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Abstract

We study the problem of learning a Bayesian network (BN) of
a set of variables when structural side information about the
system is available. It is well known that learning the struc-
ture of a general BN is both computationally and statistically
challenging. However, often in many applications, side infor-
mation about the underlying structure can potentially reduce
the learning complexity. In this paper, we develop a recursive
constraint-based algorithm that efficiently incorporates such
knowledge (i.e., side information) into the learning process. In
particular, we study two types of structural side information
about the underlying BN: (I) an upper bound on its clique
number is known, or (II) it is diamond-free. We provide the-
oretical guarantees for the learning algorithms, including the
worst-case number of tests required in each scenario. As a con-
sequence of our work, we show that bounded treewidth BNs
can be learned with polynomial complexity. Furthermore, we
evaluate the performance and the scalability of our algorithms
in both synthetic and real-world structures and show that they
outperform the state-of-the-art structure learning algorithms.

Introduction
Bayesian networks (BNs) are probabilistic graphical models
that represent conditional dependencies in a set of random
variables via directed acyclic graphs (DAGs). Due to their
succinct representations and power to improve the prediction
and to remove systematic biases in inference (Pearl 2009;
Spirtes et al. 2000), BNs have been widely applied in various
areas including medicine (Flores et al. 2011), bioinformatics
(Friedman et al. 2000), ecology (Pollino et al. 2007), etc.
Learning a BN from data is in general NP-hard (Chickering,
Heckerman, and Meek 2004). However, any type of side
information about the network can potentially reduce the
complexity of the learning task.

BN structure learning algorithms are of three flavors:
constraint-based, e.g., parent-child (PC) algorithm (Spirtes
et al. 2000), score-based, e.g., (Chickering 2002; Solus,
Wang, and Uhler 2017; Zheng et al. 2018; Zhu, Ng, and
Chen 2020), and hybrid, e.g., MMHC algorithm (Tsamardi-
nos, Brown, and Aliferis 2006).

Although constraint-based methods do not require any
assumptions about the underlying generative model, they
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often require conditional independence (CI) tests with large
conditioning sets or a large number of CI tests which grows
exponentially as the number of variables increases1. Often in
practice, we have side information about the network that can
improve learning accuracy or reduce complexity. We show in
this work that such side information can reduce the learning
complexity to polynomial in terms of the number of CI tests.
Our main contributions are as follows.

• We propose a constraint-based Recursive Structure Learn-
ing (RSL) algorithm to recover BNs. In addition, we study
two types of structural side information: (I) an upper bound
on the clique number of the graph is known, or (II) the
graph is diamond-free. In each case, we provide a learning
algorithm. RSL follows a divide-and-conquer approach: it
breaks the learning problem into several sub-problems that
are similar to the original problem but smaller in size by
eliminating removable variables (see Definition 1). Thus,
in each recursion, both the size of the conditioning sets and
the number of CI tests decrease.

• Learning BNs with bounded treewidth has recently at-
tracted attention. Works such as (Korhonen and Parviainen
2013; Nie et al. 2014; Ramaswamy and Szeider 2021) aim
to develop learning algorithms for BNs when an upper
bound on the treewidth of the graph is given as side infor-
mation. Assuming bounded treewidth is more restrictive
than bounded clique number assumption, i.e., having a
bound on the treewidth implies an upper bound on the
clique number of the network. Hence, our proposed al-
gorithm with structural side information of type (I) can
also learn bounded treewidth BNs. However, our algorithm
has polynomial complexity, while the state-of-the-art exact
learning algorithms have exponential complexity.

• We show that when the clique number of the underly-
ing BN is upper bounded by m, i.e., ω(G) ≤ m (See
Table 1 for the graphical notations), our algorithm re-
quires O(n2 + n∆m+1

in ) CI tests (Theorem 1). Further-
more, when the graph is diamond-free, our algorithm re-
quires O(n2 + n∆3

in) CI tests (Theorem 2). These bounds
significantly improve over the state of the art.

1See (Scutari 2014) for an overview on implementations of
constraint-based algorithms.
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n Number of variables
∆(G) Maximum degree of DAG G

∆in(G) Maximum in-degree of DAG G
ω(G) Clique number of graph G
NG(X) Neighbors of X in DAG G
ChG(X) Children of X in DAG G
PaG(X) Parents of X in DAG G
CPG(X) Co-parents of X in DAG G
MbV(X) Markov boundary of X among set V
α(G) Maximum Mb size of G

Table 1: Graphical notations that we use in this paper.

Related work: Herein, we review the relevant work on BN
learning methods as well as those with side information.

The PC algorithm (Spirtes et al. 2000) is a classical exam-
ple of constraint-based methods that requiresO(n∆) number
of CI tests. CS (Pellet and Elisseeff 2008) and MARVEL
(Mokhtarian et al. 2021) are two examples that focus on BN
structure learning with small number of CI tests by using
the Markov boundaries (Mbs). This results in O(n22α) and
O(n2 + n∆2

in2∆in) number of CI tests for CS and MARVEL,
respectively. On the other hand, methods such as GS (Mar-
garitis and Thrun 1999), MMPC (Tsamardinos, Aliferis, and
Statnikov 2003a), and HPC (de Morais and Aussem 2010)
focus on reducing the size of the conditioning sets in their CI
tests. However, the aforementioned methods are not equipped
to take advantage of side information. Table 2 compares the
complexity of various constraint-based algorithms in terms of
their CI tests. RSLω and RSLD are our proposed algorithms
when an upper bound on the clique number is given and when
the BN is diamond-free, respectively. Note that in general,
∆in ≤ ∆ ≤ α, and in a DAG with a constant in-degree, ∆
and α can grow linearly with the number of variables.

Side information about the underlying generative model
has been harnessed for structure learning in limited fash-
ion, e.g., (Sesen et al. 2013; Flores et al. 2011; Oyen, An-
derson, and Anderson-Cook 2016; McLachlan et al. 2020).
As an example, (Takeishi and Kawahara 2020) propose an
approach to incorporate side knowledge about feature rela-
tions into the learning process. (Shimizu 2019) and (Sondhi
and Shojaie 2019) study the structure learning problem
when the data is from a linear structural equation model
and propose LiNGAM and reduced PC algorithms, respec-
tively. (Claassen, M. Mooij, and Heskes 2013; Zheng et al.

Algorithm #CI tests
PC O(n∆)
GS O(n2 + nα22α)

MMPC, CS O(n22α)
MARVEL O(n2 + n∆2

in2∆in)
RSLD O(n2 + n∆3

in)
RSLω O(n2 + n∆m+1

in )

Table 2: Required number of CI tests in the worst case by
various algorithms.

2020) consider learning sparse BNs. In particular, (Claassen,
M. Mooij, and Heskes 2013) show that in sparse setting, BN
recovery is no longer NP-hard, even in the presence of un-
observed variables. That is for sparse graphs with maximum
node degree of ∆, a sound and complete BN can be obtained
by performing O(n2(∆+2)) CI tests.

Side information has been incorporated into score-based
methods in limited fashions too, e.g., (Chen et al. 2016; Li
and van Beek 2018; Bartlett and Cussens 2017). The side
information in the aforementioned works is in the form of
ancestral constraints which are about the absence or presence
of a directed path between two vertices in the underlying BN.
(Bartlett and Cussens 2017) cast this problem as an integer
linear program. The proposed method by (Chen et al. 2016)
recovers the network with guaranteed optimality but it does
not scale beyond 20 random variables. The method by (Li
and van Beek 2018) scales up to 50 variables but it does not
provide any optimality guarantee.

Another related problem is optimizing
∑
v∈V fv(Pa(v))

over a set of DAGs with vertices V and parent sets
{Pa(v)}v∈V. In this problem {fv(·)}v∈V is a set of prede-
fined local score functions. This problem is NP-hard (Chicker-
ing, Heckerman, and Meek 2004). Note that the BN structure
learning can be formulated as a special case of this problem
by selecting appropriate local score functions. (Korhonen and
Parviainen 2013) introduce an exact algorithm for solving
this problem with complexity 3nnt+O(1) under a constraint
that the optimal BN has treewidth at most t. (Elidan and
Gould 2008) propose a heuristic algorithm that finds a sub-
optimal DAG with bounded treewidth which runs in time
polynomial in n and t. Knowing a bound on the treewidth is
yet another type of structural side information that is more
restrictive2 than our structural assumptions. Therefore, RSLω
can learn bounded treewidth BNs with polynomial complex-
ity, i.e.,O(n2 +n∆t+2

in ), where t is a bound on the treewidth
and ∆in < n.

(Korhonen and Parviainen 2015) is another score-based
method that study the BN structure learning when an upper
bound k on the vertex cover number of the underlying BN is
available. Their algorithm has complexity 4kn2k+O(1). Since
the vertex cover number of a graph is greater than its clique
number minus one, then RSLω can also recover a bounded
vertex cover numbers BN with complexity O(n2 + n∆k+2

in ).
(Grüttemeier and Komusiewicz 2020) consider the structural
constraint that the moralized graph can be transformed into
a graph with maximum degree one by at most r vertex dele-
tions. They show that under this constraint, an optimal net-
work can be learned in nO(r2) time.

Preliminaries
Throughout the paper, we use capital letters for random vari-
ables and bold letters for sets. Also, the graphical notations
are presented in Table 1.

A graph is defined as a pair G = (V,E) where V is a
finite set of vertices and E is the set of edges. If E is a set
of unordered pairs of vertices, the graph is called undirected

2In General, Treewidth+1≥ω, (Bodlaender and Möhring 1993).
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and if it is a set of ordered pairs, it is called directed. An
undirected graph is called complete if E contains all edges.
A directed acyclic graph (DAG) is a directed graph with no
directed cycle. In an edge (X,Y ) ∈ E (or {X,Y } ∈ E, in
case of an undirected graph), the vertices X and Y are the
endpoints of that edge and they are called neighbors. Let
G = (V,E) be a (directed or undirected) graph and V ⊆ V,
then the induced subgraph G[V] is the graph whose vertex
set is V and whose edge set consists of all of the edges in
E that have both endpoints in V. The skeleton of a graph
G = (V,E) is its undirected version. The clique number of
an undirected graph G is the number of vertices in the largest
induced subgraph of G that is complete.

Let X,Y, and S be three disjoint subsets of V. We use
X ⊥G Y|S to indicate S d-separates3 X and Y in G. In this
case, the set S is called a separating set for X and Y. Suppose
PV is the joint probability distribution of V. We use X ⊥
⊥PV

Y|S to denote the Conditional Independence (CI) of
X and Y given S. Also, a CI test refers to detecting whether
X ⊥⊥PV

Y |S. A DAG G is said to be an independency
map (I-map) of PV if for every three disjoint subsets of
vertices X,Y, and S we have X ⊥G Y |S ⇒ X ⊥⊥PV

Y |S.
A DAG G is a minimal I-map of PV if it is an I-map of
PV and the resulting DAG after removing any edge is no
longer an I-map of PV. A DAG G = (V,E) is called a
Bayesian network (BN) of PV, if and only if G is a minimal
I-map of PV. The joint probability distribution PV with a
BN G = (V,E) satisfies the Markov factorization property,
that is PV =

∏
X∈V PV(X|PaG(X)) (Pearl 1988).

A joint distribution PV may have several BNs. The Markov
equivalence class (MEC) of PV, denoted by 〈PV〉, is the set
of all its BNs. It has been shown that two DAGs belong
to a MEC if and only if they share the same skeleton and
the same set of v-structures4 (Pearl 2009). A MEC 〈PV〉
can be uniquely represented by a partially directed graph5

called essential graph. A DAG G = (V,E) is called a depen-
dency map (D-map) of PV if for every three disjoint subsets
of vertices X,Y, and S, X ⊥⊥PV

Y|S implies X ⊥G Y|S.
This property is also known as faithfulness in the causal-
ity literature (Pearl 2009). Furthermore, G is called a per-
fect map if it is both an I-map and a D-map of PV, i.e.,
X ⊥G Y|S ⇐⇒ X ⊥⊥PV

Y|S. Note that if G is perfect map
of PV, then it belongs to 〈PV〉, i.e., a perfect map is a BN.

Problem description: The BN structure learning problem
involves identifying 〈PV〉 from PV on the population-level
or from a set of samples of PV. As mentioned earlier, the
constraint-based methods perform this task using a series of
CI tests. In this paper, we consider the BN structure learning
problem using a constraint-based method, when we are given
structural side information about the underlying DAG.

3See Appendix A (arxiv.org/abs/2112.10884) for the definition.
4Three verticesX,Y , and Z form a v-structure ifX → Y ← Z

while X and Z are not neighbors.
5It is a graph with both directed and undirected edges.

Algorithm 1: Recursive Structure Learning (RSL).
1: Input: V, PV, SideInfo
2: MbV ← ComputeMb(V, PV)
3: (H, SV)← RSL(V, PV, MbV, SideInfo)

1: RSL(V, PV, MbV, SideInfo)

2: if |V| = 1 then
3: return ((V,∅),∅)
4: else
5: X ← FindRemovable(V, PV, MbV, SideInfo)
6: (NG[V](X), SX)←

FindNeighbors(X, V, PV, MbV(X), SideInfo)
7: MbV\{X} ← UpdateMb(X, PV, NG[V](X), MbV)

8: (H[V \ {X}], SV\{X})←
RSL(V \ {X}, PV\{X}, MbV\{X}, SideInfo)

9: ConstructH[V] byH[V \ {X}] and undirected
edges between X and NG[V](X).

10: SV ← SV\{X} ∪ SX
11: return (H[V], SV)

Learning Bayesian Networks Recursively
Suppose G = (V,E) is a perfect map of PV and letH denote
its skeleton. Recall that learning 〈PV〉 requires recoveringH
and the set of v-structures of G. It has been shown that finding
a separating set for each pair of non-neighbor vertices in G
suffices to recover its set of v-structures (Spirtes et al. 2000).
Thus, we propose an algorithm called Recursive Structure
Learning (RSL) that recursively finds H along with a set
of separating sets SV for non-neighbor vertices in V. The
pseudocode of RSL is presented in Algorithm 1.

RSL’s inputs comprise a subset V ⊆ V with its joint
distribution PV

6 such that G[V] is a perfect map of PV, and
their Markov boundaries MbV (see Definition 2), along with
structural side information, which can be either diamond-
freeness, or an upper bound on the clique number. In this
case, RSL outputsH[V] and a set of separating sets SV for
non-neighbor vertices in V. The RSL consists of three main
sub-algorithms: FindRemovable, FindNeighbors, and Up-
dateMb. It begins by calling FindRemovable in line 5 to
find a vertex X ∈ V such that the resulting graph after re-
movingX from the vertex set, G[V\{X}], remains a perfect
map of PV\{X}. Afterwards, in line 6, FindNeighbors iden-
tifies the neighbors of X in G[V] and a set of separating sets
for X and each of its non-neighbors in this graph. In lines 7
and 8, RSL updates the Markov boundaries and calls itself
to learn the remaining graph after removing vertex X , i.e.,
G[V \ {X}], respectively. The two functions FindRemov-
able and FindNeighbors take advantage of the provided side
information, as we shall discuss later.

As mentioned above, it is necessary for G[V] to remain
a perfect map of PV at each iteration. This cannot be guar-

6In practice, the finite sample data at hand is used instead of PV.
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anteed if X is chosen arbitrarily. (Mokhtarian et al. 2021)
introduced the notion of removability in the context of causal
graphs and showed that removable variables are the ones that
preserve the perfect map assumption after the distribution is
marginalized over them. In this work, we introduce a similar
concept in the context of BN structure recovery.
Definition 1 (Removable). Suppose G = (V,E) is a DAG
and X ∈ V. Vertex X is called removable in G if the d-
separation relations in G and G[V \ {X}] are equivalent
over V \ {X}. That is, for any vertices Y, Z ∈ V \ {X} and
S ⊆ V \ {X,Y, Z},

Y ⊥G Z|S ⇐⇒ Y ⊥G[V\{X}] Z|S. (1)

Proposition 1. Suppose G = (V,E) is a perfect map of PV.
For each variable X ∈ V, G[V \ {X}] is a perfect map of
PV\{X} if and only if X is a removable vertex in G.

All proofs appear in Appendix B.

Markov boundary (Mb): Our proposed algorithm uses
the notion of Markov boundary.
Definition 2 (Mb). Suppose PV is the joint distribution on
V. The Mb of X ∈ V, denoted by MbV(X), is a minimal
set S ⊆ V \ {X} s.t. X ⊥⊥PV

V \ (S ∪ {X})|S. We denote
(MbV(X) : X ∈ V) by MbV.
Definition 3 (co-parent). Two non-neighbor variables are
called co-parents in G, if they share at least one child. For
X ∈ V, the set of co-parents of X is denoted by CPG(X).

If G is a perfect map of PV, for every vertex X ∈ V,
MbV(X) is unique (Pearl 1988) and it is equal to

MbV(X) = PaG(X) ∪ ChG(X) ∪ CPG(X). (2)

The subroutines FindRemovable and FindNeighbors
need the knowledge of Mbs to perform their tasks. Several
constraint-based and scored-based algorithms have been de-
veloped in literature such as TC (Pellet and Elisseeff 2008),
GS (Margaritis and Thrun 1999), and others (Tsamardinos
et al. 2003) that can recover the Mbs of a set of random vari-
ables. Initially, any of the aforementioned algorithms could
be used in ComputeMb to find MbV and pass it to the RSL.
After eliminating a removable vertex X , the Mbs of the re-
maining graph will change. Therefore, we need to update
and pass MbV\{X} to the next recall of RSL. This is done
by function UpdateMb in line 7 of Algorithm 1. We pro-
pose Algorithm 2 for UpdateMb and prove its soundness
and complexity in Proposition 2. Further discussion about
this algorithm is presented in Appendix D.

Proposition 2. Suppose G[V] is a perfect map of PV and X
is a removable variable in G[V]. Algorithm 2 correctly finds
MbV\{X} by performing at most

(|NG[V](X)|
2

)
CI tests.

Learning BN with Known Upper Bound on the
Clique Number

In this section, we consider the BN structure learning problem
when we are given an upper bound m on the clique number
of the underlying BN and propose algorithms 3 and 4 to
efficiently find removable vertices along with their neighbors.

Algorithm 2: Updates Markov boundaries (Mbs).
1: UpdateMb(X, PV, NG[V](X), MbV)

2: MbV\{X} ← (MbV(Y ) : Y ∈ V \ {X})
3: for Y ∈ MbV(X) do
4: Remove X from MbV\{X}(Y ).
5: if NG[V](X) = MbV(X) then
6: for Y, Z ∈ NG[V](X) do
7: if Y ⊥⊥PV

Z|MbV\{X}(Y ) \ {Y, Z} then
8: Remove Z from MbV\{X}(Y )

9: Remove Y from MbV\{X}(Z)

10: return MbV\{X}

We denote the resulting RSL with these implementations
of FindRemovable and FindNeighbors by RSLω . First, we
present a sufficient removability condition in such networks,
which is the foundation of Algorithm 3.

Lemma 1. Suppose G = (V,E) is a DAG and a perfect
map of PV such that ω(G) ≤ m. Vertex X ∈ V is removable
in G if for any S ⊆ MbV(X) with |S| ≤ m− 2, we have

∀Y,Z ∈ MbV(X) \ S :

Y 6⊥⊥ PV
Z|
(
MbV(X) ∪ {X}

)
\
(
{Y,Z} ∪ S

)
,

and ∀Y ∈ MbV(X) \ S :

X 6⊥⊥ PV
Y |MbV(X) \ ({Y } ∪ S).

(3)

Also, the set of vertices that satisfy Equation (3) is nonempty.
Algorithm 3 first sorts the vertices in V based on their Mb

size and checks their removability, starting with the vertex
with the smallest Mb. This ensures that both the number of
CI tests and the size of the conditioning sets remain bounded.

Proposition 3. Suppose G[V] is a DAG and a perfect map
of PV s.t. ω(G[V]) ≤ m. Algorithm 3 returns a removable
vertex in G[V] by performing O(|V|∆in(G[V])m) CI tests.

We now turn to the function FindNeighbors. Recall that
the purpose of this function is to find the neighbors of a re-
movable vertex X and its separating sets. Since for every ver-
tex Y 6∈ MbV(X), we have Y ⊥⊥PV

X|MbV(X), MbV(X)
is a separating set for all vertices outside of MbV(X).
Therefore, it suffices to find the non-neighbors of X within
MbV(X) or equivalently the co-parents of X . Next result
characterizes the co-parents of a removable vertex X .

Algorithm 3: Finds a removable vertex.

1: FindRemovable(V, PV, MbV, SideInfo (m))
2: X = (X1, ..., X|V|)← V

3: Sort X s.t.
|MbV(X1)| ≤ |MbV(X2)| · · · ≤ |MbV(X|V|)|.

4: for i = 1 to |V| do
5: if (3) holds for X = Xi then
6: return Xi

7817



Algorithm 4: Finds neighbors and separating sets in
a graph with bounded clique number.

1: FindNeighbors(X, V, PV, MbV(X), SideInfo(m))
2: for Y ∈ V \MbV(X) do
3: Add 〈X|MbV(X)|Y 〉 to SX .
4: for Y ∈ MbV(X) do
5: if (4) holds then
6: Add 〈X|MbV(X) \ {Y, Z}|Y 〉 to SX .
7: else
8: Add Y to NG[V](X).
9: return (NG[V](X),SX)

Lemma 2. Suppose G[V] is a DAG and a perfect map of
PV with ω(G[V]) ≤ m. Let X ∈ V be a vertex that satisfies
Equation (3) and Y ∈ MbV(X). Then, Y ∈ CPG(X) iff

∃S ⊆ MbV(X) \ {Y } :

|S| = (m− 1) , X ⊥⊥PV
Y |MbV(X) \ ({Y } ∪ S). (4)

Algorithm 4 is designed based on Lemma 2. We use
〈X|Z|Y 〉 to denote that Z is a separating set for X and Y .
Theorem 1. Suppose G = (V,E) is a DAG and a perfect
map of PV with ω(G) ≤ m. Then, RSL (Algorithm 1) with
sub-algorithms 3 and 4 is sound and complete, and performs
O(|V|2∆in(G)m) CI tests.

Learning BN Without Side Information
We showed in Theorem 1 that if the upper bound on the
clique number is correct, i.e., ω(G) ≤ m, then RSLω learns
the DAG correctly. But what happens if ω(G) > m? In this
case, there are two possibilities: either Algorithm 3 fails to
find any removables and consequently, RSLω fails or RSLω
terminates with output (H̃,SV). Next result shows that the
clique number of H̃ is greater or equal to ω(G) and thus, it is
strictly larger than m.
Proposition 4 (Verifiable). Suppose G = (V,E) is a DAG
with skeletonH that is a perfect map of PV. If the RSL with
sub-algorithms 3 and 4, and input m > 0 terminates, then
the clique number of the learned skeleton is at least ω(G).

This result implies that executing RSLω with input m
either outputs a graph with clique number at most m, which
is guaranteed to be the true BN, or indicates that the upper
bound m is incorrect. As a result, we can design Algorithm 5
using RSLω when no bound on the clique number is given.

Algorithm 5: Learns BN without side information.
1: Input: V, PV

2: MbV ← ComputeMb(V, PV)
3: for m from 1 to |V| do
4: Ĝ ← RSL(V, PV, MbV, SideInfo(m))
5: if RSL terminates and ω(Ĝ) ≤ m then
6: return Ĝ

A
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Figure 1: Diamond graphs.

Learning Diamond-free BNs
In this section, we consider a well-studied class of graphs,
namely diamond-free graphs. These graphs appear in many
real-world applications (see Appendix F). Diamond-free
graphs also occur with high probability in a wide range of
random graphs. For instance, an Erdos-Renyi graph G(n,p)
is diamond-free with high probability, if pn0.8 → 0 (See
Lemma 5.) Various NP-hard problems such as maximum
weight stable set, maximum weight clique, domination and
coloring have been shown to be linearly or polynomially solv-
able for diamond-free graphs (Brandstädt 2004; Dabrowski,
Dross, and Paulusma 2017). We show that the structure learn-
ing problem for diamond-free graphs is also polynomial-time
solvable.
Definition 4 (diamond-free graphs). The graphs depicted in
Figure 1 are called diamonds. A diamond-free graph is a
graph that contains no diamond as an induced subgraph.

Note that triangle-free graphs are a subset of diamond-free
graphs. Recall that RSLω withm = 2 can lean a triangle-free
BN with complexity O(|V|2∆in(G)2). Herein, we propose
new subroutines for FindRemovable and FindNeighbors
with which, RSL can learn diamond-free BNs with the same
complexity as triangle-free networks. We start with providing
a necessary and sufficient condition for removability in a
diamond-free graph.

Lemma 3. Suppose G = (V,E) is a diamond-free DAG and
a perfect map of PV. Vertex X ∈ V is removable in G if and
only if ∀Y, Z ∈ MbV(X) :

Y 6⊥⊥ PV
Z|(MbV(X) ∪ {X}) \ {Y,Z}. (5)

Furthermore, the set of removable vertices is nonempty.
Based on Lemma 3, the pseudocode for FindRemovable

function is identical to Algorithm 3, except that it gets the
diamond-freeness as input instead of m and it checks for (5)
instead of (3) in line 5.

Similar to RSLω , we have the following result.

Proposition 5. Suppose G[V] is a diamond-free DAG and
a perfect map of PV. FindRemovable returns a removable

vertex in G[V] by performing at most |V|
(

∆in(G[V])
2

)
CI tests.

Analogous to the case with bounded clique number, the
next result characterizes the co-parents of a removable vertex
in a diamond-free graph.

Lemma 4. Suppose G = (V,E) is a diamond-free DAG and
a perfect map of PV. Let X ∈ V be a removable vertex in G,
and Y ∈ MbV(X). In this case, Y ∈ CPG(X) if and only if

∃Z ∈ MbV(X)\{Y } : X ⊥⊥PV
Y |MbV(X)\{Y,Z}. (6)
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Accordingly, FindNeighbors is identical to Algorithm 4,
except that diamond-freeness is input to it rather than m and
it checks for (6) instead of (4) in line 5.

Theorem 2. Suppose G = (V,E) is a diamond-free DAG
and a perfect map of PV. RSLD is sound and complete, and
performs O(|V|2∆in(G)2) CI tests.

A limitation of RSLD is that diamond-freeness is not veri-
fiable, unlike a bound on the clique number. However, even if
the BN has diamonds, RSLD correctly recovers all the exist-
ing edges with possibly extra edges, i.e., RSLD has no false
negative (see Appendix C for details.) Further, as we shall
see in our experiments, RSLD achieves the best accuracy in
almost all cases in practice, even when BNs have diamonds.

Discussion
Complexity analysis: Theorems 1 and 2 present the max-
imum number of CI tests required by Algorithm 1 to learn
a DAG with bounded clique number and a diamond-free
DAG, respectively. However, this algorithm may perform a
CI test several times. We present an implementation of RSL
in Appendix E that avoids such unnecessary duplicate tests
(by keeping track of the performed CI tests, using mere log-
arithmic memory space) and achieves O(|V|∆in(G)3) and
O(|V|∆in(G)m+1) CI tests in diamond-free graphs and those
with bounded clique number, respectively. Recall that Algo-
rithm 1 initially takes MbV as an input, and finding the Mbs
requires an additional O(|V|2) number of CI tests.

Due to the recursive nature of RSL, the size of condition-
ing sets in each iteration reduces. Furthermore, since the
size of the Mb of a removable variable is bounded by the
maximum in-degree7, RSL performs CI tests with small con-
ditioning sets. Having small conditioning sets in each CI test
is essential to reduce sample complexity of the learning task.
In our experiments, we empirically show that our proposed
algorithms outperform the state of the art by having both
lower number of CI tests and smaller conditioning sets.

Random BNs: As discussed earlier, diamond-free graphs
or BNs with bounded clique numbers appear in some specific
applications. Herein, we show that such structures also ap-
pear with high probability in networks whose edges appear
independently and therefore, are essentially realizations of
Erdos-Renyi graphs (Erdős and Rényi 1960).

Lemma 5. A random graph G generated from Erdos-Renyi
model G(n, p) is diamond-free with high probability when
pn0.8→0 and ω(G) ≤ m when pn2/m→0.

Experiment
In this section, we present a set of experiments to illustrate the
effectiveness of our proposed algorithms8. We compare the
performance of RSLD and RSLω with MARVEL (Mokhtar-
ian et al. 2021), a modified version of PC (Spirtes et al. 2000;
Pellet and Elisseeff 2008) that uses Mbs, GS (Margaritis and
Thrun 1999), CS (Pellet and Elisseeff 2008), and MMPC

7See Lemma 6 in Appendix B.
8The MATLAB implementation of our algorithms is publicly

available at https://github.com/Ehsan-Mokhtarian/RSL.

(Tsamardinos, Aliferis, and Statnikov 2003b) on both real-
world structures and Erdos-Renyi random graphs.

All aforementioned algorithms are Mb based. Thus, we
initially use TC (Pellet and Elisseeff 2008) algorithm to com-
pute MbV, and then pass it to each of the methods for the
sake of fair comparison. The algorithms are compared in
two settings: I) oracle, and II) finite sample. In the oracle
setting, we are working in the population level, i.e., the CI
tests are queried through an oracle that has access to the
true CI relations among the variables. In the latter setting,
algorithms have access to a dataset of finite samples from
the true distribution. Hence, the CI tests might be noisy. The
samples are generated using a linear model where each vari-
able is a linear combination of its parents plus an exogenous
noise variable; the coefficients are chosen uniformly at ran-
dom from [−1.5,−1] ∪ [1, 1.5], and the noises are generated
from N (0, σ2), where σ is selected uniformly at random
from [

√
0.5,
√

1.5]. As for the CI tests, we use Fisher Z-
transformation (Fisher 1915) with significance level 0.01 in
the algorithms (alternative values did not alter our experi-
mental results) and 2

n2 for Mb discovery (Pellet and Elis-
seeff 2008). These are standard evaluations’ scenarios of-
ten performed in the structure learning literature (Colombo
and Maathuis 2014; Améndola et al. 2020; Mokhtarian et al.
2021; Huang et al. 2012; Ghahramani and Beal 2001; Scu-
tari, Vitolo, and Tucker 2019). We compare the algorithms in
terms of runtime, the number of performed CI tests, and the
f1-scores of the learned skeletons. In Appendix F, we further
report other measurements (average size of conditioning sets,
precision, recall, structural hamming distance) of the learned
skeletons, and accuracy of the learned separating sets.

Figure 2 illustrates the performance of BN learning algo-
rithms on random Erdos-Renyi G(n, p) model graphs. Each
point is reported as the average of 100 runs, and the shaded
areas indicate the 80% confidence intervals. Runtime and
the number of CI tests are reported after Mb discovery. Fig-
ures 2a, 2b and 2c demonstrate the number of CI tests each
algorithm performed in the oracle setting, for the values
of p = n−0.82,n−0.72, and n−0.53, respectively. In 2a, the
graphs are diamond-free with high probability (see Discus-
sion for details). In 2d, ω ≤ 3 with high probability, but the
graphs are not necessarily diamond-free. In 2c, ω ≤ 4, with
high probability. We have not included the result of RSLD in
Figure 2c, as the graphs contain diamonds with high proba-
bility, and RSLD has no theoretical guarantee despite of low
complexity. Figures 2d and 2e demonstrate the performance
of the algorithms in the finite sample setting, when 50n and
20n samples were available, respectively. Although RSLD
does not have any theoretical correctness guarantee to recover
the network (graphs are not diamond-free), both RSLD and
RSLω outperform other algorithms in terms of both accuracy
and computational complexity in most cases. The lower run-
time of MARVEL and MMPC compared to RSLω in Figure
2e can be explained through their significantly low accuracy
due to skipping numerous CI tests.

Figure 3 illustrates the performance of BN learning algo-
rithms on two real-world structures, namely Diabetes (An-
dreassen et al. 1991) and Andes (Conati et al. 1997) networks,
over a range of different sample sizes. Each point is reported
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(d) On data; G(n, p) with p = n−0.72 and sample size = 50n.
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(e) On data; G(n, p) with p = n−0.65 and sample size = 20n.

Figure 2: Performance of various algorithms on random graphs generated from Erdos-Renyi models.
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(a) On data; Diabetes (n = 104, |E| = 148, ω = 3,∆in = 2,∆ = 7, α = 12, diamond-free).
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(b) On data; Andes (n = 223, |E| = 328, ω = 3,∆in = 6,∆ = 12, α = 23, not diamond-free).

Figure 3: Performance of various algorithms on real-world structures.

as the average of 10 runs. As seen in Figures 3a and 3b, both
RSL algorithms outperform other algorithms in both accuracy
and complexity. Note that although Andes is not a diamond-
free graph, RSLD achieves the best accuracy in Figure 3b.
Similar experimental results for five real-world structures in
both oracle and finite sample settings along with detailed
information about these structures appear in Appendix F.

Conclusion
In this work, we presented the RSL algorithm for BN struc-
ture learning. Although our generic algorithm has exponential
complexity, we showed that it could harness structural side

information to learn the BN structure in polynomial time. In
particular, we considered two types of side information about
the underlying BN: I) when an upper bound on its clique
number is known, and II) when the BN is diamond-free. We
provided theoretical guarantees and upper bounds on the num-
ber of CI tests required by our algorithms. We demonstrated
the superiority of our proposed algorithms in both synthetic
and real-world structures. We showed in the experiments that
even when the graph is not diamond-free, RSLD outperforms
various algorithms both in time complexity and accuracy.
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Erdős, P.; and Rényi, A. 1960. On the evolution of random
graphs. Publications of the Mathematical Institute of the
Hungarian Academy of Sciences, 5: 17–61.

Fisher, R. A. 1915. Frequency distribution of the values of
the correlation coefficient in samples from an indefinitely
large population. Biometrika, 10(4): 507–521.
Flores, M. J.; Nicholson, A. E.; Brunskill, A.; Korb, K. B.;
and Mascaro, S. 2011. Incorporating expert knowledge when
learning Bayesian network structure: a medical case study.
Artificial intelligence in medicine, 53(3): 181–204.
Friedman, N.; Linial, M.; Nachman, I.; and Pe’er, D. 2000.
Using Bayesian networks to analyze expression data. Journal
of computational biology, 7(3-4): 601–620.
Ghahramani, Z.; and Beal, M. J. 2001. Propagation algo-
rithms for variational Bayesian learning. Advances in neural
information processing systems, 507–513.
Grüttemeier, N.; and Komusiewicz, C. 2020. Learning
Bayesian Networks Under Sparsity Constraints: A Parameter-
ized Complexity Analysis. arXiv preprint arXiv:2004.14724.
Huang, S.; Li, J.; Ye, J.; Fleisher, A.; Chen, K.; Wu, T.;
Reiman, E.; Initiative, A. D. N.; et al. 2012. A sparse struc-
ture learning algorithm for gaussian bayesian network identi-
fication from high-dimensional data. IEEE transactions on
pattern analysis and machine intelligence, 35(6): 1328–1342.
Korhonen, J.; and Parviainen, P. 2013. Exact learning of
bounded tree-width Bayesian networks. In Artificial Intelli-
gence and Statistics, 370–378. PMLR.
Korhonen, J. H.; and Parviainen, P. 2015. Tractable Bayesian
network structure learning with bounded vertex cover number.
Advances in Neural Information Processing Systems, 28: 622–
630.
Li, A.; and van Beek, P. 2018. Bayesian Network Structure
Learning with Side Constraints. In Proceedings of the Ninth
International Conference on Probabilistic Graphical Models,
Proceedings of Machine Learning Research, 225–236.
Margaritis, D.; and Thrun, S. 1999. Bayesian network induc-
tion via local neighborhoods. Advances in Neural Informa-
tion Processing Systems, 12: 505–511.
McLachlan, S.; Dube, K.; Hitman, G. A.; Fenton, N. E.; and
Kyrimi, E. 2020. Bayesian networks in healthcare: Distribu-
tion by medical condition. Artificial Intelligence in Medicine,
107: 101912.
Mokhtarian, E.; Akbari, S.; Ghassami, A.; and Kiyavash, N.
2021. A Recursive Markov Boundary-Based Approach to
Causal Structure Learning. In The KDD’21 Workshop on
Causal Discovery, 26–54. PMLR.
Nie, S.; Mauá, D. D.; De Campos, C. P.; and Ji, Q. 2014. Ad-
vances in learning Bayesian networks of bounded treewidth.
Advances in neural information processing systems, 27: 2285–
2293.
Oyen, D.; Anderson, B.; and Anderson-Cook, C. M. 2016.
Bayesian Networks with Prior Knowledge for Malware Phy-
logenetics. In AAAI Workshop: Artificial Intelligence for
Cyber Security.
Pearl, J. 1988. Probabilistic reasoning in intelligent systems:
Networks of plausible inference. Morgan Kaufmann.
Pearl, J. 2009. Causality. Cambridge university press.

7821



Pellet, J.-P.; and Elisseeff, A. 2008. Using Markov blankets
for causal structure learning. Journal of Machine Learning
Research, 9(Jul): 1295–1342.
Pollino, C. A.; Woodberry, O.; Nicholson, A.; Korb, K.;
and Hart, B. T. 2007. Parameterisation and evaluation of
a Bayesian network for use in an ecological risk assessment.
Environmental Modelling & Software, 22(8): 1140–1152.
Ramaswamy, V. P.; and Szeider, S. 2021. Turbocharging
Treewidth-Bounded Bayesian Network Structure Learning.
In Proceeding of AAAI-21, the Thirty-Fifth AAAI Conference
on Artificial Intelligence.
Scutari, M. 2014. Bayesian network constraint-based
structure learning algorithms: Parallel and optimised im-
plementations in the bnlearn R package. arXiv preprint
arXiv:1406.7648.
Scutari, M.; Vitolo, C.; and Tucker, A. 2019. Learning
Bayesian networks from big data with greedy search: compu-
tational complexity and efficient implementation. Statistics
and Computing, 29(5): 1095–1108.
Sesen, M. B.; Nicholson, A. E.; Banares-Alcantara, R.; Kadir,
T.; and Brady, M. 2013. Bayesian networks for clinical
decision support in lung cancer care. PloS one, 8(12): e82349.
Shimizu, S. 2019. Non-Gaussian methods for causal structure
learning. Prevention Science, 20(3): 431–441.
Solus, L.; Wang, Y.; and Uhler, C. 2017. Consistency guar-
antees for greedy permutation-based causal inference algo-
rithms. arXiv preprint arXiv:1702.03530.
Sondhi, A.; and Shojaie, A. 2019. The Reduced PC-
Algorithm: Improved Causal Structure Learning in Large
Random Networks. Journal of Machine Learning Research,
20(164): 1–31.
Spirtes, P.; Glymour, C. N.; Scheines, R.; and Heckerman, D.
2000. Causation, prediction, and search. MIT press.
Takeishi, N.; and Kawahara, Y. 2020. Knowledge-Based Reg-
ularization in Generative Modeling. In 29th International
Joint Conference on Artificial Intelligence, IJCAI 2020, 2390–
2396. International Joint Conferences on Artificial Intelli-
gence.
Tsamardinos, I.; Aliferis, C. F.; and Statnikov, A. 2003a.
Time and Sample Efficient Discovery of Markov Blankets
and Direct Causal Relations. In Proceedings of the Ninth
ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, 673–678.
Tsamardinos, I.; Aliferis, C. F.; and Statnikov, A. 2003b.
Time and sample efficient discovery of Markov blankets and
direct causal relations. In Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery
and data mining, 673–678.
Tsamardinos, I.; Aliferis, C. F.; Statnikov, A. R.; and Stat-
nikov, E. 2003. Algorithms for large scale Markov blanket
discovery. In FLAIRS conference, volume 2, 376–380.
Tsamardinos, I.; Brown, L. E.; and Aliferis, C. F. 2006. The
max-min hill-climbing Bayesian network structure learning
algorithm. Machine learning, 65(1): 31–78.
Zheng, X.; Aragam, B.; Ravikumar, P. K.; and Xing, E. P.
2018. DAGs with NO TEARS: Continuous Optimization

for Structure Learning. Advances in Neural Information
Processing Systems, 31.
Zheng, X.; Dan, C.; Aragam, B.; Ravikumar, P.; and Xing, E.
2020. Learning sparse nonparametric DAGs. In International
Conference on Artificial Intelligence and Statistics, 3414–
3425. PMLR.
Zhu, S.; Ng, I.; and Chen, Z. 2020. Causal discovery with
reinforcement learning. ICLR.

7822


