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Abstract
In a large domain of classification problems for real applica-
tions, like human activity recognition, separable spaces be-
tween groups of concepts are easier to learn than each con-
cept alone. This is because the search space biases required
to separate groups of classes (or concepts) are more relevant
than the ones needed to separate classes individually. For ex-
ample, it is easier to learn the activities related to the body
movements group (running, walking) versus ”on-wheels” ac-
tivities group (bicycling, driving a car), before learning more
specific classes inside each of these groups. Despite the ob-
vious interest of this approach, our theoretical analysis shows
a high complexity for finding an exact solution. We propose
in this paper an original approach based on the association of
clustering and classification approaches to overcome this lim-
itation. We propose a better approach to learn the concepts by
grouping classes recursively rather than learning them class
by class. We introduce an effective greedy algorithm and
two theoretical measures, namely cohesion and dispersion, to
evaluate the connection between the clusters and the classes.
Extensive experiments on the SHL dataset show that our ap-
proach improves classification performances while reducing
the number of instances used to learn each concept.

Introduction
In Internet of Things and particularly human activity recog-
nition (HAR), concepts (or activities) naturally intermin-
gle and the boundaries are not evident, e.g., the transition
from the concept walking to running remains blurred. These
phenomena are accentuated by the sensors capabilities and
the perspectives (views) through which the data is collected
(position in space, position on the body, sensor character-
istics) (Aghajan and Cavallaro 2009; Hamidi and Osmani
2020). Incomplete or redundant perspectives can lead to fur-
ther confuse the concepts between them and to reduce the
performance of the learning process. Beyond the dependen-
cies (overlap) relating to the perspectives provided by the
deployments of sensors, the phenomena themselves and the
concepts which compose them often exhibit intrinsic depen-
dencies (Silla and Freitas 2011; Essaidi, Osmani, and Rou-
veirol 2015; Hamidi and Osmani 2021).

We find that some concepts are easier to distinguish when
grouped with other concepts than when each one is learned
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on its own. For instance, if we consider analyzing human
activities through the accelerometer and heart rate, it is first
easier to separate all activities (concepts) into two main
classes, e.g., body required movements versus others move-
ments, instead of separating the activities between these two
general classes. This general observation shows that induc-
tive biases needed to separate homogeneous groups of con-
cepts recursively give better results and build hierarchical
concept structure between concepts. We propose an original
approach for structuring the considered concepts into hierar-
chies so that very similar concepts are grouped together and
tackled by specialized classifiers. The idea is that classifica-
tion at different levels of the hierarchy may rely on different
features or different combinations of the same features (Os-
mani, Hamidi, and Alizadeh 2021; Yao et al. 2019). Indeed,
many real-world classification problems are naturally cast
as hierarchical classification problems (Cai and Hofmann
2004; Wehrmann, Cerri, and Barros 2018; Yao et al. 2019;
Zhou, Xiao, and Wu 2011; Hamidi, Osmani, and Alizadeh
2020). A work on the semantic relationships between cat-
egories in a hierarchical structure shows that they are usu-
ally of the type generalization-specialization (Zhou, Xiao,
and Wu 2011). In other words, the lower-level categories are
supposed to have the same general properties as the higher-
level categories plus additional more specific properties.

The problem at hand is twice difficult as we have to, first,
find the most appropriate hierarchical structure and, sec-
ond, find optimal learners assigned to the nodes of the hi-
erarchical structure. Some works have tackled this problem
by exploiting a priori knowledge and structures of the do-
main (Samie, Bauer, and Henkel 2020; Scheurer et al. 2020).
However, such a priori knowledge is not always available. A
naive approach consists in building all the combinations of
concepts to check for which groups of classes the quality
of the learning is optimal and to start again recursively this
approach until the concepts are totally separated from each
other. However, this approach faces the combinatorial explo-
sion of the number of cases that should be treated (see § for
more details on the complexity analysis).

To overcome this complexity limitation, we propose an
original approach combining clustering and classification
on groups of concepts based on two original measures be-
tween concepts, namely cohesion and dispersion, optimized
throughout the process until the derivation of an optimal
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learning hierarchy. We design a set of training strategies in-
spired by meta-learning, used to adjust the weights of the
learners assigned to the nodes of the hierarchy. The pro-
posed training strategies are specifically designed to lever-
age the hierarchical structure of the learning process and
to reduce the amount of supervision required in low-data
regimes. It allows a substantial decrease in the number of
required learning examples in order to achieve comparable,
sometimes better recognition performances compared to the
full-data regime and flat classification setting.

The main contributions of this paper are summarized
as follows. (1) We propose two novel measures (disper-
sion and cohesion) to assess the quality of clustering so-
lutions regarding concepts separability. (2) We propose an
efficient clustering-based classification approach combined
with training strategies that leverage the tree structure to im-
prove the learning process. The components of the proposed
approach, including the theoretical complexity of the hierar-
chical learning problem, which is substantially reduced, are
analyzed. (3) Extensive experiments are conducted on three
HAR datasets to assess the effectiveness and efficiency of
our proposed approach. The notion of inductive biases in-
heritance in the hierarchy of concepts being derived is also
investigated. Furthermore, we empirically analyze the no-
tion of intrinsic concept dependency and its relativity w.r.t.
to the various perspectives (views) provided by the sensors
deployments and how the proposed measures capture these
two kinds of dependency.

Problem Statement
The main idea of this paper comes from the fact that the con-
cepts to be learned are not totally independent, as is the case
in human activity recognition where, for example, learning
the concept running is closer to learning the concept walk-
ing than learning the concept still. Thus, grouping some con-
cepts to learn them against other groups of concepts, using
more adapted biases or characteristics, can considerably im-
prove the learning process quality for each concept.

Let H be a hypothesis space, A = {A1, . . . , An} a
set of atomic concepts to learn, and an input space X .
The mapping between the input space and the set of con-
cepts is described by a set of instances (labelled exam-
ples) E = {e1, . . . , em}, where each instance ei is de-
fined as a couple (Xi, Ai) with Xi ∈ X and Ai ∈ A.
The main goal is to find an optimal hypothesis (or theory)
h∗ ∈ H able to explain the instances (or the mapping be-
tween the input space and the set of concepts). This goal
corresponds to minimizing the empirical risk Remp(h), i.e.,
h∗ = argminh∈HRemp(h), which is computed by averag-
ing a given loss function ` on the set of instances as follows:
Remp(h) =

1
|X |
∑
i `(h(Xi), Ai)

1.

1In the HAR considered applications, activity recognition is ad-
dressed according the following predefined chain (Bulling, Blanke,
and Schiele 2014): the labelled examples generated from the sen-
sors are (1) segmented into short sequences; which are (2) pre-
processed; and (3) from which discriminative features are ex-
tracted; (4) before being fed into a machine learning algorithm re-
sponsible of finding the mapping towards the activities (concepts).

In this paper, we show that for a given specific a pri-
ori knowledge on the concepts to learn, the quality of the
learned hypothesis improves by grouping the concepts recur-
sively. We assume that atomic concepts are not decompos-
able, i.e., ∀i 6= j ∈ {1, . . . , n}, Ai 6⊂ Aj), and any group
of concepts GAi is a subset of A. Since the atomic con-
cepts have partial dependencies in many cases, a top-down
approach tries to structure the atomic concepts into different
combinations and based on different biases. It gives a better
loss function than the one used in the flat case. This idea is
close to the decision tree (Quinlan 1986) but more general. It
is applied to the separability of the groups of concepts rather
than to atomic concepts. This formalization extends the idea
presented in (Kosmopoulos et al. 2015) which defines a three
dimensions setting: (1) single-label classification as opposed
to multi-label classification; (2) concepts are organized into
trees as opposed to directed acyclic graphs; (3) instances are
classified into leaves (mandatory leaf node prediction (Silla
and Freitas 2011)), as opposed to the setting where instances
can be classified into any node of the hierarchy. One of the
main problems to solve, in this case, is finding the best tree
structure of groups of concepts to learn together in order to
optimize the learning rate of each atomic concept. However,
the complexity of this problem is prohibitive:
Theorem 1. Let L(n) be the total number of trees for the
n atomic concepts. The search space size for these concepts
satisfies a recurrence relation defined as:

L(n) =

(
n− 1

n− 2

)
L(n−1)L(1)+2

n−3∑
i=0

(
n

i

)
L(i+1)L(n−i−1)

Proof. See the Supplementary Material.

Because of the exponential size of the search space,
the exact approaches cannot tackle this problem in terms
of time/space complexity for large sets of (fine or
coarse-grained) concepts like those featured by the SHL
dataset (Gjoreski et al. 2018), which we consider throughout
the paper as a running example to illustrate the problem and
the proposed approach on a concrete real-world example. In
this dataset for example, with 8 coarse-grained concepts, the
size of the search space is L(8) = 660, 032.

To take advantage of the power of this search space traver-
sal approach and to avoid combinatorial explosion, we will
detail our clustering-based approach for selecting the best
concept group structure.

Proposed Approach
In several applications, it is more convenient to consider that
the biases used to separate groups of classes is different from
those used to separate classes in each group. However, as
shown in the previous section, this formulation of the learn-
ing problem is prohibitive in its original form. To overcome
this limitation, we propose an original approach based on a
sequence of recursive clustering steps to guide the choice of
appropriate groups of concepts and corresponding learning
biases. In this section, we detail the different parts of our
approach which are illustrated in Figure 1.
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Figure 1: Framework of the proposed approach. Based on the dispersion and cohesion score obtained for each cluster, the best
clustering solution is selected (step 0) and the process is repeated recursively on each group of concepts within the selected
clustering solution (subsequent steps 1, 2, etc.). The process ends as soon as we get individual concepts on the leaves of the
decomposition hierarchy. The final hierarchy is assigned with specialized learners at every non-leaf node, which are trained on
the groups of concepts within its descendant leaves.

Clust# still walk run bike car bus train subway Cohes.

C1 15 0 3 12 1 3 0 6 0.20
C2 8 50 45 3 2 2 6 7 0.42
C3 12 3 1 19 1 0 5 9 0.228
C4 5 2 2 9 18 20 51 45 0.376

Disp. 0.75 1 1 0.75 1 1 1 1

Table 1: Distribution of the instances within a clustering
solution containing 4 clusters. The corresponding cohesion
(cohes.) and dispersion (disp.) scores are depicted.

Dispersion and Cohesion Measures
Let A be the set of concepts we want to learn on the input
space X . Let’s also consider C = {C1, . . . , Cm}, a cluster-
ing result (or solution) obtained in an unsupervised setting
(using only the input features Xi of the instances). Instances
of the same concept may be grouped in distinct clusters of
the clustering solution. This clustering result can be repre-
sented as G = (A, C, E) a bipartite graph whose partition
has the parts A (the classification domain) and C (the clus-
tering domain), with E denoting the edges of the graph (see
Figure 1). Each edge eij ∈ E represents the percentage of
the instances from the input space X in class Ai, properly
covered by the cluster Cj . As a consequence the basic nor-
malization property holds: ∀ 1 ≤ i ≤ n,

∑m
j=1 eij = 1.

Clustering on the Running Example. Let’s consider a
small subset from the SHL dataset containing 365 instances
distributed as follows: still (a1): 40, walk (a2): 55, run (a3):
51, bike (a4): 43, car (a5): 22, bus (a6): 25, train (a7): 62,
subway (a8): 67. Table 1 illustrates the distribution of the
instances within a single clustering solution.

We define two measures, namely dispersion and cohesion
between clusters and classes. The main idea is to evaluate
how a given clustering result (obtained in an unsupervised

manner) captures the dependencies between the considered
concepts (or the assigned labels according to the labeling
process used in the dataset). The goal is to use the clustering
result to select the best groups of concepts in a way that they
can be separated effectively by means of concepts cohesion
and dispersion. The subsequent learning steps are applied on
these groups of concepts.
Definition 1 (Dispersion ψ). The dispersion of a class Ai
related to a clusterCj denoted as ψij defines how the cluster
Cj represents the class Ai. ψij measures the distribution of
the instances labeled as Ai in the Cj ∈ C clustering.

There exist different approaches for defining the class dis-
tribution in each cluster. However, in this paper, we consider
the basic oneψij = eij . We denote this distribution withψij .
Consequently, the Ai instances distribution w.r.t. the C clus-
tering should satisfy the following boundaries for the worst
and the best cases:

ψC(Ai) =

{
0 if ∀j ∈ {1, . . . ,m} ψij < 1

m + ε

1 if ∃j ∈ {1, . . . ,m} ψij ≥ 1− ε
where ε is the given small value. If for each class Ai,
ψC(Ai) = 0, then the dispersion is total and no cluster repre-
sents this class. However, if ψC(Ai) = 1 because of ψiw ∼ 1
then the cluster Cw represents totally the class Ai.

The dispersion measure can be computed in several ways.
In fact, if a given concept is represented by a clustering so-
lution, it can be measured using statistical or a priori known
properties. We propose here a simple measure defined as fol-
lows. Assume a class Ai and a cluster Cj in the clustering
result C, for a given threshold α are given. We define R as
an auxiliary measure for the dispersion as following:

R(Ai, Cj) =

{
1 ψij >

α
m , (Assume 1 ≤ α ≤ m)

0 otherwise

With these simplifications, we can define the dispersion
measure between the clustering result C and a given class
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Ai as:

ψC(Ai) =

{
1−

∑j=m
j=1 R(Ai,Cj)−1

m
if
∑j=m

j=1 R(Ai, Cj) 6= 0

0 Otherwise
(1)

And finally, the dispersion between the classification result
and the clustering one can be defined as follow:

ψC(A1, · · ·An) =
1

n

n∑
i=1

ψC(Ai) (2)

Dispersion on the Running Example. In Table 1, the dis-
persion score of each given concept w.r.t. the clustering re-
sults is computed using equation 1 and α = 1. Based on
the table, concepts still and bike have a dispersion score less
than 1, because their instances are distributed widely across
the different clusters than it is the case for the other con-
cepts. The lower the dispersion scores are, the more difficult
to handle for the next level of the hierarchy. According to
equation 2, the total dispersion is ψC(a1, . . . , a8) = 0.937.
Definition 2 (Cohesion φ). The cohesion of classes
A1, . . . , An w.r.t. to a given clustering C measures the co-
appearance of classes together in each cluster.

This measure satisfies the following conditions for the
worst and best cases:
φC(A1, .., An) ={
1 if ∀c, d, i ∈ {1..k} |ψic − ψid| = ±ε
0 if ∀c, d ∈ {1..k}, ∃i ∈ {1..m} |ψic − ψid| = 1± ε

where ε is a given small value. From statistical point of
view, there exist several possibilities to compute the dis-
persion measure. The following one gives the empirical
and more simplest one. For a given cluster Cl ∈ C
(where |C| = m), the cohesion of two classes is computed

as: φCl
(Ai, Aj) =

min(ψil, ψjl)
max(ψil, ψjl)

. Accordingly, the simplest

cohesion expression between two given classes can be writ-
ten:

φC(Ai, Aj) =

∑l=m
l=1 φCl

(Ai, Aj)

m
(3)

And finally, the cohesion of a given set of concepts as
{A1, . . . , Ai} w.r.t. a cluster C ∈ C and clustering C (where
|C| = m), are computed as following respectively:

φCj
(A1, . . . , Ai) =

1

i(i− 1)

i−1∑
k=1

i∑
l=k+1

φCj
(Ak, Al)

φC(A1, .., Ai) =
1

m

l=m∑
l=1

1

i(i− 1)

i−1∑
k=1

i∑
j=k+1

φCl(Ak, Aj) (4)

Cohesion on the running example. The pairwise cohe-
sion scores for the given clustering example φC(ai, aj), can
be computed using equation 3 as in Table 1. The cohesion
score of all concepts w.r.t. the clusters, i.e. φCi(a1, . . . , a8)
is computed in Table 1. The table 1 also shows that for this
application it is interesting to learn the following concepts
together: still and bike (Clusters C1 and C3), walk and run
(C2), and car, bus, train, and subway (C4). This corresponds
to clear semantic biases learned during clustering step and
not explicitly introduced.

Algorithm 1: computeHierarchy

Input : (i) E = {(Xi, Ai)}|E|i=1 set of annotated
training examples; (ii) A = {A1, . . . , An}
denotes the set of concepts; (iii) Distance
measure D to compute the linkage

1 D ← { } ; % set of clustering results
2 for t ∈ 2, . . . , |A| − 1 do
3 C = {C(1), . . . , C(t)} ← cluster(X , D)
4 Compute dispersion ψC(A) ; % using Eqn. 2
5 Compute cohesion φC(A) ; % using Eqn. 4
6 D ← D ∪ {(C, ψC , φC)}
7 end
8 C∗ ← bestClustering(D) ; % using Eqn. 5
9 foreach C ∈ C∗ do

10 A ← getClasses(C)
11 X ← getData(A)
12 if |A| = 1 then
13 Childi ← A ; % ith child of the current node
14 else
15 Childi ← computeHierarchy(X ,A)
16 end
17 end

Result: Hierarchy T

Hierarchy Derivation and Optimization
Thanks to the two proposed measures, it is no longer nec-
essary to enumerate and evaluate all the possible groupings
of the search space. This task is delegated to the clustering
problem. Therefore, the problem can be reformulated as the
search for the best clustering that generates the best group-
ing of classes. Algorithm 1 describes the recursive process
of hierarchy construction from the set of concepts and an-
notated training examples. It proceeds recursively: given the
set of annotated examples X and the set of concepts A con-
sidered at a given node of the hierarchy (starting from the
root), the algorithm computes different clustering solutions
for a varying number of clusters (from 2 to |A| − 1, the two
other extremes being obviously useless). To select the best
clustering solution, a natural optimization model based on
the two proposed measures can be stated as:

maxC γ1 ∗ ψC(A1, . . . , An) + γ2 ∗ φC(A1, . . . , An) (5)

where γ1 and γ2 are additional parameters controlling the
trade-off between dispersion and cohesion. This optimiza-
tion model depends on the selected clustering method and
its related distance measure.

Leveraging the Hierarchy for Efficient Training
The non-leaf nodes of the derived hierarchy are assigned
with learners trained to discriminate between the concepts
or groups of concepts found within their descendant leaves.
This implies a bi-level optimization problem with C (the
clustering solution at each step) and w (the weights assigned
to the non-leaf nodes of the derived hierarchy) as the in-
ner optimization problem. Evaluating the learners’ weights
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Algorithm 2: Hierarchy training

Input : (i) E = {(Xi, Ai)}|E|i=1 set of annotated
training examples

1 T ← computeHierarchy(X ,A) ; % Algorithm 1
2 Tθ1,...,θt ← initialize() ; % Initialize the weights of

the learners assigned to the hierarchy
3 while not done do
4 foreach θt do
5 Let the super-scripted concepts, A(t) ∈ A(t),

be those grouped in node t
6 Sample mini-batch from {(Xi, A

(t)
i )}nt

i=1
7 Evaluate∇θt`(θt) with respect to the

mini-batch
8 Compute adapted parameters with gradient

descent: θ′t = θt − η∇θt`(θt)
9 Select examples with high(low) entropy for

the descendants ; % See suppl.
10 end
11 end

Result: Trained hierarchy Tθ∗1 ,...,θ∗t

exactly can be prohibitive due to the expensive inner opti-
mization. Here we propose a simple approximation scheme.
We take advantage of the structuring of learners and the in-
heritance property of inductive biases in hierarchies to ef-
fectively drive the learning process by circumscribing the
search space for each group of concepts. The idea is to
approximate the weights by selecting the most appropriate
learning examples to train with the learners of the subse-
quent levels in the hierarchy, without solving the inner op-
timization completely until convergence. We investigate for
this, two strategies that are designed to improve the learning
process, namely, (1) boosting strategy: the hard examples
are weighted so that the learners located in the descendant
nodes focus on them; (2) student-teacher strategy (Hinton,
Vinyals, and Dean 2015): the easy-to-classify examples are
selected for training the subsequent learners. We use an addi-
tional parameter (temperature ∈ (0, 1)) which decides how
hard or easy is it to classify the examples. Algorithm 2 de-
tails the learning process in each node of the derived hierar-
chy (see § B.2 for full algorithm).

Regarding the class predictions, in classical multi-label
classification settings, these can be done in non-leaf
nodes (Bi and Kwok 2012; Silla and Freitas 2011). In our
case, we use leaf-mandatory classification, i.e., the exam-
ples are assigned to an atomic concept (leaf of the hierar-
chy). Pseudocode describing how predictions are performed
given the trained hierarchy can be found in the supplemen-
tary material (§ B.3).

Experiments and Results
The empirical evaluation of our approach is organized into
three axes: (1) we evaluate the recognition performances of
the derived hierarchies; (2) we evaluate the impact of the
proposed measures on the derived hierarchies and the sepa-
rability of the considered concepts; finally, (3) we provide a

preliminary assessment of the interplay of inductive biases
inside the derived hierarchies via the analysis of the impor-
tance of the learners’ hyperparameters 2. All training details,
hyperparameters, and their sensitivity analysis can be found
in the code repository and supplementary materials (see § C
and § D).

Experimental Setup
Representative Related Datasets. We use in our exper-
iments, primarily, the SHL dataset which consists of mo-
tion sensor data. It is a highly versatile annotated dataset
dedicated to mobility-related human activity recognition. It
was recorded over a period of 7 months in 2017 in 8 differ-
ent modes of transportation in real-life setting in the United
Kingdom (0:Still, 1:Walk, 2:Run, 3:Bike, 4:Car, 5:Bus,
6:Train, and 7:Subway). The dataset contains multi-modal
data from a body-worn camera and from 4 smartphones, car-
ried simultaneously at typical body locations (Hand, Torso,
Hips, and Bag). The SHL dataset contains 3000 hours of la-
beled locomotion data in total making it the most important
in the literature. It includes 16 modalities such as accelerom-
eter, gyroscope, magnetometer, linear acceleration, orienta-
tion, gravity, ambient pressure, cellular networks, etc. For
comparison, we also evaluate our proposed approach on two
additional representative datasets, the USC-HAD and HTC-
TMD. More details about these datasets can be found in the
supplementary material.
• USC-HAD (Zhang and Sawchuk 2012) containing body-

motion modalities of 12 daily activities collected from
14 subjects (7 male, 7 female) using MotionNode, a 6-
DOF inertial measurement unit, that integrates a 3-axis
accelerometer, 3-axis gyroscope, and a 3-axis magne-
tometer;

• HTC-TMD (Yu et al. 2014) containing accelerometer,
gyroscope, and magnetometer data all sampled at 30Hz
from smartphone built-in sensors in the context of energy
footprint reduction;

Baselines. we evaluate the flat classification setting using
neural networks which constitute our baseline for the rest
of the empirical evaluations. To compare our baseline with
the proposed hierarchical model, we make sure to get the
same complexity, i.e., comparable number of parameters as
the largest hierarchies including the weights of the learn-
ers. We also use Bayesian optimization based on Gaussian
processes as surrogate models to select the optimal hyper-
parameters of the baseline model (Snoek, Larochelle, and
Adams 2012; Osmani and Hamidi 2019). In addition, we
compare our proposed approach with the following closely
related baselines from the HAR literature:
• DeepConvLSTM (Ordóñez and Roggen 2016): a state-

of-the-art HAR model encompassing 4 convolutional
layers responsible of extracting features from the sensory
inputs and 2 long short-term memory (LSTM) cells used
to capture their temporal dependence.

2Software package and code to reproduce empirical results is
publicly available and can be found at https://github.com/sensor-
rich/clustering-based-HL
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Model USC-HAD HTC-TMD SHL

DeepConvLSTM 65.8±.0028 68.2±.0016 65.3±.012
DeepSense 67.0±.017 68.5±.0032 66.5±.005
AttnSense 68.5±.04 70.1±.005 68.4±.002

Feature fusion 67.2±.001 69.2±.0074 66.8±.0042
Corr. align. 69.5±.004 70.5±.0026 69.1±.06

Proposed 71.8±.001 74.5±.0017 73.7±.006

Table 2: Recognition performances of various state-of-the-
art models on different representative related datasets.
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Figure 2: (a) Per-node performance gains, averaged over the
entire derived architectures (similar nodes are grouped and
their performances are averaged). The appearance frequency
of the nodes is also illustrated. (b) The amount of supervi-
sion used while training the learners of the hierarchies with
the proposed training strategies.

• DeepSense (Yao et al. 2017): a variant of the DeepCon-
vLSTM model combining convolutional and a Gated Re-
current Units (GRU) in place of the LSTM cells.

• AttnSense (Ma et al. 2019): features an additional atten-
tion mechanism on top of the DeepSense model forcing
it to capture the most prominent sensory inputs both in
the space and time domains and focus on them to make
the final predictions.

We use the meta-segmented cross-validation (Hammerla and
Plötz 2015) for model evaluation to alleviate the problem
of neighborhood bias and performance over-estimation. Ad-
ditional details on the evaluation setup and implementation
can be found in the supplementary material (§ E).

Performances of the Derived Hierarchies
Table 2 compare the recognition performances obtained
with the baseline models on the considered representative
datasets. As shown in the table, our proposed approach per-
forms well on the three considered datasets. Note also that
performance of the related baselines as reported in the liter-
ature confirm the significant issues, analyzed in (Hammerla
and Plötz 2015), when using regular cross-validation which
are likely leading to overly optimistic performance.

Training the Learners Assigned to the Hierarchy. Fig-
ure 2 shows the resulting per-node performances averaged
over the entire derived hierarchies, i.e., how accurately the
learners assigned to the non-leaf nodes can predict the cor-
rect groups of concepts associated to them. Each bar in the
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Figure 3: (a) Link between the proposed measures (x-axis)
and the properties (depth and arity) of the derived hier-
archies (y-axis). The final per-concept recognition perfor-
mances is also depicted with varying colors. (b) One of the
derived hierarchies corresponding to the arrow in the left.

figure represents the gained accuracy of each node in our hi-
erarchical approach. For example, the 8th bar corresponds
to the concepts 2:walk-3:run-4:bike grouped together. Fig-
ure 2b illustrates the amount of supervision on average used
at each node of the derived hierarchies using different train-
ing strategies (See Algorithm 2). For reference, the amount
of supervision required in the regular learning setting is il-
lustrated. The amounts of supervision illustrated in the hi-
erarchical learning settings are those required to attain a
comparable accuracy with the regular learning setting. In
addition, the amount of supervision is also assessed on (i)
randomly picked hierarchies, (ii) the set of domain expert-
defined hierarchies, and (iii) hierarchies derived using the
approach defined in (Osmani, Hamidi, and Alizadeh 2021),
which is based on the transfer-affinity between concepts to
build the hierarchies. It is worth noticing that the hierarchies
derived using our proposed approach achieve competitive
performances while using far less training examples (ap-
prox. 2×10−3 examples) compared to the other hierarchies.
This suggests that the concepts grouping proposed by our
measures reflects the actual concepts dependence exhibited
in the data. On the other hand, the need for supervision is
more pronounced when using the regular training strategy.

Proposed Measures and Concept Separability
Here we study the correlation between the proposed mea-
sures (cohesion and dispersion) and the separability of the
grouped concepts. How do the measures of cohesion and
dispersion change when we go down the hierarchy? And
above all, what is the impact of all this on the derived hi-
erarchies? Are they deeper, i.e., are the best clustering so-
lutions the ones that very quickly decompose the groups of
concepts into atomic ones? Or, on the contrary, those which
try to keep the concepts grouped until the leaves? How does
this affect the learning of groups? How does this ultimately
affect the recognition of atomic concepts? Which concepts
really benefit from being grouped together? And, which con-
cepts benefit from being rather learned on their own? We as-
sess some of these questions here (see § G for more results).

Figure 3, illustrates the link between the proposed mea-
sures and the properties of the derived hierarchies in terms
of depth and arity along with the final per-concept recog-
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Groups of concepts
Hyperparam. [0][1-7] [1,2,3][4-7] [1][2][3] [4][5][6][7]

First layer
Kernel size 0.496 0.021 0.026 0.079
# of filters 0.325 0.078 0.014 0.124
Stride 0.852 0.745 0.752 0.664

Second layer
Kernel size 0.147 0.578 0.454 0.125
# of filters 0.452 0.327 0.273 0.368
Stride 0.662 0.491 0.765 0.054

Third layer
Kernel size 0.654 0.584 0.027 0.041
# of filters 0.076 0.025 0.581 0.031
Stride 0.324 0.558 0.754 0.017

Table 3: Hyperparameters’ importance obtained through the
fANOVA analysis of the hierarchy depicted in Figure 3.

nition performances. We particularly focus on the effect of
various scores of the cohesion and dispersion measures on
the derived hierarchies and what does this imply in terms of
concepts grouping and how accurately the atomic concepts
are recognized. In theory, optimal hierarchies would be those
keeping the concepts grouped while going down the hier-
archy, which result in deeper hierarchies in a way that the
biases of groups are leveraged to a greater extent. Indeed,
this is what we can see for high values of the optimized
measures (≥ 0.8), where we get a fairly large number of
deep hierarchies which are accompanied by fair recognition
performances (approx. 70%). An increase in the computed
measures results in a slight augmentation in the recognition
performances globally.

Hyperparameters and Inductive Biases
The hierarchical structuring of the concepts allows us to
circumscribe the search space for each group of concepts.
The bias learned at each non-leaf node is consequently more
adapted to each group. However, one question that remains
unclear and could open room for further improvement is the
link between these various biases. In other words, is there a
way to go beyond and structure the biases such that a given
learner can share them with its descendent in the hierarchy?
Indeed, various works touched this aspect from the opera-
tional point of view, such as (Torralba, Murphy, and Freeman
2007; Zhou, Xiao, and Wu 2011) which leveraged transfer
of orthogonal representation between children and parents in
hierarchies and (Osmani, Hamidi, and Alizadeh 2021) where
authors used transfer-affinity between concepts and groups
of concepts, but this time to simultaneously build the hierar-
chy of concepts.

An interesting way to tackle this question is related to
the works around weight-agnostic neural architectures and
those around the interpretation of the hyperparameters as in-
ductive biases (Lukoševičius and Jaeger 2009; Frankle and
Carbin 2018; Gaier and Ha 2019). Here, we provide a solu-
tion to investigate the link between the inductive biases used
by the learners assigned to one of the derived hierarchies.

For this, we design an experimental setting in which the
architectures (hyperparameters) of the learners assigned to
the non-leaf nodes are optimized in a weight-agnostic fash-
ion. This learning paradigm allows us to shift the focus from
the set of weights towards the hyperparameters of the archi-
tectures. In a second step, we perform hyperparameter im-
portance assessment following the methodology in (Hutter,
Hoos, and Leyton-Brown 2014; Osmani and Hamidi 2018;
Hamidi and Osmani 2020) in order to check how inductive
biases behave in the learned hierarchy of concepts.

Table 3 summarizes the obtained results from the hyper-
parameters assessment process. It illustrates the importance
of each of the optimized hyperparameters at each node of
the considered hierarchy. In particular, among the optimized
hyperparameters that define the architecture of the learners
assigned to the hierarchy, there are the kernel size, number
of filters, and stride of convolution-base neural network lay-
ers. Their predefined ranges can be found in the code repos-
itory. It is worth noting the appearance, at each level of the
hierarchy, of a specific set of hyperparameters that exhibit
high importance as captured by the fANOVA framework.
In particular, the stride of all three layers has the highest
importance among this set. This hyperparameter determines
the portion of the signal the convolution layers process at
a time. The size of this portion is specific to each group of
concepts, e.g., smaller for dynamic activities and bigger for
static ones.

Conclusion and Perspectives
This paper presents an original approach to deal with the
complexity of the hierarchical dependent concepts. The pro-
posed approach starts by clustering groups of atomic con-
cepts close enough to be learned together using cohesion
and dispersion measures. The clustering approach reduces
substantially the number of tree candidates for grouping the
atomic concepts. Empirical evaluations demonstrated supe-
rior results using the hierarchies derived using our proposed
approach on a dataset collected in real-life settings, which is
susceptible to concepts overlaps (in addition to the intrinsic
multi-inheritance of the featured concepts). The proposed
approach allows us to reduce drastically the exponential the-
oretical complexity of basic hierarchical learning settings.

Even if the hierarchical structuring of the concepts al-
lows us to circumscribe the search space for each group
of concepts and consequently get inductive biases that are
more adapted to each group, the proposed model can be fur-
ther improved to get even better results on the final atomic
concepts while using less supervision. As started to be an-
alyzed and discussed in our experiments and explored in
some works such as (Torralba, Murphy, and Freeman 2007;
Zhou, Xiao, and Wu 2011), the inductive biases learned at
each node of the hierarchy can be exhibited and leveraged
in a way that some aspects will no longer require to be
learned again from scratch. Furthermore, model improve-
ment includes also making the whole process trainable in an
end-to-end fashion, which involves formulating the cluster-
ing and hierarchy derivation steps in a continuous relaxation
scheme.
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Ordóñez, F. J.; and Roggen, D. 2016. Deep convolutional
and lstm recurrent neural networks for multimodal wearable
activity recognition. Sensors, 16(1): 115.
Osmani, A.; and Hamidi, M. 2018. Hybrid and convolu-
tional neural networks for locomotion recognition. In Pro-
ceedings of the ACM International Joint Conference on Per-
vasive and Ubiquitous Computing Adjunct, 1531–1540.
Osmani, A.; and Hamidi, M. 2019. Bayesian Optimization
of Neural Architectures for Human Activity Recognition. In
Human Activity Sensing, 171–195. Springer.
Osmani, A.; Hamidi, M.; and Alizadeh, P. 2021. Hierar-
chical Learning of Dependent Concepts for Human Activity
Recognition. In Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining. Springer.
Quinlan, J. R. 1986. Induction of decision trees. Machine
learning, 1(1): 81–106.
Samie, F.; Bauer, L.; and Henkel, J. 2020. Hierarchical Clas-
sification for Constrained IoT Devices: A Case Study on Hu-
man Activity Recognition. IEEE Internet of Things Journal.
Scheurer, S.; Tedesco, S.; Brown, K. N.; and O’Flynn, B.
2020. Using domain knowledge for interpretable and com-
petitive multi-class human activity recognition. Sensors,
20(4): 1208.
Silla, C. N.; and Freitas, A. A. 2011. A survey of hierarchi-
cal classification across different application domains. Data
Mining and Knowledge Discovery, 22(1-2): 31–72.
Snoek, J.; Larochelle, H.; and Adams, R. P. 2012. Practical
bayesian optimization of machine learning algorithms. In
Advances in Neural Information Processing Systems, 2951–
2959.
Torralba, A.; Murphy, K. P.; and Freeman, W. T. 2007. Shar-
ing visual features for multiclass and multiview object detec-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 29(5): 854–869.
Wehrmann, J.; Cerri, R.; and Barros, R. 2018. Hierarchical
multi-label classification networks. In International Confer-
ence on Machine Learning, 5075–5084.
Yao, H.; Wei, Y.; Huang, J.; and Li, Z. 2019. Hierarchically
Structured Meta-learning. In Proceedings of the Interna-
tional Conference on Machine Learning, 7045–7054.
Yao, S.; Hu, S.; Zhao, Y.; Zhang, A.; and Abdelzaher, T.
2017. Deepsense: A unified deep learning framework for
time-series mobile sensing data processing. In Proceedings
of the International Conference on World Wide Web, 351–
360.
Yu, M.-C.; Yu, T.; Wang, S.-C.; Lin, C.-J.; and Chang, E. Y.
2014. Big data small footprint: the design of a low-power

7911



classifier for detecting transportation modes. Proceedings of
the VLDB Endowment, 7(13): 1429–1440.
Zhang, M.; and Sawchuk, A. A. 2012. USC-HAD: a daily
activity dataset for ubiquitous activity recognition using
wearable sensors. In Proceedings of the ACM International
Joint Conference on Pervasive and Ubiquitous Computing,
1036–1043.
Zhou, D.; Xiao, L.; and Wu, M. 2011. Hierarchical classifi-
cation via orthogonal transfer. In Proceedings of the Inter-
national Conference on Machine Learning, 801–808.

7912


