochener, B.; and Lamard, M.
2017. Multiple-instance learning for medical image and
video analysis. IEEE Rev. Biomed. Engineering, 10: 213–
234.

Ramon, J.; and De Raedt, L. 2000. Multi instance neural
networks. In Proc. Workshop Attribute-Value and Relational
Learning, Int. Conf. Machine Learning.

Raykar, V. C.; Krishnapuram, B.; Bi, J.; Dundar, M.; and
Rao, R. B. 2008. Bayesian multiple instance learning: Au-
tomatic feature selection and inductive transfer. In Proc. Int.
Conf. Machine Learning.

Sun, C.; and Lam, K.-M. 2013. Multiple-kernel, multiple-
instance similarity features for efficient visual object detec-
tion. IEEE Tran. Image Process., 22(8): 3050–3061.

Tu, M.; Huang, J.; He, X.; and Zhou, B. 2019. Multiple in-
stance learning with graph neural networks. arXiv preprint:
arXiv 1906.04881.

Valkanas, A.; Regol, F.; and Coates, M. 2020. Learning from
networks of distributions. In Proc. Asilomar Conf. Signals,
Syst. and Comp.

Wan, S.; Pan, S.; Yang, J.; and Gong, C. 2021. Con-
trastive and generative graph convolutional networks for
graph-based semi-supervised learning. In Proc. AAAI Conf.
Artificial Intell.

Wang, X.; Yan, Y.; Tang, P.; Bai, X.; and Liu, W. 2018. Re-
visiting multiple instance neural networks. Pattern Recog-
nition, 74: 15–24.

Wei, X.; Wu, J.; and Zhou, Z. 2017. Scalable algorithms for
multi-instance learning. IEEE Trans. Neural Networks and
Learning Syst., 28(4): 975–987.

Yin, S.; Peng, Q.; Li, H.; Zhang, Z.; You, X.; Liu, H.; Fis-
cher, K.; Furth, S. L.; Tasian, G. E.; and Fan, Y. 2019.
Multi-instance deep learning with graph convolutional neu-
ral networks for diagnosis of kidney diseases using ultra-
sound imaging. In Proc. Uncertain. Safe Utilization Ma-
chine Learning Medical Imaging and Clinical Image-Based
Procedures, 146–154.

Zaheer, M.; Kottur, S.; Ravanbakhsh, S.; Póczos, B.;
Salakhutdinov, R.; and Smola, A. J. 2017. Deep sets. In
Proc. Adv. Neural Info. Process. Syst.

7929

Zeng, H.; Zhou, H.; Srivastava, A.; Kannan, R.; and
Prasanna, V. 2020. GraphSAINT: Graph sampling based in-
ductive learning method. In Proc. Int. Conf. Learning Rep-
resentations.
Zhang, D.; Liu, Y.; Si, L.; Zhang, J.; and Lawrence, R. D.
2011. Multiple instance learning on structured data. In Proc.
Adv. Neural Info. Process. Syst.
Zhang, Q.; and Goldman, S. A. 2001. EM-DD: an improved
multiple-instance learning technique. In Proc. Adv. Neural
Info. Process. Syst.
Zhang, Y.; Pal, S.; Coates, M.; and Üstebay, D. 2019.
Bayesian graph convolutional neural networks for semi-
supervised classification. In Proc. AAAI Conf. Artificial In-
tell.
Zhou, Z.-H.; Sun, Y.-Y.; and Li, Y.-F. 2009. Multi-instance
learning by treating instances as non-i.i.d. samples. In Proc.
Int. Conf. Machine Learning.

7930

