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Abstract

Deep neural networks have become the driving force of mod-
ern image recognition systems. However, the vulnerability of
neural networks against adversarial attacks poses a serious
threat to the people affected by these systems. In this paper,
we focus on a real-world threat model where a Man-in-the-
Middle adversary maliciously intercepts and perturbs images
web users upload online. This type of attack can raise severe
ethical concerns on top of simple performance degradation.
To prevent this attack, we devise a novel bi-level optimization
algorithm that finds points in the vicinity of natural images
that are robust to adversarial perturbations. Experiments on
CIFAR-10 and ImageNet show our method can effectively
robustify natural images within the given modification budget.
We also show the proposed method can improve robustness
when jointly used with randomized smoothing.

Introduction

Recent progress in deep neural networks has enabled sub-
stantial performance gains in various computer vision tasks,
including image classification, object detection, and semantic
segmentation. Leveraging this advance, more practitioners
are deploying neural network-based image recognition sys-
tems in real-world applications, such as image tagging or
face recognition. However, neural networks are vulnerable
to adversarial examples (Szegedy et al. 2013), minute input
perturbations intentionally designed to mislead networks to
yield incorrect predictions. These adversarial examples can
significantly degrade the performance of the network models,
raising security concerns about their deployment.

When these image recognition systems are deployed to
applications where users freely upload images from local
machines to remote storage, such as social media, this vul-
nerability can pose another serious threat, especially to the
individual application users. Consider there exists a man-
in-the-middle (MitM) adversary that can intercept and add
perturbations to the images web users upload during transmis-
sion (Figure 1). Then, this adversary can easily vandalize neu-
ral network-based web services such as image auto-tagging

“These authors contributed equally.

Corresponding author
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

7823

User ! Web Application
“Pornography” ©®

Q
Adversarial Attack

,‘

Attacker

I-' H Lf‘(g_

am”,

Preemptive Robustification
L ]

User Web Application
“Dog” @

Attacker

Adversarial Attack

Figure 1: Illustration of our proposed method. Without protec-
tion, a MitM adversary can easily perturb the user’s image to
be misclassified by the web application (top). Our proposed
method preemptively robustifies the user’s image, securing
the image from adversarial attack (bottom).

in social media apps by perturbing the images to be mis-
classified. This type of attack can severely deteriorate user
experience, especially as the adversary can further use this
attack to insult the uploaders beyond simple misclassification.
Even though the MitM attack is one of the most lethal cyber
threats (Desmedt 2011; Li et al. 2019; Wang et al. 2019),
protecting neural networks from this type of attack has been
much less studied in adversarial machine learning literature.

In this work, we develop a new defense framework to pro-
tect web users from MitM attacks. To provide more effective
protection measures for the users, we focus on the fact that
users hold control of their images before the adversary, unlike
in conventional adversarial attack scenarios. Based on this
observation, we ask the following question:

* Can we preemptively manipulate images slightly to be
robust against MitM adversarial attacks?



To answer this, we explore the existence of points in image
space that are resistant to adversarial perturbations, given
a trained classifier. We propose a novel bi-level optimiza-
tion algorithm for finding those robust points under a given
modification budget starting from natural images and mea-
sure the degree of robustness achievable by utilizing these
points, which we denote as preemptive robustness. More-
over, we propose a new network training scheme that further
improves preemptive robustness. We validate the effective-
ness of our proposed framework in the image classification
task on CIFAR-10 (Krizhevsky and Hinton 2009) and Im-
ageNet (Russakovsky et al. 2015) datasets. Our extensive
experiments demonstrate that our framework can success-
fully robustify images against a wide range of adversarial
attacks in both black-box and white-box settings. We also ob-
serve that our method can enhance the preemptive robustness
on smoothed classifiers.

In summary, our main contributions are as follows:

* We introduce a novel real-world adversarial attack sce-
nario targeting users in image recognition systems.

* We propose a new defense framework to improve preemp-
tive robustness and formulate the preemptive robustifica-
tion process as a bi-level optimization problem.

* We demonstrate our proposed framework can significantly
improve preemptive robustness against a wide range of
adversarial attacks on standard benchmarks.

Related Works

Adpversarial robustness of neural networks Most prior
work on adversarial robustness aims to train neural networks
that achieve high accuracies on adversarially perturbed inputs.
PGD adversarial training improves the empirical robustness
of neural networks by augmenting training data with multi-
step PGD adversarial examples (Madry et al. 2017). Some
recent works report performance gains over PGD adversarial
training by modifying the adversarial example generation pro-
cedure (Zhang and Wang 2019; Zhang et al. 2020). However,
most of the recent algorithmic improvements can be matched
by simply using early stopping with PGD adversarial train-
ing (Rice, Wong, and Kolter 2020; Croce and Hein 2020).
Despite its effectiveness, a major drawback of adversarial
training is that it takes a huge computational cost to generate
adversarial examples during training. To address this, several
works develop fast adversarial training methods by reusing
the gradient computation or reducing the number of attack
iterations (Shafahi et al. 2019; Zhang et al. 2019a; Wong,
Rice, and Kolter 2020).

Although such adversarial training methods can signifi-
cantly improve the empirical robustness of neural networks,
there is no guarantee that a stronger, newly-discovered attack
would not break them. To address this, a separate line of work
focuses on certifying robustness against any adversarial per-
turbations (Raghunathan, Steinhardt, and Liang 2018; Wong
and Kolter 2018) but often has difficulty in scaling to large
neural networks. Randomized smoothing, a method that in-
jects random additive noises to inputs to construct smoothed
classifiers from base classifiers, has been considered the most
successful certified defense approach that can be applied to
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large neural networks (Lecuyer et al. 2019; Cohen, Rosenfeld,
and Kolter 2019; Salman et al. 2019; Yang et al. 2020).

Preemptive image manipulation for robustness There
have been a few studies on preemptive image manipulation to
protect images from being exploited, yet most of them utilize
it for privacy protection. In the facial recognition task, prior
work proposes an algorithm that slightly modifies personal
photos before uploading them to social media to make them
hard to be identified by malicious person recognition systems
(Oh, Fritz, and Schiele 2017; Shan et al. 2020; Cherepanova
et al. 2021). Our work differs from this prior work in that
our goal is to robustify images to be correctly identified by
classification systems even under adversarial perturbations.
The most relevant to our work is an approach of Salman
et al. (2020), which develops patches that can boost robust-
ness to common corruptions when applied to clean images.
However, we consider the problem of manipulating images to
be correctly classified against worst-case adversarial pertur-
bations, which are artificially designed to cause misclassifica-
tion. Ensuring robustness to adversarial perturbations is much
more challenging than robustifying images against common
corruptions, which are not the worst-case perturbations.

Methods
Problem Setup

To start, we introduce our defense framework for image clas-
sification models, along with the adversarial threat model.
In our framework, a defender can preemptively modify the
original image x,, to produce a new image z, that is visually
indistinguishable from x, ahead of adversarial attacks. After
the modification, the defender discards the original image x,,
so that adversary can only see the modified image x,.. Under
this framework, we can consider two types of adversaries:

* A grey-box adversary who has complete knowledge of the
classification model but does not know the modification
algorithm exists.

* A white-box adversary who not only has full access to the
classification model but also is aware of the existence of
the modification algorithm and how it works.

The grey-box adversary will regard the given image x, as
the original image and attempt to find an adversarial example
near x,., as from the conventional adversarial literature. In
contrast, the white-box adversary recognizes that x, is a
modified version. Thus, the white-box adversary will instead
try to guess the location of the original image x, and craft an
adversarial example near it.

In this paper, we investigate the defender’s optimal strat-
egy for manipulating original images to be resistant against
these two adversaries. First, we develop an algorithm that
preemptively robustifies original images against the grey-box
adversary. Then, we demonstrate our proposed algorithm
also exhibits high robustness against adaptively designed
white-box attacks.

Preemptive Robustness

We now formally introduce the concept of preemptive ro-
bustness. We begin by recalling the definition of adversar-



ial examples. Let ¢ : X — Y be a classifier which maps
images to class labels. Given an original image x, € X
and its class y, € ), suppose x, is correctly classified.
Then, an adversarial example 2 € X of z, is defined as
an image in the neighborhood of z, such that the classifier
changes its prediction, i.e., ¢(x%) # c(x,) and 2% € B.(z,).
Here, € > 0 is the perturbation budget of the adversary and
B(z) = {2/ € X | |2’ — x|, < €} denotes the closed
¢p-ball of radius e centered at x. Throughout this paper, we
consider p € {2, 0o}, the most common settings in adversar-
ial machine learning literature. If the classifier gives robust
predictions in the neighborhood of z,, then we say z, is
robust against adversarial perturbations.

We can extend this notion of adversarial robustness to the
whole image space X. To do this, we define the robust region
of a classifier c as the set of images that c can output robust
predictions in the presence of adversarial perturbations.

Definition 1 (e-robust region). Let ¢ : X — ) be a classifier
and € > ( be the perturbation budget of an adversary. The
e-robust region of the classifier c is defined by R.(c) = {x €
X | c(2)) = e(x), Vo' € Be(x)}.

Now, consider a defender who can preemptively manipu-
late x, under a small modification budget § > 0 to generate a
new image x, € Bs(z,), and a grey-box adversary who aims
to find an adversarial example near x,.. Then, the defender’s
optimal strategy against the adversary is to make x, be cor-
rectly classified as y, and locate in the robust region R, (c) so
that z,. is robust to adversarial perturbations. If both of these
two conditions are satisfied, we say x, is preemptively ro-
bust against the grey-box adversary and z.. is a preemptively
robustified image of x,.

Definition 2 (Preemptive robustness, grey-box). Letc : X —
Y be a classifier and 6,¢ > 0 be the modification budgets
of the defender and the grey-box adversary, respectively. An
original image x, with its class vy, is preemptively robust
against the grey-box adversary if there exists x, € Bs(z,)
such that (i) c(x,) = y, and (ii) x,. € R(c).

Next, we consider a white-box adversary against the de-

fender. Let us denote the manipulation algorithm of the de-
fenderbym : X x Y — X, i.e., . = m(z,, Y, ). Then, the
white-box adversary will adaptively design its attack algo-
rithm a,, : & x Y — X, which takes x, and y, as inputs
and produces a candidate of the adversarial example. For the
output a,, (., Y, ) to be a valid adversarial example, it should
be misclassified and located in B.(z,). If the output is not a
valid adversarial example, we say x, is preemptively robust
against the white-box adversary.
Definition 3 (Preemptive robustness, white-box). Let m :
X XY — X be the defender’s manipulation algorithm and
O+ X X Y — X be the adaptive attack algorithm of the
white-box adversary. Given an original image x, and its
class y,, let x,, = m(z,,y,) denote the resulting image of
the defender’s algorithm. Then, x, is called preemptively
robust against the white-box adversary if either of the fol-
lowing conditions is satisfied: (i) c(am (T, Yo)) = Yo oF (ii)
U (Tr, Yo) & Be(o).

Note that since the white-box adversary does not have
any information about the original x, in the MitM setting,
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forcing a, (., y,) to lie in B.(z,) is a non-trivial task for
the adversary.

Preemptive Robustification Algorithm

In this subsection, we develop an algorithm for preemptively
robustifying original images against the grey-box adversary.
Given a classifier ¢, finding a preemptively robustified im-
age x, from an original image x, can be formulated as the
following optimization problem, which is directly from Defi-
nition 2:

minimize Lo, )y, + Lo, ¢r.(c)

T,
subject to ||z, — x|, <4,
where 1 is the 0-1 loss function.

Note that in this formulation, the defender requires the
ground-truth label y,. However, images in real-world appli-
cations are usually unlabeled unless users manually annotate
their images. Therefore, it is natural to assume that the de-
fender does not have access to the ground-truth label y,. In
this case, we utilize the classifier’s prediction ¢(z,) instead
of y,:

minimize L y2c(e,) T 1z, ¢R.(c)

subject to ||z, — x|, < 4.
As x, ¢ Rc(c) implies there exists an adversarial example
x% € Bc(x,) such that ¢(z?) # c(z,), we can reformulate
the optimization problem as

minimize  Lee,)e(z,) +5UP Le(ee)ze(a,)
- zd

subject to ||z, — zollp < and |lzf — x|, <e.
Since 0-1 loss is not differentiable, we use the cross-entropy
loss £ : X x Y — RT of the classifier ¢ as the convex
surrogate loss function:

)

minimize £(z,,c(z,))
z,

+sup £l c(a,)
x5
subject to ||z, — ollp < and |lzf — x|, <e.
Let h(z,) denote the objective in Equation (1). In-
stead of minimizing h(z,) directly, we minimize h(x,) =
SUPgace B, (a,) (25, c(2,)) since it upper bounds h(z;.) when
sufficiently minimized due to Lemma 1.

Lemma 1. If h(z,) < —log(0.5) ~ 0.6931, then h(z,) <

2h(z,.).
Proof. See Supplementary A.1. O
Finally, we have the following optimization problem:
2

minimize sup £(zf, c(x,))
Ty I;L

subject to ||z, — ollp < J and |lzf — x|, <e.

To solve Equation (2), we first approximate the inner maxi-
mization problem by running 7'-step PGD (Madry et al. 2017)
whose dynamics is given by

a,0
r

Ty =2, +7 (random start)

7t = (52 e(ao), )

a2t =11, . (221,

(adversarial update)

(projection)



Algorithm 1: Preemptive robustification algorithm

input Original image and its prediction (z,, ¢(z,))
Xy = X, // or randomly initialized in Bs(x,)
fori=1,... MAXITER do
// Generate N PGD adversarial examples
forn=1,...,Ndo
x¢,, = x, + 1 where n ~ U(B(0))
fort=1,...,7 do
x?’,n — HiCmE (f(xg,n; C(J"O)7€))
end for
end for
// Update image

1 N0y, c@o))

T Hl T v —_—

e °"5<x PNET o )
end for
output z,

where 7) is a noise uniformly sampled from B, (0), f is FGSM
(Goodfellow, Shlens, and Szegedy 2015) defined as

x+a-sgn(Vyl(z,y)) if p=oo
flasy, ) = Val(z,y) :
r+oa ——m— if p=2,
IVal(z,y)ll;

and IT, . is a projection operation onto B,(xz,). Then, we
iteratively solve the approximate problem given by replacing
2% to %7 in Equation (2). To update z,., we compute the
gradient of ¢(x%, c(x,)) with respect to x, expressed as

ol (xf,c(x,))
ox, o
V.f (z?’O)T e Vof (xﬁ’Tfl)T Vil (287 e(,))

where V,, f is the Jacobian matrix of f = II;, . o f which
can be computed via back-propagation. After computing the
gradient, we update x,- by projected gradient descent method:

At cfxo))) |

Note that ¢(z%, ¢(z,)) is a random variable dependent on 7.
Therefore, we generate [V adversarial examples {x;‘m}nNzl
with different noises and optimize the sample mean of the
losses instead. Algorithm 1 shows the overall preemptive ro-
bustification algorithm and Figure 2 illustrates the optimiza-
tion process. Some examples of robustified images generated
from our algorithm are shown in Supplementary D.

Ty < HIO,S <xr - ﬁ

Computing Update Gradient without Second-Order
Derivatives

Computing the update gradient with respect to x,- involves
the use of second-order derivatives of the loss function ¢
since the dynamics f contains the loss gradient V /. Stan-
dard deep learning libraries, such as PyTorch (Paszke et al.
2019), support the computation of these higher-order deriva-
tives. However, it imposes a huge memory burden as the size
of the computational graph increases. Furthermore, when
p = 2, computing the update gradient with the second-order
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Figure 2: Illustration of the preemptive robustification pro-
cess. The shaded region represents the set of misclassified
points.

derivatives might cause an exploding gradient problem if the
loss gradient vanishes by Lemma 2 and Proposition 1.

Lemma 2. Suppose ¢ is twice-differentiable and its second
partial derivatives are continuous. If p = 2, the Jacobian of

the dynamics f is
) ()

H
lgll’

g
gl

where g = V.l and H = V2.

g
gl

fo—1+a~<l<

Proof. See Supplementary B.1. O

Proposition 1. If the maximum eigenvalue of H in absolute
value is o, then
) lalz

As we update x.., the loss gradients g of x,- and its interme-
diate adversarial examples z% reduce to zero, which might
cause the update gradient to explode and destabilize the up-
date process. To address this problem, we approximate the
update gradient by excluding the second-order derivatives,
following the practice in Finn, Abbeel, and Levine (2017).
We also include an experiment in comparison to using the
exact update gradient in Supplementary B.3. For the case of
p = 00, the second-order derivatives naturally vanish since
we take the sign of the loss gradient V. £(z, y). Therefore, the
approximate gradient is equal to the exact update gradient.

g

fo.rro] = (e
2 llgll2

Proof. See Supplementary B.2. O

Network Training Scheme for Improving
Preemptive Robustness

So far, we have explored how the defender can preemptively
robustify the original image, given a pre-trained classifier.
Now, we explore the defender’s network training scheme for



a classifier where data points are preemptively robust with
high probability. Suppose the defender has a labeled training
set, which is drawn from a true data distribution D. To induce
data points to be preemptively robust, the defender’s optimal
training objective should have the following form:

minimize E (27, Y03 0)]
0 (To,Yo0)~
subject to Ty = argmax (7}, Yo)
ZE,{,’JeBe(iT)
%, = argmin sup (28, y,),

z€Bs(xo) xﬁeBe(ﬂcr)

where 6 is the set of trainable parameters. Concretely, the
defender first attempts to craft a candidate for preemptively
robustified points Z,. of the original data point x,. Then, the
defender generates an adversarial example ¢ of Z,» and min-
imizes its cross-entropy loss £(£%, y,; 0) so that Z,. becomes
resistant to adversarial perturbations. Note that the ground-
truth label y, is used instead of the prediction ¢(z,), since
we assume the ground-truth label of the training set is given.

The most direct way to optimize the objective would be
to find &, from x,, using our preemptive robustification algo-
rithm and perform K -step PGD adversarial training (Madry
et al. 2017) with z,.. However, since our algorithm requires
running 7'-step PGD dynamics per each update, the proposed
training procedure would be more computationally demand-
ing than standard PGD adversarial training. To ease this prob-
lem, we replace the inner maximization sup,. ¢ (2%, y,) in

the preemptive robustification process by £(z;, ¥o):

%, = argmin sup Uz, y,)
2, €Bs(x,) x2E€Be(xy)
= &, = argmin £(Z,,Yo)-

zrEBs(x,)

Then, &, can be easily computed by running L-step PGD
on x, towards minimizing the cross-entropy loss. We denote
this training scheme as preemptively robust training. The full
training procedure is summarized in Algorithm 2 (differences
with the standard adversarial training marked in blue).

Note that the standard adversarial training is a specific case
of our preemptively robust training, forcing training data z,,
to be far from the decision boundary. However, recent work
demonstrates there is a trade-off between the classification er-
ror and the boundary error, which is why standard adversarial
training significantly decreases the clean accuracy (Tsipras
et al. 2019; Zhang et al. 2019b). In contrast, our proposed
training scheme allows original images x,, to lie near the deci-
sion boundary and only enforces the preemptively robustified
images Z,. to be distant from the boundary. Our experiments
in ?? show preemptively robust training is less prone to
suffer from the clean accuracy drop due to this flexibility.

Preemptive Robustification for Classifiers with
Randomized Smoothing

Our preemptive robustification algorithm can also be applied
to smoothed classifiers. Given a base classifierc: X — ), a
smoothed classifier ¢ : X — ) is defined as

é(x) = argmax P(c(z+ &) =y),
yeYy
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Algorithm 2: Preemptively robust training, p = oo

input Training dataset Dy, 4y, maximum epoch N
forn=1,...,Ndo
for (xo; yo) € Dtrain do
// Do L-step PGD towards minimizing loss
Zy = x, + 1 wWhere ) ~ B;(0)
fori=1,...,Ldo
Ty Hmo,é (Ir -8 Sgn(vmg(zm yo)))
end for
// Do K-step PGD towards maximizing loss
x¢ = x, + 1 where n ~ B.(0)
fort=1,..., K do
o Iy, e (27 + a - sgn(Val(al, yo)))
end for
00— Vol(z2,y,)
end for
end for

where £ ~ N (0, 021). Crafting adversarial examples 2@ for
the smoothed classifier, which is necessary for approximating
the inner maximization in Equation (2), is ill-behaved since
the argmax operation is non-differentiable. To address this
problem, we follow the practice in Salman et al. (2019) and
approximate the smoothed classifier ¢ with the smoothed soft
classifier C' : X — P(Y) defined as

C(z) [Cz+ )],

E
E~N(0,021)

3)

where P())) is the set of probability distribution over ) and
C : X — P(Y) is the soft version of the base classifier ¢
such that argmax,  , C (), = c(z). Finally, the adversarial
example z¢ can be found by maximizing the cross-entropy
loss of C instead:

maximize — log (C’(x‘f.)c(%))
T3
subject to ||z — z,||p <,

which can be approximated by 7T-step randomized PGD
(Salman et al. 2019), where ¢ is sampled M times to compute
the sample mean of Equation (3) at each step. By replacing
the inner maximization problem in Equation (2) with the
randomized PGD, we can update x,- in a similar process.

Adaptive Attack against Preemptive Robustification

So far, we have developed preemptive defense strategies
against the grey-box adversary. Now, we consider the white-
box adversary described in ?? , which is aware that the given
image x, has been preemptively modified and aims to craft
an adversarial example near the original image x, that is
unknown. The most direct way for the adversary to achieve
this is to reconstruct x,, from z,. and apply standard attack
algorithms (e.g., PGD) on the reconstructed image &,. Since
we assume the adversary knows the detailed hyperparameter
settings of the robustification algorithm, the adversary can
leverage this information to approximate the inverse dynam-
ics of the preemptive robustification process starting from x.,
as described in Algorithm 3. The only difference between this



Algorithm 3: Original image reconstruction

input Preemptively robustified image and its prediction

(;Tm c(zr))
To = Ty
fori=1,... MAXITER do
// Generate N adversarial examples
forn=1,...,Ndo
&5, = o +n where n ~ U(B(0))
fort=1,...,T do
'iz,n — Hime (f(i‘g,ru C(mT)’ 6))
end for
end for

// Update image

1 N oeze,,, c(xy))
7 ¢ || 7 75 - s 77
o o0 <x0+6 N =4 0, )
end for

output 7,

Algorithm 4: Adaptive white-box attack

input Preemptively robustified image and its prediction
(@r, c(z;)), target y,
// Reconstruct original image
%, = ORIGINALIMAGERECONSTRUCTION (Z;, ¢(2;))
// Run standard attack algorithm on reconstructed image
% = ATTACKALGORITHM(Z,, Yo, € )

output 2

reconstruction algorithm and the preemptive robustification
process is the initialization and the update direction, modified
to suit the reconstruction objective. Algorithm 4 shows the
overall procedure of the adaptive white-box attack. Note that
the adversary may modify £, with a budget smaller than € to
induce #% € B.(z,), considering the original image might
not be reconstructed accurately.

Figure 3 shows the proposed reconstruction algorithm per-
forms well in terms of reconstruction error if the preemptive
robustification algorithm starts from the original image itself.
However, as we run the preemptive robustification algorithm
starting from a random point in B;(z, ), the performance of
the reconstruction algorithm degrades considerably. About
80% of the reconstructed images locate near the boundaries
of e-balls centered at original images, which shows the diffi-
culty of reconstructing the original image. We also observe
that most of the resulting white-box attack examples gener-
ated from the reconstructed images lie outside B, (x, ), which
implies they are not valid adversarial examples.

Experiments

We evaluate our methods on CIFAR-10 and ImageNet by
measuring classification accuracies of preemptively robusti-
fied images under the grey-box and white-box adversaries.
As it is natural to assume that the defender and the adversary
have the same modification budget, we set § = ¢ for all ex-
periments. Both the adversaries use 20-step untargeted PGD
and AutoAttack (Croce and Hein 2020) to find adversarial
examples. For the white-box adversary, we sweep the final
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Figure 3: Histograms of the distances between original im-
ages x,, and the reconstructed images z,, or their white-box
attack examples 22 on CIFAR-10 test set. We use a preemp-
tively robust model with p = 2 and § = € = 0.5. The dotted
line indicates the adversary’s perturbation bound e.

perturbation budget ¢’ and report the lowest accuracy mea-
sured. More details are listed in Supplementary C. The code
is available online .

CIFAR-10

We consider two types of perturbations: ¢, with ¢ = 8/255
and /5 with e = 0.5. To show the effectiveness of our robusti-
fication algorithm, we also report results without preemptive
robustification (None)?. As the baseline for our preemptively
robust model, we use an adversarially trained model with
early stopping (Rice, Wong, and Kolter 2020) (ADV).

The results in Table 1 and Table 2 show that our preemp-
tive manipulation method successfully robustifies images
compared to without the manipulation, achieving adversarial
accuracies higher than 80% in both the perturbation settings.
Also, while the adversarially trained model does induce some
images to be preemptively robust, our proposed network train-
ing method further boosts the performance of the robustified
images in both the clean and adversarial accuracies.

Note that the white-box attacks are not effective on £, as
they fail to lay their adversarial examples within the B, (z,)
ball. This is in part due to the characteristic of the ¢, distance
measure, as /., distance can spike even when a single pixel
deviates from the original value. On the other hand, white-
box attacks on /5 perturbations succeed to pose reasonable
threats. However, the worst-case adversarial accuracy is still
over 10% higher than without our methods.

ImageNet

We consider two types of perturbations: ¢, with ¢ = 4/255
and /5 with € = 3.0. As with the CIFAR-10 experiments, we
compare our preemptive robustification algorithm to without

"https://github.com/snu-mllab/preemptive_robustification
?In this case, the grey-box adversary is the same as the white-box
adversary since no modification occurs on original images.



Grey-box White-box
Model  Preempt. ‘ Clean PGD AA PGD AA
ADV None | 86.72 5459 51.68 5459 51.68
ADV Ours 86.72 86.23 81.70 86.72 86.72
Ours Ours 88.54 87.10 82.88 88.54 88.54

Table 1: CIFAR-10 classification accuracy under grey-box
and white-box adversaries with £, perturbation, ¢ = 8/255.

Grey-box White-box
Model Preempt. ‘ Clean PGD AA PGD AA
ADV None | 90.85 7190 7121 7190 71.21
ADV Ours 90.85 84.81 83.56 85.12 79.48
Ours Ours 92.57 91.81 89.32 85.02 80.79

Table 2: CIFAR-10 classification accuracy under grey-box
and white-box adversaries with /5 perturbation, € = 0.5.

the algorithm (None). As the baseline, we use a model adver-
sarially trained with the fast training schemes (Wong, Rice,
and Kolter 2020) for computational efficiency (ADV).
Table 3 and Table 4 show our preemptive robustification
methods scale to more practical datasets with bigger images.
Our methods allow the natural images to be much more ro-
bust to adversarial attacks, with over 15% higher worst-case
adversarial accuracies, and at the same time maintains higher
clean accuracies. We observe that similar to the CIFAR-10 ex-
periments, the white-box attacks on the ¢, distance measure
are not successful in finding appropriate adversarial samples.

Grey-box White-box
Model  Preempt. ‘ Clean PGD AA PGD AA
ADV None | 56.24 3203 2752 3203 27.52
ADV Ours 56.24 5579 47.14 5624 56.24
Ours Ours 61.01 59.66 48.24 61.01 61.01

Table 3: ImageNet classification accuracy under grey-box
and white-box adversaries with ¢, perturbation, e = 4/255.

Grey-box White-box
Model Preempt. ‘ Clean PGD AA PGD AA
ADV None | 5499 32.07 2758 32.07 27.58
ADV Ours 55.05 51.70 4332 4638 3749
Ours Ours 61.60 58.13 43.60 5423 47.54

Table 4: ImageNet classification accuracy under grey-box
and white-box adversaries with /5 perturbation, e = 3.0.

Randomized Smoothing

We also evaluate our preemptive robustification algorithm for
smoothed classifiers. We consider /> perturbations, where
€ = 0.5 for CIFAR-10 and € = 3.0 for ImageNet. We utilize
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a smoothed model trained with Gaussian noise augmentation
as proposed in Cohen, Rosenfeld, and Kolter (2019) due to
its simplicity. We measure empirical adversarial accuracies
using 20-step randomized PGD and its 10 restart version
(PGD-10). We also compute the certified radii of the images
and measure the certified adversarial accuracies.

Table 5 and Table 6 shows the empirical robustness results
against the randomized PGD. We observe our methods can
significantly enhance preemptive robustness on the smoothed
classifiers, maintaining 28% and 49% higher the worst-case
adversarial accuracies than the baseline on CIFAR10 and Im-
ageNet, respectively. The results in Table 7 show our method
also improves the certified robustness on the smoothed net-
works. Our methods achieve 22% and 15% higher certified
accuracies on CIFAR10 and ImageNet, respectively.

Preempt. | Clean Grey-box White-box
pt. PGD PGD-10 PGD PGD-10
None 92.14 56.02 53.01 56.02 53.01
Ours 92.35 91.37 89.98 82.06 80.71

Table 5: CIFAR-10 empirical accuracy of smoothed network
under grey-box and white-box adversaries with /5 perturba-
tion, € = 0.5. We set the noise level to o = 0.1.

Preempt. | Clean Grey-box White-box
pt. PGD PGD-10 PGD PGD-10
None 69.93 9.61 8.61 9.61 8.61
Ours 70.05 62.27 57.24 68.05 67.72

Table 6: ImageNet empirical accuracy of smoothed network
under grey-box and white-box adversaries with ¢5 perturba-
tion, ¢ = 3.0. We set the noise level to o = 0.25.

Preempt. | Clean  Cert. Preempt. | Clean  Cert.
None 82.84 55.58 None 47.02 12.68
Ours 84.72 77.95 Ours 52.66 27.89

Table 7: CIFAR-10 (left) and ImageNet (right) certified accu-
racies of smoothed network with /5 perturbation. The noise
levels are 0 = 0.25 for CIFAR-10 and o = 1.0 for ImageNet.

Conclusion

We consider a real-world adversarial framework where the
MitM adversary intercepts and manipulates the images dur-
ing transmission. To protect users from such attacks, we
introduce a novel optimization algorithm for finding robust
points in the vicinity of original images along with a new
network training method suited for enhancing preemptive
robustness. The experiments show that our algorithm can find
such robust points for most of the correctly classified images.
Further results show our method also improves preemptive
robustness on smooth classifiers.
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