
Out of Distribution Data Detection Using Dropout Bayesian Neural Networks

Andre T. Nguyen,1,2,3 Fred Lu,1,2,3 Gary Lopez Munoz,1,2 Edward Raff,1,2,3 Charles Nicholas,3
James Holt1

1Laboratory for Physical Sciences
2Booz Allen Hamilton

3University of Maryland, Baltimore County
andre@lps.umd.edu, lu_fred@bah.com, dlmgary@lps.umd.edu, edraff@lps.umd.edu, nicholas@umbc.edu, holt@lps.umd.edu

Abstract

We explore the utility of information contained within a
dropout based Bayesian neural network (BNN) for the task
of detecting out of distribution (OOD) data. We first show
how previous attempts to leverage the randomized embed-
dings induced by the intermediate layers of a dropout BNN
can fail due to the distance metric used. We introduce an alter-
native approach to measuring embedding uncertainty, justify
its use theoretically, and demonstrate how incorporating em-
bedding uncertainty improves OOD data identification across
three tasks: image classification, language classification, and
malware detection.

1 Introduction
Detecting out of distribution (OOD) data at test time is critical
in a variety of machine learning applications. For example,
in the context of malware classification (Raff and Nicholas
2020), OOD data could correspond to the emergence of a new
form of malicious attack. Gal and Ghahramani (2016b) devel-
oped an approach to variational inference in Bayesian neural
networks (BNNs) that showed a neural network with dropout
(Hinton et al. 2012; Srivastava et al. 2014), a technique com-
monly used to reduce overfitting in neural networks (NNs) by
randomly dropping units during training, applied before ev-
ery weight layer is equivalent to an approximation of a deep
Gaussian process (Damianou and Lawrence 2013). Training
with dropout effectively performs variational inference for
the deep Gaussian process model, and the posterior distribu-
tion can be sampled from by leaving dropout on at test time.
This approach to Bayesian deep learning has been popular in
practice as it is easy to implement and scales well.

Measures of uncertainty usually are a function of the sam-
pled softmax outputs of such a BNN, for example predictive
entropy and mutual information. There is however useful in-
formation at every intermediate layer of a dropout BNN. The
dropout based approach to Bayesian deep learning suffers,
like most variational inference methods, from the tendency
to fit an approximation to a local mode instead of to the full
posterior because of a lack of representational capacity and
because of the directionality of the KL divergence (Smith
and Gal 2018; Wilson and Izmailov 2020). This behavior

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

however allows us to expect the randomized intermediate
representation samples in a dropout BNN to be meaningfully
related as they are sampled from a local mode. In this paper,
we explore how to leverage additional information generated
at every layer of the network for the task of OOD data detec-
tion at test time. In particular, we interpret the intermediate
representation of a data point at a particular layer as a ran-
domized embedding. The embedding is randomized due to
the use of dropout at test time.

The idea to use a randomized embedding induced by the
intermediate layers of a dropout BNN has been attempted pre-
viously, but can fail due to the underlying Euclidean distance
metric used in previous work. The use of Euclidean distance
does not account for the confounding variability caused by
changes in embedding magnitudes. We will theoretically jus-
tify and empirically show that by instead using a measure
based on cosine distance, this problem can be rectified. We
then leverage this improved uncertainty estimation to show
better OOD data identification across three highly different
tasks to demonstrate the robustness of our approach.

The objective of this paper is not to develop a state-of-the-
art approach to OOD data detection, but rather in the context
of dropout BNNs to: (1) show how to cheaply improve OOD
data detection in systems where a dropout BNN is already de-
ployed, by using intermediate computational results that are
already being computed but not fully leveraged, and (2) pro-
vide theoretical and practical evidence to highlight why it is
valuable to deconflate angular information about embedding
dispersion from embedding norm information. Additionally,
previous works have evaluated OOD detection by assuming
access to a large OOD dataset of similar size to the in distri-
bution dataset. This is an unrealistic assumption as in areas
like cyber security where OOD examples are limited and
expensive. So, we also examine the effect of small dataset
sizes for OOD detection in our experiments.

2 Related Work
Two kinds of uncertainty can be distinguished (Kendall and
Gal 2017). Aleatoric uncertainty is caused by inherent noise
and stochasticity in the data. More training data will not help
to reduce this kind of uncertainty. Epistemic uncertainty on
the other hand is caused by a lack of similar training data.
In regions lacking training data, different model parameter
settings that produce diverse or potentially conflicting predic-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

7877

tions can be comparably likely under the posterior. OOD data
is expected to have higher uncertainty, epistemic in particular.
Mukhoti et al. (2021) prove that one cannot infer epistemic
uncertainty from a deterministic model’s softmax entropy,
so additional information is needed to estimate epistemic
uncertainty.

Uncertainty modeling using probabilistic embeddings has
primarily been used for estimating aleatoric uncertainty (Oh
et al. 2019; Shi and Jain 2019; Chun et al. 2021; Chang et al.
2020) in tasks such as determining the quality of a test input
image. These methods do not easily translate to estimating
epistemic uncertainty. For example, Oh et al. (2019) try to
apply their method on an epistemic uncertainty estimation
task and find that it did not work well for novel classes, and
they leave the modeling of epistemic uncertainty as future
work.

The only prior work we are aware of that looks at a random-
ized embedding approach similar to ours is by Terhörst et al.
(2020), who use dropout at test time to generate a stochas-
tic embedding. They estimate face image quality through
the stability of the embedding as measured using Euclidean
distance. As we will show, the use of Euclidean distance is
problematic as it does not account for factors affecting em-
bedding norms and more generally, the assumptions made
by Terhörst et al. (2020) are not met in reality. We also note
that they are actually estimating epistemic uncertainty (see
(Oh et al. 2019) for an explanation) when test image quality
is an inherently aleatoric uncertainty estimation problem. We
will show both empirical evidence as well as mathematical
grounding as to why our proposed approach, without the
addition of any complexity, fixes these issues.

There is evidence that intermediate layers of a neural net-
work contain information useful for epistemic uncertainty
estimation and out of distribution detection. Postels et al.
(2020) establish a connection between the density of hid-
den representations and the information-theoretic surprise
of observing a specific sample in the setting of a determin-
istic neural network. In particular, they suggest that the first
layers of a neural network should be used to estimate epis-
temic uncertainty due to feature collapse, a phenomena where
out-of-distribution data is mapped to in-distribution feature
representations in later layers of a network (van Amersfoort
et al. 2020; Mukhoti et al. 2021), though they also suggest
that OOD data detection can benefit from aggregating uncer-
tainty information from several layers. Our work differs from
their work as we are not fitting a density to representations
of the training data, increasing the applicability of our ap-
proach to situations where fitting and storing a density is not
an option for computational or regulatory reasons.

Other recent work has also looked at uncertainty estimation
using a single forward pass of a neural network that has had
its intermediate representations regularized to produce good
uncertainty estimates (van Amersfoort et al. 2020; Liu et al.
2020). We note that many single forward pass based methods
like (Mukhoti et al. 2021; Liu et al. 2020) require residual
based networks in combination with spectral normalization
to enforce a bi-Lipschitz inductive bias (Bartlett, Evans, and
Long 2018). While the method of (van Amersfoort et al.
2020) is not residual network constrained, it requires signif-

icant changes to the model and training procedure. While
our approach requires multiple forward passes (as is the case
with all dropout BNNs), it does not require any modifications
to existing dropout BNNs, by only using information that is
already being computed within a dropout BNN.

(Mandelbaum and Weinshall 2017) propose a confidence
score that uses a data embedding derived from the penulti-
mate layer of a neural network. The embedding is achieved
using either a distance-based loss or adversarial training. Sim-
ilarly to other methods, this method requires density estima-
tion, and our work differs as our method does not involve a
comparison to nearest neighbors from the training set, which
may be difficult to deploy in practice due to both storage and
regulatory constraints.

Many works have investigated OOD data detection in prob-
abilistic contexts. Ovadia et al. (2019) benchmarks Bayesian
deep learning methods in the context of dataset shift and
OOD data at test time. Xiao, Gomez, and Gal (2020) use
epistemic uncertainty to detect OOD language data. Ren et al.
(2019) detect OOD data using likelihood ratios in the context
of deep generative models and evaluate on OOD genomic
sequences. Our work makes a contribution to probabilistic
OOD identification by being the first work to systematically
investigate the appropriate use of the randomized embeddings
induced by the intermediate layers of a dropout BNN.

3 Methods
In a supervised setting, suppose a neural network structure
with N (non-linearity included) layers fi, i ∈ [1, N] where
x1 is the input and xN+1 is the prediction: xi+1 = fi(xi).
Gal and Ghahramani (2016b) showed that a neural network
with dropout (Hinton et al. 2012; Srivastava et al. 2014)
applied before every weight layer is equivalent to an approxi-
mation of a deep Gaussian process (Damianou and Lawrence
2013), and that training with dropout effectively performs
variational inference for the deep Gaussian process model.
At test time, the posterior distribution can be sampled from
by leaving dropout on. This gives us the network structure:

xi+1 = fi(dropout(xi)) (1)

3.1 Randomized Embeddings
Computing an Embedding In the context of a trained
dropout Bayesian neural network, we can use the interme-
diate representations from the various layers (the xi+1 in
eq. (1)) as a randomized embedding of a data point. The
embedding is randomized as multiple forward passes with
dropout on will yield different embedding values. The varia-
tion in the embedding values could be used to measure epis-
temic uncertainty (Oh et al. 2019), allowing for the detection
of OOD data and dataset shift.

Measuring Uncertainty A datum is embedded to a set of
randomized embedding values at each layer. We can compute
the maximum pairwise distance between the embeddings
for a specific datum at a specific layer. This can be done at
each layer in the BNN, giving us a feature for each layer that
can then be used for tasks such as OOD identification. All
previous work has used Euclidean distance to compute the

7878

Algorithm 1: Computing Randomized Embedding
Based Features for OOD Data Detection

Input: A datum x, a N layer NN trained with dropout
{f1, ..., fN}, and number of samples T .

Output: N randomized embedding based features
z1, ..., zN , each corresponding to a layer in
the network, for a OOD data detection task.

1 for t← 1 to T do
2 for i← 1 to N do
3 xi+1,t ← fi(dropout(xi,t))
4 for i← 1 to N do
5 zi ← max(PairwiseCosineDistances(xi,:))
6 return z1, ..., zN // Return features.

pairwise distances, without examining the appropriateness
of Euclidean distance for the task. Part of our contribution
is an analysis in section 3.3 of why Euclidean distance is in
fact not appropriate, and we introduce a preferable cosine
distance based approach which we use in all of our experi-
ments. A small value of 1e-6 was added to the embeddings
to avoid numerical issues caused by corner-case zero normed
embedding vectors.1 In our experiments, embeddings from
non-linear layers (such as convolutions) are flattened prior
to computing this metric. A summary of our approach can
be found in algorithm 1. The intuition behind this approach
is that if measured appropriately, the “spread” or maximal
variation in a datum’s embedding contains uncertainty infor-
mation. If all embedding samples are realized to a same point
in the embedding space, then there is less uncertainty than if
the embedding samples are realized to wildly different parts
of the embedding space.

3.2 Baseline Features
We compare the addition of our randomized embedding
based features to a set of common baseline features.
For classification tasks, uncertainty estimates in dropout
BNNs are usually a function of the sampled softmax out-
puts. In particular, overall uncertainty can be measured
using predictive distribution entropy: H[P(y|x,D)] =
−
∑
y∈C P(y|x,D) logP(y|x,D). To isolate and measure

epistemic uncertainty mutual information can be used:
I(θ, y|D,x) = H[P(y|x,D)]− EP(θ|D)H[P(y|x, θ)].

The terms of these equations can be approximated us-
ing Monte Carlo estimates obtained by sampling from
the dropout BNN posterior (Smith and Gal 2018).
In particular, P(y|x,D) ≈ 1

T

∑T
i=1 P(y|x, θi) and

EP(θ|D)H[P(y|x, θ)] ≈ 1
T

∑T
i=1H[P(y|x, θi)] where the θi

are samples from the posterior over models and T is the num-
ber of samples. In addition to predictive distribution entropy
and mutual information, we also use maximum softmax prob-
ability (the value of the largest element of P(y|x,D)) as a

1We also note that normalized Euclidean distance, where em-
bedding vectors are normalized to unit length prior to computing
Euclidean distance, could also be used in place of cosine distance
as its square can be shown to be proportional to cosine distance.

feature, shown by Hendrycks and Gimpel (2017) to be an
effective baseline for the OOD data detection task.

3.3 How to Measure Embedding Dispersion
We will now explore why Euclidean distance as used by
previous works is not appropriate to measure randomized
embedding dispersion. We illustrate using a LeNet5 (Yann
LeCun et al. 1998) model with added dropout before each
layer trained on MNIST, with MNIST variants as OOD data.
Further data, model, and experimental details correspond to
those expanded upon in section 4.1.

The Problem With Euclidean Distance Terhörst et al.
(2020) suggest the Euclidean distance to measure when a
data point is suitable for a downstream task, where lower
variability in the stochastic embedding induced by a dropout
neural network suggests higher suitability for a data point.
In particular, they use the sigmoid of the negative mean Eu-
clidean distance between all stochastic embedding pairs for
a data point as the measure of suitability. In other words,
their hypothesis is that a form of uncertainty can be measured
using the Euclidean distance between embedding samples.

We find that if Euclidean distance is used as the metric to
measure distance between samples, their hypothesis holds
only with excessive training and likely over-fitting. fig. 1a
shows that with enough training to get to the accuracy plateau
(10 epochs of training with a batch size of 64, with a test
accuracy of 0.9885), we actually see the opposite effect. Em-
beddings for OOD data are actually less spread out than
embeddings for in distribution data. fig. 1b shows that with
excessive training (100 epochs of training, with a lower test
accuracy of 0.9882), we see that the hypothesis holds better
but note that there is still a good amount of overlap between
the histograms, limiting the usefulness for OOD detection
(and adding a difficult to select stopping criteria). We note
that what we are observing is not feature collapse.

This points to two issues that we need to resolve. First,
how can we get consistent behavior regardless of over/under-
training? Second, how can we more usefully measure spread
in a way that matches intuition?

Spectral Normalization Stabilizes Behavior Spectral
normalization rescales the weights during training with the
spectral norm of the weight matrix, enforcing a Lipschitz
constraint that bounds the derivative of the learned function
(Miyato et al. 2018). This helps to preserve distance as a
data point makes its way through the network. fig. 1c shows
that a spectral normalized version of the network results in
consistent behavior even with longer training (100 epochs
of training, with a test accuracy of 0.9927). So, there is a
solution to the first problem. However, we still see that the
spread for OOD data is lower than for in distribution data.

Why Cosine Distance Is Needed To Properly Measure
Embedding Dispersion Previous research around OOD
detection has noted that a lower maximal softmax output
value is correlated with a data point being OOD (Hendrycks
and Gimpel 2017). One possible explanation could be logits
(softmax inputs) of smaller norm. This would make intuitive
sense as potentially, less neurons would activate for OOD

7879

data since OOD data would lack the in distribution features
the network is looking for.

The squared Euclidean distance between vectors u and v
can be written as, where θ is the angle between u and v:

||u− v||2 = ||u||2 + ||v||2 − 2 ||u|| ||v|| cos θ (2)

If embedding norms are inherently smaller for OOD data,
then Euclidean distance which is norm dependent cannot be
used to compare embedding spread across OOD and in dis-
tribution datasets, due to confounding. As shown in eq. (2),
angular information is affected by norm in both an additive
and multiplicative manner with Euclidean distance. So, as-
suming confounding caused by systematic norm differences,
cosine distance should be used to isolate the angular infor-
mation when measuring embedding dispersion. If Euclidean
distance mostly captures information already captured by
the norm, then the benefit of being Bayesian for this task is
not fully leveraged as norm can be estimated with a single
point estimate. To take full advantage of a dropout BNN, an-
gular information about embedding dispersion needs to be
deconflated from embedding norm information.

We explored this hypothesis and found it to be empirically
true and formally justifiable. In fig. 2a, Euclidean distance is
used to measure embedding dispersion, we see that dispersion
is correlated with the logits norm and that the relationship
is nearly identical for OOD and in distribution data. This
means that measuring the spread of the embeddings using
Euclidean distance conveys little extra information than just
looking at the norm of the logits. In Appendix ??, we perform
a simulation to further illustrate this problem in the case of a
two layer ReLU activated network.

We want to measure spread in a way that is independent
of the embedding norm. This can be done a couple of differ-
ent ways. For example, a simple switch to cosine distance
could be used, or the embeddings could be normalized prior
to using Euclidean distance (which can be shown to be re-
lated to cosine distance). As illustrated in fig. 2b, using co-
sine distance results in OOD and in distribution data having
behaviors that are no longer identical. Appendix ?? shows
similar results in an unsupervised setting involving a stacked
denoising autoencoder variant.

fig. 1d shows the same information as fig. 1a, except a
cosine distance based measure of spread is used instead of
a Euclidean based one. With cosine distance, we now see
the expected behavior of OOD having more spread than in
distribution, and we see a better separation as well which
is good for OOD detection. We have shown results for the
last layer of a network but note that a similar analysis can
be done for each layer. Having shown empirical evidence
for why angular information needs to be isolated from norm
information when measuring embedding dispersion, we next
provide a formal analysis for why cosine distance allows for
an additional source of information.

Formal Analysis of Cosine Embedding Dispersion We
aim to compute a metric that is invariant to the relative
magnitudes among embedding samples, and also accurately
represents the dispersion of the embedding samples. In the
following, we argue that the mutual information score is

0 50 100
0

200
400
600
800

Max Pairwise Euclidean

In Dist.

Out Dist.

(a) LeNet5 with 10 epochs of
training, Euclidean based mea-
sure of embedding dispersion.

0 2,0004,000
0

500

1,000
1,500

Max Pairwise Euclidean

In Dist.

Out Dist.

(b) LeNet5 with 100 epochs of
training, Euclidean based mea-
sure of embedding dispersion.

20 40 60
0

200
400
600

Max Pairwise Euclidean

In Dist.

Out Dist.

(c) Spectral Normalized LeNet5
with 100 epochs of training, Eu-
clidean measure of dispersion.

0 0.5 1 1.5 2
0

200
400
600
800

Max Pairwise Cosine

In Dist.

Out Dist.

(d) LeNet5 with 10 epochs of
training, cosine based measure of
embedding dispersion.

Figure 1: Comparison of last layer randomized embedding
dispersion distributions for in distribution data (MNIST) and
OOD data (Not-MNIST). The y-axis is “Count” in all cases.

not satisfactory for these two objectives. Our goal is not to
replace the mutual information as an uncertainty measure,
but rather to demonstrate that our pairwise cosine similarity
yields an additional source of information that is not captured
otherwise.

Let {zi}mi=1 denotem embedding vectors sampled through
dropout. The mutual information score is defined as

I(w, y|D,x) = H[p(y|x,D)]− Ep(w|D)H[p(y|x,w)]

and is approximated by Î(w, y|D,x) =
H
[
1
m

∑m
i=1 softmax(zi)

]
− 1

m

∑m
i=1H [softmax(zi)]

where H(·) is the entropy function H(y) = −
∑
i yi log yi.

We first introduce a theorem from Amos (2019) that clar-
ifies the geometric properties of the softmax function. The
proof is readily shown using Lagrange multipliers.

0 20 40 60
0
20
40
60
80

Mean Norm

M
ax

Pa
ir

w
is

e

In Dist.

OOD

(a) Euclidean distance.

0 20 40 60

0

1

2

Mean Norm

M
ax

Pa
ir

w
is

e

In Dist.

OOD

(b) Cosine distance.

Figure 2: A comparison of the relationships between last
layer randomized embedding mean norm and the maximum
pairwise distance for Euclidean and cosine distances respec-
tively, for in distribution data (MNIST) and OOD data (Not-
MNIST). Both models using LeNet5 trained for 10 epochs.

7880

Theorem 3.1. The softmax function softmax(x)j =
exp(xj)∑
i exp(xi)

is a map from Rd to the (d − 1)-simplex that
satisfies

softmax(x) = argmin
0<y<1

−x>y −H(y) s.t. 1>y = 1

From this we see that the softmax solution is a balance
between two competing objectives: maximizing x>y which
aims to place all weight on the coordinate with the largest xi
value, and maximizing the entropy of y which steers toward
the uniform vector with value 1/d. In addition, the softmax
temperature changes the relative weighting, which allows
us to evaluate the effect of the magnitude of the embedding
vector. We leverage this for a further Lemma and Theorem:
Lemma 3.2. The softmax function with temperature α, de-
fined by softmax(x/α), satisfies

softmax(x/α) = argmax
0<y<1

x>y + αH(y) s.t. 1>y = 1

Proof. From the previous theorem we get softmax(x/α) =
argmin0<y<1−(x/α)>y −H(y) s.t. 1>y = 1. Multiply-
ing by scalar α and switching the optimization to maximizing
the negative does not change the optimal solution, yielding
the statement above.

These facts help indicate that softmax-based metrics are
not suited for assessing the angular dispersion among vec-
tors. We note that the mapped vector is α-dependent and
hence dependent on the L2 magnitude of the input vector.
Furthermore, arbitrary translations of the vector, which can
completely change the direction of the vector, do not impact
the softmax. These observations are formalized below.
Theorem 3.3. The softmax function is invariant to transla-
tion of input vector x. It is not invariant to scaling x except
in the special case when x1 = x2 = . . . = xd. Furthermore,
as the magnitude of x increases (without changing direc-
tion), the softmax shifts weight to the vertex of the simplex
corresponding to the largest coordinate in x.

Proof. Invariance to translation follows from observing that
softmax(x + K) = exp(xj + K)/

∑
i exp(xj + K) =

exp(xj)/
∑
i exp(xj) = softmax(x).

The dependence on scaling follows from Lemma 1.2. Con-
sider two vectors x, x′ such that x′ = x/α. The value of
α adjusts the scale of the H(y) term. Since the maxx>y
objective aims to shift weight in y to the largest x coordi-
nate and the maxH(y) objective aims to distribute weight
evenly, their solutions do not coincide, giving softmax(x)
and softmax(x′) different solutions. In the special case that
x1 = x2 = . . . = xd then x>y is constant, so the optimiza-
tion of H(y) gives the uniform distribution vector. Other-
wise, increasing the magnitude of x′ is equivalent to sending
α → 0, which decreases the contribution of H(y). This
causes the solution vector to shift weight to the element with
largest value in x.

We confirm this analysis by simulation in Appendix ??,
where we find that our new cosine-based feature adds an
orthogonal measure of information that is not captured in
previously used measures of uncertainty.

4 Experiments and Results
In this section, we evaluate the value of randomized embed-
ding based features across three different OOD data detection
tasks in the vision, language, and malware domains. All ex-
periments were implemented in PyTorch (Paszke et al. 2019),
and neural networks were optimized using Adam with the
default recommended settings (Kingma and Ba 2015). A
dropout probability of p = 0.1 was used, and when sampling
from the base neural network models to compute features for
OOD detection, 32 samples are used. Experiments were run
on an 80 CPU core machine with 512GB of RAM using a
single 16GB Tesla P100 GPU. Experiment specific details
are described in their respective sections.

We explore the use of two model classes for the OOD
detection algorithms. The first model is an L2-regularized
logistic regression (LR) with the regularization strength cho-
sen using 3-fold cross-validation. We min-max scaled the
input features for the LR model to the range [0, 1] based on
the training data. The second model is a 500 tree random
forest (RF) classifier. We choose these two models to assess
linear vs. non-linear behavior in the OOD detection task. We
also explore the effect of varied, small training set sizes for
the OOD task in all of our experiments. In many production
contexts such as cyber security, examples of OOD data are
limited and usually expensive to obtain.

4.1 Image Classification
For our vision experiments, similarly to the evaluation proto-
col from (van Amersfoort et al. 2020; Ren et al. 2019; Postels
et al. 2020; Mukhoti et al. 2021) we explore MNIST vari-
ants as OOD data. In particular, we train our base model, a
LeNet5 (Yann LeCun et al. 1998) with added dropout before
each layer, on MNIST and use Kuzushiji-MNIST (Clanuwat
et al. 2018), notMNIST (Bulatov 2011), and Fashion-MNIST
(Xiao, Rasul, and Vollgraf 2017) as OOD data. When train-
ing the downstream OOD data detection algorithms, we train
the OOD detector on one of the OOD datasets and test on
the other two. For example, we first train a digit classifier
on MNIST. Then, we train an OOD data detector that uses
randomized embedding based features from the digit clas-
sifier to classify MNIST vs. notMNIST. Then we test the
OOD data detector on MNIST vs. Kuzushiji-MNIST and
Fashion-MNIST.

Due to its importance in practical use, we will test the
sample efficiency of the OOD tasks (i.e., how few samples of
OOD are needed to detect future OOD data). In particular, we
evaluate performance, as measured by area under the receiver
operating characteristic curve (captures desired data ordering
performance) and accuracy (captures desired decision making
value), using training datasets consisting of n=1000, 100, and
just 10 data points from each class (in distribution and OOD).
We note that this differs from most previous works which
have evaluated by assuming access to a large OOD dataset of
similar size to the in distribution dataset, an often unrealistic
assumption. Each experiment was run 100 times with random
training set samples, where all appropriate data not in the
training set is included in the test set, and we report a mean
and standard deviation for each. In all of our experiments, the

7881

standard deviations are much smaller than effect sizes, so we
report only the means in this section, and standard deviations
can be found in appendix ??.

Detecting OOD Data table 1 compares performance with
and without the cosine embedding spread features for various
experimental configurations and OOD detection models for
a dropout LeNet5 trained for 100 epochs. Features labeled
as “Last” consist of common baseline features computed
using softmax output samples from the network (predictive
entropy, mutual information, and maximum softmax proba-
bility). Features labeled as “Last+Spread” consist of these
baseline features plus our additional randomized embedding
maximum cosine spread features for each layer.

The inclusion of the additional cosine spread features
improves OOD detection performance consistently across
datasets, training set sizes, and model types. In limited cases
where the “Spread” features do not improve the LR model,
the RF model with “Spread” features performs the best over-
all, suggesting that the relationship is not necessarily linear.
?? in the Appendix summarizes results from a similar experi-
ment where the base model is a spectral normalized dropout
LeNet5 trained for 100 epochs. A comparison of table 1 and
Appendix ?? suggests that, while spectral normalization is
not required to see an improvement from the inclusion of
cosine spread features, spectral normalization does improve
OOD detection performance consistently.

In Appendix ??, we further examine the need for a small
amount of OOD training data, evaluate Euclidean based
spread features, and investigate the feature importances asso-
ciated with our cosine spread features.

4.2 Language Classification
Out of distribution data detection is also of interest in natu-
ral language processing, where systems are trained to work
on specific languages, and inputs from other languages are
considered OOD (Xiao, Gomez, and Gal 2020). For these
experiments, we train a Char-CNN (Zhang, Zhao, and Le-
Cun 2015) with dropout added before every layer to classify
languages using the WiLI dataset (Thoma 2018). Training
consisted of 50 epochs with a batch size of 128, where the 100
most common characters in the training set (after stripping
accents) were used as the vocabulary and each datum was
truncated/padded to a length of 200 characters. We train the
language classification model to distinguish between French,
Spanish, German, English, Italian, and Portuguese text. We
use Basque, Polish, Luganda, Finnish, Tongan, and Xhosa
as out of distribution languages. All of our in and out of
distribution languages are chosen to use the Latin writing
system. For the OOD task, training sets consisted of n=100,
50, 25, and 10 data points from each class (in distribution
and OOD). Each experiment was run 100 times with random
training data subsamples, where all languages not trained
on are tested on. table 2 shows that the inclusion of our ran-
domized embedding based features consistently improves
OOD detection across experimental settings, with average
and maximal AUC improvements of 0.06 and 0.15.

We note that while OOD data detection is usually treated
as a purely binary classification task by most previous work,

Train/Test Feat. n=1000 n=100 n=10

Fashion/
Kuzushiji

Last 97 91 97 91 96 88
+Spread 98 91 97 91 97 90

RF version Last 96 92 95 91 94 88
+Spread 98 92 97 92 97 91

Fashion/
notMNIST

Last 97 91 97 91 96 88
+Spread 98 93 98 93 97 89

RF version Last 96 92 95 90 94 88
+Spread 99 94 98 92 96 90

Kuzushiji/
Fashion

Last 97 92 97 92 97 90
+Spread 99 95 98 94 98 92

RF version Last 96 92 96 91 95 90
+Spread 99 94 98 93 97 91

Kuzushiji/
notMNIST

Last 97 91 97 91 96 89
+Spread 98 93 98 91 97 89

RF version Last 96 92 95 90 94 89
+Spread 98 94 97 92 95 90

notMNIST
/Fashion

Last 97 91 96 91 96 89
+Spread 98 94 97 93 98 93

RF version Last 96 91 96 90 95 89
+Spread 99 94 98 94 98 92

notMNIST/
Kuzushiji

Last 96 90 95 89 95 88
+Spread 97 89 95 89 97 90

RF version Last 96 91 95 90 94 88
+Spread 98 91 97 92 97 91

Table 1: Performance (AUC, accuracy) with and without the
cosine randomized embedding spread features for various
experimental configurations for a dropout LeNet5 trained
on MNIST. Features labeled as “Last” consist of common
baseline features computed using softmax output samples
from the network (predictive entropy, mutual information,
and maximum softmax probability). Features labeled as
“Last+Spread” consist of these baseline features plus our
additional randomized embedding maximum cosine spread
features for each layer. Each experiment was repeated multi-
ple times, and the mean is reported here while the standard
deviation is reported in ??. Best results are shown in bold.

OOD versus in distribution is a false binary. There are differ-
ent levels and degrees of how OOD data can be. In the context
of language, we can examine the nuances between different
flavors of OOD data. While Basque is a language isolate that
linguistically does not share any significant similarities to any
other languages, Catalan is a Romance language with many
linguistic similarities to French and Italian (and Spanish to a
lesser extent). While both Basque and Catalan are considered
OOD in our setting, we expect good estimates of epistemic
uncertainty to capture the property that Catalan is “less OOD”
than Basque is. fig. 3 shows that this desired property is cap-
tured by the norm of our randomized embedding features,
while the mutual information distributions for Basque and

7882

Model Ft n=100 n=50 n=25 n=10

Basque
LR

Last 89 80 88 79 88 79 88 79
+S 93 84 92 84 92 84 93 83

Basque
RF

Last 86 80 86 79 85 79 84 79
+S 92 85 92 84 92 84 91 82

Finnish
LR

Last 89 90 89 79 88 79 88 79
+S 91 82 91 82 91 82 91 82

Finnish
RF

Last 86 79 86 79 85 79 84 78
+S 91 82 91 82 91 82 90 81

Luganda
LR

Last 89 81 89 80 89 80 88 79
+S 94 86 94 85 94 85 93 84

Luganda
RF

Last 87 80 86 80 85 80 84 79
+S 94 86 93 85 93 84 92 83

Polish
LR

Last 90 82 90 82 89 82 89 81
+S 94 87 94 86 94 86 93 85

Polish
RF

Last 87 79 86 79 85 78 85 78
+S 94 87 93 86 93 86 92 84

Tongan
LR

Last 86 82 84 81 82 80 79 77
+S 89 81 88 81 88 82 88 81

Tongan
RF

Last 77 70 77 70 77 68 79 70
+S 92 85 91 85 91 84 90 82

Xhosa
LR

Last 89 81 89 80 89 80 88 79
+S 94 87 94 86 93 85 93 84

Xhosa
RF

Last 86 79 86 78 85 78 85 77
+S 94 87 93 86 93 85 92 84

Table 2: Performance (AUC, accuracy) with and without the
cosine randomized embedding spread features for a Char-
CNN with dropout added before every layer trained to clas-
sify languages using the WiLI dataset. Standard deviations
are reported in ??, and best results are shown in bold.

Catalan are nearly indistinguishable.

4.3 Malware Detection
Finally, we evaluate the usefulness of our randomized em-
bedding based features in the context of malware detection.
Uncovering new or significantly different malware is of par-
ticular interest in the quickly evolving cyber security space.
We use a dropout variant of the MalConv model (Raff et al.
2017), a convolutional NN for malware detection that oper-
ates on raw byte sequences. We apply dropout before each
fully connected layer of MalConv. Applying dropout to only
the last layers of a NN corresponds to using maximum a
posteriori (MAP) estimates for the initial layers and Bayesian
estimates for the later layers (Gal and Ghahramani 2016a).
We train the dropout MalConv model for 5 epochs with a
batch size of 32 on the EMBER2018 dataset which consists
of portable executable files (PE files) scanned by VirusTotal
in or before 2018 (Anderson and Roth 2018).

We run two experiments on the Bayesian MalConv model.
First, of the 200000 files in the EMBER test set, 363 have

0 0.5 1 1.5 2
0

1

2

Randomized Embed. Feat. Norm

D
en

si
ty Basque

Catalan

0 0.2 0.4 0.6
0
1
2
3
4

Mutual Information

D
en

si
ty Basque

Catalan

Figure 3: Basque and Catalan are linguistically similar but
different languages. Our cosine based embeddings (left) show
that they have high overlap but are more OOD than normal
data. Prior work using MI (right) is unable to meaningfully
distinguish any difference between the related languages.

Model Feat. n=100 n=50 n=25

Ember
LR

Last 78.9 70.4 78.6 68.2 77.8 65.0
+Sprd 79.3 71.8 78.3 68.9 76.6 65.8

Ember
RF

Last 75.7 73.5 75.2 72.7 74.8 71.4
+Sprd 79.1 78.4 78.2 76.4 77.0 74.3

Brazil
LR

Last 68.5 64.5 68.0 60.7 66.8 58.4
+Sprd 74.1 62.0 73.4 61.7 71.2 60.5

Brazil
RF

Last 72.4 69.3 70.5 67.4 67.9 65.2
+Sprd 83.9 79.7 81.3 77.2 77.6 73.6

Table 3: Performance with and without the cosine random-
ized embedding spread features for a MalConv model with
dropout added before each fully connected layer trained to de-
tect malware using EMBER2018. Standard devs. are reported
in ??, and best results are bolded.

as their top most likely malware family label (as labeled by
AVClass (Sebastián et al. 2016)) a family that was not present
in the train set. We evaluate OOD detection performance first
on these unseen malware families. Second, we evaluate OOD
detection performance on a different malware dataset con-
taining malware samples obtained from a Brazilian financial
entity (Ceschin et al. 2019). The malware from this dataset
could be considered as OOD due to differing geographical
specificity and intent, leading to the use of malware tactics,
techniques, and procedures likely specific to a Brazilian bank-
ing target. There are also temporal differences as the Brazilian
samples were all collected before the EMBER dataset, and
we additionally only used malware first seen by VirusTotal
before 2012. OOD task training sets consisted of n=100, 50,
and just 25 data points from each class (in distribution and
OOD). Each experiment was run 100 times with random
train/test splits, where all of the data not in the training set
is included in the test set. Results are summarized in table 3,
showing that the inclusion of our randomized embedding
based features consistently improves OOD detection across
experimental settings. Because of the high class imbalance
in this use case, as access to good OOD data is more limited
in the malware domain, we reported the ROC AUC and the
recall for the OOD class in table 3, noting that recall is often

7883

the primary metric of interest in practice for cyber security.

5 Conclusions
We have demonstrated why previous attempts at measuring
randomized embedding dispersion using Euclidean distance
are inherently flawed. Then we introduced and theoretically
justified a cosine distance based, lightweight approach to test
time OOD data detection in the context of dropout Bayesian
neural networks. Information that is already computed is
used as randomized embeddings, training dataset information
does not need to be stored, additional regularization meth-
ods are not needed (though do help), and auxiliary neural
networks do not need to be trained to take advantage of this
additional information. While we note that our approach is
limited to dropout BNNs, the popularity of the dropout ap-
proximation to BNNs and the existence of previous works
exploring the use of stochastic embeddings based on dropout
BNNs suggests the applicability of our approach to practice.
Our approach can be deployed anywhere a dropout BNN is
already deployed with minimal additional overhead. Future
work includes the investigation of more elaborate features
based off of the randomized embeddings.

References
Amos, B. 2019. Differentiable optimization-based model-
ing for machine learning. Ph.D. thesis, Carnegie Mellon
University.
Anderson, H. S.; and Roth, P. 2018. EMBER: An Open
Dataset for Training Static PE Malware Machine Learning
Models. arXiv preprint arXiv:1804.04637.
Bartlett, P. L.; Evans, S. N.; and Long, P. M. 2018. Repre-
senting smooth functions as compositions of near-identity
functions with implications for deep network optimization.
arXiv preprint arXiv:1804.05012.
Bulatov, Y. 2011. notMNIST dataset. http://yaroslavvb.
blogspot.com/2011/09/notmnist-dataset.html. Machine
Learning, etc. Accessed: 2022-05-05.
Ceschin, F.; Pinage, F.; Castilho, M.; Menotti, D.; Oliveira,
L. S.; and Gregio, A. 2019. The Need for Speed: An Analysis
of Brazilian Malware Classifers. IEEE Security and Privacy,
16(6): 31–41.
Chang, J.; Lan, Z.; Cheng, C.; and Wei, Y. 2020. Data
Uncertainty Learning in Face Recognition. Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 5710–5719.
Chun, S.; Oh, S. J.; de Rezende, R. S.; Kalantidis, Y.; and
Larlus, D. 2021. Probabilistic Embeddings for Cross-Modal
Retrieval. Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 8415–8424.
Clanuwat, T.; Bober-Irizar, M.; Kitamoto, A.; Lamb, A.; Ya-
mamoto, K.; and Ha, D. 2018. Deep Learning for Classical
Japanese Literature. arXiv preprint arXiv:1812.01718.
Damianou, A. C.; and Lawrence, N. D. 2013. Deep Gaussian
Processes. Artificial intelligence and statistics, PMLR, 31:
207–215.

Gal, Y.; and Ghahramani, Z. 2016a. Dropout as a Bayesian
Approximation: Appendix. 33rd International Conference
on Machine Learning, ICML 2016, 3: 1661–1680.
Gal, Y.; and Ghahramani, Z. 2016b. Dropout as a Bayesian
approximation: Representing model uncertainty in deep learn-
ing. 33rd International Conference on Machine Learning,
ICML 2016, 3: 1651–1660.
Hendrycks, D.; and Gimpel, K. 2017. A Baseline for De-
tecting Misclassified and Out-of-Distribution Examples in
Neural Networks. International Conference for Learning
Representations, 1–12.
Hinton, G. E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.;
and Salakhutdinov, R. R. 2012. Improving neural networks by
preventing co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580, 1–18.
Kendall, A.; and Gal, Y. 2017. What uncertainties do we need
in Bayesian deep learning for computer vision? Advances in
Neural Information Processing Systems, 5575–5585.
Kingma, D. P.; and Ba, J. 2015. Adam: A Method for Stochas-
tic Optimization. International Conference for Learning
Representations, 1–15.
Liu, J. Z.; Lin, Z.; Padhy, S.; Tran, D.; Bedrax-Weiss, T.;
and Lakshminarayanan, B. 2020. Simple and principled
uncertainty estimation with deterministic deep learning via
distance awareness. Advances in Neural Information Pro-
cessing Systems, 7498–7512.
Mandelbaum, A.; and Weinshall, D. 2017. Distance-based
Confidence Score for Neural Network Classifiers. arXiv
preprint arXiv:1709.09844.
Miyato, T.; Kataoka, T.; Koyama, M.; and Yoshida, Y. 2018.
Spectral Normalization for Generative Adversarial Networks.
International Conference on Learning Representations.
Mukhoti, J.; Kirsch, A.; van Amersfoort, J.; Torr, P. H. S.;
and Gal, Y. 2021. Deterministic Neural Networks with Ap-
propriate Inductive Biases Capture Epistemic and Aleatoric
Uncertainty. arXiv e-prints.
Oh, S. J.; Murphy, K.; Pan, J.; Roth, J.; Schroff, F.; and
Gallagher, A. 2019. Modeling Uncertainty with Hedged
Instance Embedding. International Conference on Learning
Representations.
Ovadia, Y.; Fertig, E.; Ren, J.; Nado, Z.; Sculley, D.;
Nowozin, S.; Dillon, J. V.; Lakshminarayanan, B.; and Snoek,
J. 2019. Can You Trust Your Model’s Uncertainty? Evaluat-
ing Predictive Uncertainty Under Dataset Shift. NeurIPS.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga,
L.; Desmaison, A.; Köpf, A.; Yang, E.; DeVito, Z.; Raison,
M.; Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai,
J.; and Chintala, S. 2019. PyTorch: An imperative style,
high-performance deep learning library. Advances in Neural
Information Processing Systems, 32.
Postels, J.; Blum, H.; Strümpler, Y.; Cadena, C.; Siegwart,
R.; Van Gool, L.; and Tombari, F. 2020. The Hidden Un-
certainty in a Neural Networks Activations. arXiv preprint
arXiv:2012.03082.

7884

Raff, E.; Barker, J.; Sylvester, J.; Brandon, R.; Catanzaro, B.;
and Nicholas, C. 2017. Malware Detection by Eating a Whole
EXE. Workshops at the Thirty-Second AAAI Conference on
Artificial Intelligence.
Raff, E.; and Nicholas, C. 2020. A Survey of Machine Learn-
ing Methods and Challenges for Windows Malware Classifi-
cation. arXiv preprint arXiv:2006.09271, 1–48.
Ren, J.; Liu, P. J.; Fertig, E.; Snoek, J.; Poplin, R.; DePristo,
M. A.; Dillon, J. V.; and Lakshminarayanan, B. 2019. Likeli-
hood Ratios for Out-of-Distribution Detection. Advances in
Neural Information Processing Systems.
Sebastián, M.; Rivera, R.; Kotzias, P.; and Caballero, J. 2016.
AVCLASS: A Tool for Massive Malware Labeling. In Inter-
national symposium on research in attacks, intrusions, and
defenses.
Shi, Y.; and Jain, A. K. 2019. Probabilistic Face Embeddings.
IEEE/CVF International Conference on Computer Vision,
6902–6911.
Smith, L.; and Gal, Y. 2018. Understanding measures of un-
certainty for adversarial example detection. 34th Conference
on Uncertainty in Artificial Intelligence 2018, UAI 2018, 2:
560–569.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: A Simple Way to Pre-
vent Neural Networks from Overfitting. Journal of Machine
Learning Research, 15: 1929–1958.
Terhörst, P.; Niklas Kolf, J.; Damer, N.; Kirchbuchner, F.;
and Kuijper, A. 2020. SER-FIQ: Unsupervised Estimation
of Face Image Quality Based on Stochastic Embedding Ro-
bustness. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 5651–5660.
Thoma, M. 2018. The WiLI benchmark dataset for written
language identification. arXiv preprint arXiv:1801.07779.
van Amersfoort, J.; Smith, L.; Teh, Y. W.; and Gal, Y. 2020.
Uncertainty Estimation Using a Single Deep Deterministic
Neural Network. International conference on machine learn-
ing, PMLR, 9690–9700.
Wilson, A. G.; and Izmailov, P. 2020. Bayesian Deep Learn-
ing and a Probabilistic Perspective of Generalization. Ad-
vances in neural information processing systems, 4697–4708.
Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-MNIST:
a Novel Image Dataset for Benchmarking Machine Learning
Algorithms. arXiv preprint arXiv:1708.07747.
Xiao, T. Z.; Gomez, A. N.; and Gal, Y. 2020. Wat zei je?
Detecting Out-of-Distribution Translations with Variational
Transformers. arXiv preprint arXiv:2006.08344.
Yann LeCun; Léeon Bottou; Yoshua Bengio; and Patrick
Haffner. 1998. Gradient-Based Learning Applied to Docu-
ment Recognition. Proceedings of the IEEE, 2278–2324.
Zhang, X.; Zhao, J.; and LeCun, Y. 2015. Character-level
Convolutional Networks for Text Classification. Advances in
neural information processing systems.

7885

