
Simple Unsupervised Graph Representation Learning

Yujie Mo1*, Liang Peng1*, Jie Xu1, Xiaoshuang Shi1†, Xiaofeng Zhu1, 2

1School of Computer Science and Engineering,
University of Electronic Science and Technology of China, Chengdu 611731, China

2Shenzhen Institute for Advanced Study,
University of Electronic Science and Technology of China, Shenzhen 518000, China

moyujie2017@gmail.com, larrypengliang@gmail.com, jiexuwork@outlook.com,
xsshi2013@gmail.com, seanzhuxf@gmail.com

Abstract

In this paper, we propose a simple unsupervised graph repre-
sentation learning method to conduct effective and efficient
contrastive learning. Specifically, the proposed multiplet loss
explores the complementary information between the struc-
tural information and neighbor information to enlarge the inter-
class variation, as well as adds an upper bound loss to achieve
the finite distance between positive embeddings and anchor
embeddings for reducing the intra-class variation. As a result,
both enlarging inter-class variation and reducing intra-class
variation result in a small generalization error, thereby ob-
taining an effective model. Furthermore, our method removes
widely used data augmentation and discriminator from previ-
ous graph contrastive learning methods, meanwhile available
to output low-dimensional embeddings, leading to an efficient
model. Experimental results on various real-world datasets
demonstrate the effectiveness and efficiency of our method,
compared to state-of-the-art methods. The source codes are
released at https://github.com/YujieMo/SUGRL.

Introduction
Since the widespread applications of Graph Neural Net-
work (GNN) (Xu et al. 2021d; Zhou et al. 2020; Zhu et al.
2017, 2019), Unsupervised Graph Representation Learning
(UGRL) has also recently received a great deal of attention.
UGRL does not require abundant labeled nodes for training,
it can output discriminative representation by simultaneously
learning representations and preserving the local structure
of samples (Park et al. 2019; Sun et al. 2019). The discrim-
inative representation ensures downstream tasks to output
effective models so that UGRL has shown remarkable perfor-
mance in real applications (Chen et al. 2020a; Hassani and
Khasahmadi 2020). As one of the representative methods of
the UGRL, contrastive learning was proposed to maximize
Mutual Information (MI) between the input content and its
related content (You et al. 2020; Qiu et al. 2020; Jing, Park,
and Tong 2021).

The key difference among graph contrastive learning meth-
ods is the definitions of the input contents and their related
contents (Jiao et al. 2020; Yu et al. 2021; Xu et al. 2021c).
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Figure 1: The variations of accuracy and training time of our
method and previous methods with different dimensions of
embeddings on dataset Ogbn-products.

For instance, Deep Graph Infomax (DGI) maximizes the MI
between the node representations and the summary of the
graph (Velickovic et al. 2019). Graphical Mutual Information
(GMI) maximizes the MI between the input graph and the
output graph (Peng et al. 2020). GRACE (Zhu et al. 2020)
and GCA (Zhu et al. 2021) maximize the MI between two
views for each node through a variety of data augmentations,
e.g., attribute masking or edge perturbation.

Although previous methods are effective in many tasks of
representation learning, they usually rely on data augmenta-
tion to generate both input contents and their related contents
for MI maximization, resulting in expensive computation
costs of the training process (Suresh et al. 2021; Jin et al.
2021). Hence, these previous methods are generally ineffi-
cient, especially for large-scale datasets, as shown in Figure
1, where previous methods have a drastic increase of compu-
tation costs with the increase of either the sample number or
the dimensionality of the embeddings.

Actually, the reasons resulting in weak scalability in pre-
vious contrastive learning methods include data augmenta-
tion, high-dimensional embeddings, and a contrastive loss,
etc. First, previous works usually generate multiple views as
related content by data augmentation. For example, GRACE
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Figure 2: The flowchart of the proposed SUGRL method. Specifically, given the semantic features and its graph structure, the
SUGRL employs a MLP network on features with the semantic information to generate the anchor embeddings, and employs
GCN to generate positive embeddings with the structural information as well as the neighbor sampling method to generate
positive embeddings with the neighbor information. The SUGRL also employs the row-wise random permutation method on
anchor embeddings to generate negative embeddings, and further designs a multiplet loss to achieve that the anchor embeddings
are close to positive embeddings and far away from negative embeddings.

and GCA remove edges and mask node features to gener-
ate multiple views. As a result, the computation cost of data
augmentation (including data generation and data encoding)
takes about 20%-40% of the training time. Second, exist-
ing works increase the dimensionality of the embeddings to
improve the representation quality, resulting in the increase
of the training time. The reason is that the effectiveness of
these methods is sensitive to the dimensionality (Liu et al.
2017, 2018). For example, DGI and GMI achieve their best
accuracy with 512 dimensions. Third, previous works usually
design a discriminator (contains learnable parameters) for
the objective function, which is computationally prohibitive
(Zhang et al. 2020). For example, DGI and MVGRL (Hassani
and Khasahmadi 2020) employ a discriminator to measure
the agreement of the node embedding and graph embedding,
taking about 10%-30% of the training time. Obviously, it
is interesting to find an UGRL method that has low com-
putation costs for the training process and a high-quality
representation.

In this paper, we propose a new contrastive learning
method, namely Simple Unsupervised Graph Representation
Learning (SUGRL), to achieve effectiveness and scalability
for representation learning, as shown in Figure 2. Specifi-
cally, we first employ a Multi-Layer Perceptron (MLP) on
the input representation with the semantic information to
generate anchor embeddings, and separately adopt Graph
Convolution Network (GCN) (Kipf and Welling 2017) and
the neighbor sampling method to generate two different types
of positive embeddings, followed by employing the row-wise
random permutation method on anchor embeddings to gener-
ate negative embeddings. We further design a new multiplet

loss to enforce that anchor embeddings are close to positive
embeddings and far away from negative embeddings, by re-
ducing the intra-class variation and meanwhile enlarging the
inter-class variation.

Compared to previous methods, the contribution of our
SUGRL is summarized as follows. First, to guarantee the
effectiveness, we propose to jointly consider structural infor-
mation and neighbor information to explore their complemen-
tary information, aiming at enlarging the inter-class variation,
as well as designing an upper bound loss to achieve small
intra-class variation. Second, to achieve efficiency, we re-
move data augmentation and discriminator out of contrastive
learning. This makes our method easily achieve scalability on
large-scale datasets. Finally, comprehensive empirical stud-
ies on 8 public benchmark datasets verifies the effectiveness
and efficiency of our method, compared to 11 comparison
methods, in terms of node classification.

Related Work
Contrastive Representation Learning
Deep models are extensive applied with their unparalleled
ability to learn representations (Liu et al. 2021; Cao et al.
2019; Xu et al. 2021a,b). As a part of them, self-supervised
learning methods have attracted a deal of attention with their
outstanding performance in areas such as computer vision
(Song et al. 2018; Xu et al. 2020). Contrastive representa-
tion learning is one of the most representative, specifically, it
learns discriminative representations by contrasting positive
and negative samples. These methods generally encourage an
encoder to learn representations by maximizing the mutual

7798



information (MI) between the input and the learned repre-
sentation. For instance, Contrastive Predictive Coding (CPC)
(van den Oord, Li, and Vinyals 2018) contrasts a summary of
ordered local features to predict a local feature in the future
while Deep InfoMax (DIM) (Devon et al. 2019) simultane-
ously contrasts a single global feature with all local features.
Contrastive Multiview Coding (CMC) (Tian, Krishnan, and
Isola 2020) presents a contrastive learning framework, which
learns unsupervised representations from multiple views of
a dataset. SimCLR (Chen et al. 2020a) extends the InfoMax
principle to multiple views and maximizes the MI across
views generated by data augmentations. MoCo (Chen et al.
2020b) presents momentum contrast for unsupervised visual
representation learning, and can build a large and consistent
dictionary that facilitates contrastive unsupervised learning.

Unsupervised Graph Representation Learning
Contrastive learning methods were adapted to graph represen-
tation learning by the success in computer vision and other
fields. DGI (Velickovic et al. 2019) extends DIM to graphs by
learning node representations through contrasting local and
global embeddings and obtains great performance on node
classification benchmarks. GIC (Mavromatis and Karypis
2021) proposes an unsupervised graph representation learn-
ing method, which relies on maximizing the MI between the
node-level representations and cluster-level representations.
GMI (Peng et al. 2020) generalizes the idea of conventional
MI computations from the vector space to the graph domain
and measures MI from both node features and topological
structure. GRACE (Zhu et al. 2020) and GCA (Zhu et al.
2021) adapt the SimCLR to graphs and achieve state-of-the-
art performance. In particular, GRACE and GCA learn node
representations by creating two views of the graph, pulling
the representation of the same node in two views close, while
pushing the representation of every other node apart. MV-
GRL (Hassani and Khasahmadi 2020) proposes a contrastive
multi-view representation learning method by contrasting em-
beddings from two structural views of graphs. However, these
methods tend to rely heavily on data augmentation, which
can seriously compromise the scalability of the method. Dif-
ferent from previous works, our work enhances effectiveness
and efficiency of the model simultaneously by maximizing
MI between semantic information and related information
(i.e., structural information and neighbor information).

Method
Notations. Let G = (V, E) denote a graph, where V =
{v1, v2, · · ·, vN} and E ⊆ V × V represent the node set and
the edge set, respectively. We denote the feature matrix and
the adjacency matrix as X = {xi}Ni=1 and A ∈ {0, 1}N×N ,
respectively, where xi is the feature of the node vi, and
aij = 1 if (vi, vj) ∈ E otherwise aij = 0. In addition,
we assume the existence of a set of latent classes C over the
representation space H, since neither the embeddings nor the
samples are labeled in unsupervised learning.

The proposed SUGRL focuses on MI maximization. In
the literature, considering the computation cost of MI maxi-
mization (Paninski 2003; Belghazi et al. 2018), the MI maxi-

mization in the SUGRL is transferred to contrastive learning,
which involves the definitions of anchor embeddings, positive
and negative embeddings, as well as the contrastive loss.

Anchor and Negative Embedding Generation
Existing works generally treat node representations or the
graph summary as anchors (Velickovic et al. 2019; Zeng
and Xie 2021; Ren, Bai, and Zhang 2021; Cao et al. 2021;
Sun et al. 2019). For instance, DGI and MVGRL treat the
graph summary as anchors, which is first convolved by GCN
and then summarized by a readout function. GRACE and
GCA regard the node embedding generated in one view as
anchors. However, these methods basically need to conduct
GCN, which is time consuming. To achieve scalability, in
this paper, we employ the MLP on the input X to generate
anchor embeddings with the semantic information, i.e.,

X(l+1) = Dropout
(
σ
(
X(l)W(l)

))
, (1)

H = X(l+1)W(l+1), (2)

where X(0) = X, σ is an activation function, and W(l) is
the weight of the lth layer.

For the generation of negative embeddings, popular meth-
ods (e.g., DGI, GIC and MVGRL) are to obtain a corrupted
graph from the original graph, and then to process it with
GCN (Velickovic et al. 2019; Park et al. 2020; Mavromatis
and Karypis 2021). By contrast, we directly row-shuffle an-
chor embeddings to obtain negative embeddings, and further
reducing the training time, i.e.,

H− = Shuffle ([h1,h2, . . . ,hN ]) . (3)

In conclusion, our proposed method reduces the compu-
tation cost by removing the GCN for the generation of both
anchors and negative embeddings, while keeping its effec-
tiveness.

Positive Embedding Generation
Existing works generally treat the structural information as
positive embeddings, e.g., DGI, MVGRL, GRACE, GCA and
GIC. In addition, previous works often employ data augmen-
tation to obtain diverse information for effective contrastive
learning, e.g., stochastic graph augmentation in GRACE and
GCA, and graph diffusion in MVGRL. By contrast, in this pa-
per, we propose to obtain diverse information by generating
two kinds of positive embeddings, i.e., structural embeddings
and neighbor embeddings. Specifically, we employ the GCN
and the neighbor sampling method to generate them.

• Structural information
To obtain the structural information of the graph, we apply
the widely used GCN as the base encoder:

H+(l+1)

= σ
(
ÂH+(l)

W(l)
)
, (4)

where H+(0) = X and H+(l) means the lth layer fea-
tures. Â = D̂−1/2ÃD̂−1/2 ∈ RN×N is a symmetrically
normalized adjacency matrix, D̂ ∈ RN×N is the degree
matrix of Ã = A + IN , IN is the identity matrix. It is
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noteworthy that our method directly shares the weights
(i.e., W(l)) between the MLP and GCN encoders to fur-
ther reduce the time costs.

• Neighbor information
To obtain the positive embeddings with the neighbor in-
formation, we first store the neighbor’s embedding index
of all nodes and then sample it, followed by calculating
the average of the samples. In this way, the neighbor in-
formation of the node can be obtained efficiently:

h̃+
i =

1

m

m∑
j=1

{hj | vj ∈ Ni} , (5)

where m is the number of sampled neighbors, Ni repre-
sents 1-hop neighborhood set of node vi.

In summary, the structural embedding and the neighbor
embedding focus on all neighbors and a certain part of neigh-
bors, respectively. That is, the structural embedding denotes
general representation while the neighbor embedding is spe-
cific. Hence, they explain samples from different perspectives,
and thus considering them together to possibly obtain their
complementary information.

Multiplet Loss
Given anchor embeddings, positive embeddings and negative
embeddings, contrastive learning aims to make positive pairs
(i.e., anchor and positive embeddings) close while keeping
negative pairs (i.e., anchor and negative embeddings) far
apart. Many contrastive learning methods (e.g., DGI, GMI,
MVGRL and GIC) design a discriminator (e.g., a bilinear
layer) to distinguish positive pairs from negative pairs, but the
discriminator is time-consuming, as shown in the right side
of Figure 5. Additionally, reducing the generalization error is
also important for UGRL as a small generalization error in the
training process might improve the generalization capability
of contrastive learning (Xuan et al. 2019). Moreover, either
reducing the intra-class variation or enlarging the inter-class
variation has been demonstrated to be an effective solution to
reduce generalization error (Wen et al. 2016).

In SUGRL, we consider the triplet loss as the basis and
design an upper bound loss to remove the discriminator from
our method (efficiency), and reduce the intra-class variation
as well as enlarge the inter-class variation (effectiveness).
Specifically, the triplet loss with respect to each sample can
be formulated as:

α+ d
(
h,h+

)
< d

(
h,h−) , (6)

where d(·) is a similarity measurement (e.g., ℓ2-norm dis-
tance) and α is a non-negative value to ensure a “safe” dis-
tance between positive and negative embeddings. By sum-
ming the loss of all negative embeddings, Eq. (6) can be
extended to:

Ltriplet =
1

k

k∑
i=1

{
d(h,h+

)2 − d
(
h,h−

i

)2
+ α}+, (7)

where {·}+ = max{·, 0}, and k is the number of negative
samples.

To increase the inter-class variation, we should push neg-
ative pairs far away from positive pairs. To fulfill this, we
employ the triplet loss on two kinds of positive embeddings
defined in Section to have:

LS =
1

k

k∑
i=1

{
d
(
h,h+

)2 − d
(
h,h−

i

)2
+ α

}
+
, (8)

LN =
1

k

k∑
j=1

{
d
(
h, h̃+

)2

− d
(
h,h−

j

)2
+ α

}
+

. (9)

As aforementioned in Section , the structural embedding
(i.e., h+) is different from the neighbor embedding (i.e., h̃+).
According to the distance between two types of positive
embeddings and the anchor embedding, two cases can be
classified, i.e., Case 1: d (h,h+)

2 ≥ d(h, h̃+)2 and Case 2:
d (h,h+)

2
< d(h, h̃+)2.

If d (h,h+)
2 ≥ d(h, h̃+)2 , the {·}+ term in Eq (8) can

be nonzero even if the corresponding term in Eq (9) is zero.
In this scenario, LS is still effective while LN is ineffective.
As a result, negative embeddings will continue to be pushed
far away from anchor embeddings by Eq. (8), and thus the
inter-class variation is enlarged. Similar to the Case 1, Case
2 can also enlarge the inter-class variation.

Based on the above analysis, either Case 1 or Case 2 can
enlarge the inter-class variation. In particular, if one of them
is ineffective, the other will still on effective to further en-
large the inter-class variation. Hence, Eq. (8) and Eq. (9)
may obtain complementary information from the structural
embeddings and the neighbor embeddings, so that they are
able to the enlarge inter-class variation.

Eq. (7) requires that the distance between d (h,h+)
2 and

d(h,h−
i )

2 should be larger than α, but it ignores the distance
between anchor and positive embeddings. If the distance be-
tween anchor and positive embeddings is large, the {·}+ term
in Eq (7) can also be nonzero, However, in this scenario, the
intra-class variation can be large, not benefiting the reduction
of generalization error.

To address this issue, we investigate an upper bound
(i.e., α+ β) for negative pairs and positive pairs by the fol-
lowing objective function:

α+ d
(
h,h+

)
< d

(
h,h−) < d

(
h,h+

)
+ α+ β, (10)

where β is a non-negative tuning parameter. The upper bound
α + β guarantees that the distance between negative em-
beddings and anchor embeddings is finite, so the distance
between positive embeddings and anchor embeddings is also
finite based on Eq. (6). As a result, the intra-class variation
is reduced. After summing the loss for all negative embed-
dings, the proposed upper bound loss reducing the intra-class
variation is defined as follows:

LU = −1

k

k∑
i=1

{
d
(
h,h+

)2 − d
(
h,h−

i

)2
+ α+ β

}
−
,

(11)
where {·}− = min{·, 0} , and d (h,h+)

2
+ α + β is a tar-

get in Eq. (11). It is noteworthy that the upper bound is not
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Cora CiteSeer PubMed Photo
Method Accuracy Time Accuracy Time Accuracy Time Accuracy Time

Raw Feature 47.9 ± 0.4 − 49.3 ± 0.3 − 69.1 ± 0.2 − 78.5 ± 0.2 −
Deep Walk 67.2 ± 0.2 19.2 43.2 ± 0.4 4.6 65.3 ± 0.5 144.2 89.4 ± 0.1 76.8

GCN 81.5 ± 0.2 3.1 70.3 ± 0.4 1.4 79.0 ± 0.5 6.1 91.6 ± 0.3 6.7
GAT 83.0 ± 0.2 16.9 72.5 ± 0.3 4.2 79.0 ± 0.5 62.5 91.8 ± 0.1 50.0

GAE 74.9 ± 0.4 24.5 65.6 ± 0.5 8.1 74.2 ± 0.3 165.4 91.0 ± 0.1 108.4
VGAE 76.3 ± 0.2 26.9 66.8 ± 0.2 8.7 75.8 ± 0.4 166.3 91.5 ± 0.2 107.8
DGI 82.3 ± 0.5 10.5 71.5 ± 0.4 3.1 79.4 ± 0.3 128.1 91.3 ± 0.1 54.1
GMI 83.0 ± 0.2 100.1 72.4 ± 0.2 24.3 79.9 ± 0.4 1104.2 90.6 ± 0.2 461.3
GRACE 83.1 ± 0.2 6.8 72.1 ± 0.1 2.5 79.6 ± 0.5 196.9 91.9 ± 0.3 53.4
MVGRL 82.9 ± 0.3 67.1 72.6 ± 0.4 18.3 80.1 ± 0.7 669.2 91.7 ± 0.1 272.3
GCA 81.8 ± 0.2 11.1 71.9 ± 0.4 4.2 81.0 ± 0.3 312.1 92.4 ± 0.4 65.1
GIC 81.7 ± 0.8 8.6 71.9 ± 0.9 3.6 77.4 ± 0.5 15.1 91.6 ± 0.1 15.2
SUGRL 83.4 ± 0.5 3.8 73.0 ± 0.4 0.9 81.9 ± 0.3 9.5 93.2 ± 0.4 5.6

Table 1: Classification accuracy (%) and execution time (seconds) of all methods on four datasets.

Computers Ogbn-arxiv Ogbn-mag Ogbn-products
Method Accuracy Time Accuracy Time Accuracy Time Accuracy Time

Raw Feature 73.8 ± 0.1 − 56.3 ± 0.3 − 22.1 ± 0.3 − 59.7 ± 0.2 −
Deep Walk 85.3 ± 0.1 2.2 63.6 ± 0.4 5.1 25.6 ± 0.3 12.1 73.2 ± 0.2 30.5

GCN 84.5 ± 0.3 0.2 70.4 ± 0.3 0.1 30.1 ± 0.3 0.7 81.6 ± 0.4 2.6
GAT 85.7 ± 0.1 1.5 70.6 ± 0.3 2.5 30.5 ± 0.3 6.1 82.4 ± 0.4 14.6

GAE 85.1 ± 0.4 4.1 63.6 ± 0.5 9.4 27.1 ± 0.3 22.5 72.1 ± 0.1 56.8
VGAE 85.8 ± 0.3 4.0 64.8 ± 0.2 9.5 27.9 ± 0.2 22.7 72.9 ± 0.2 57.3
DGI 87.8 ± 0.2 2.0 65.1 ± 0.4 4.5 31.4 ± 0.3 10.6 77.9 ± 0.2 26.8
GMI 82.2 ± 0.4 15.3 68.2 ± 0.2 42.0 29.5 ± 0.1 123.1 76.8 ± 0.3 293.4
GRACE 86.8 ± 0.2 2.2 68.7 ± 0.4 7.2 31.5 ± 0.3 19.2 77.4 ± 0.4 43.3
MVGRL 86.9 ± 0.1 10.4 68.1 ± 0.1 24.6 31.6 ± 0.4 67.3 78.1 ± 0.1 213.7
GCA 87.7 ± 0.1 2.6 68.2 ± 0.2 7.1 31.4 ± 0.3 37.5 78.4 ± 0.3 81.2
GIC 84.9 ± 0.2 0.4 68.4 ± 0.4 1.1 31.7 ± 0.2 5.1 75.8 ± 0.2 8.8
SUGRL 88.9 ± 0.2 0.2 68.8 ± 0.4 0.1 31.9 ± 0.3 0.4 82.6 ± 0.4 2.1
SUGRL-batch − − 69.3 ± 0.2 0.2 32.4 ± 0.1 0.4 81.2 ± 0.1 2.2

Table 2: Classification accuracy (%) and execution time (minutes) of all methods on four datasets.

pushed on the neighbor information due to that 1) each kind
of information achieves similar results and 2) use them simul-
taneously can not significantly improve model performance
in our experiments.

Finally, integrating triplet losses (i.e., Eq. (8) and Eq. (9))
with the upper bound loss in Eq. (11), our proposed multiplet
loss is formulated as:

L = ω1LS + ω2LN + LU , (12)

where ω1 and ω2 are the weights of LS and LN , respectively.

Experiments
Experimental Setup
Datasets. In our experiments, we used 8 commonly used
benchmark datasets, including 3 citation networks datasets
(i.e., Cora, Citeseer, and Pubmed) (Yang, Cohen, and

Salakhudinov 2016), 2 amazon sale datasets (i.e., Photo,
and Computers) (Shchur et al. 2018), 3 large-scale datasets
(i.e., Ogbn-arxiv, Ogbn-mag, and Ogbn-products) (Weihua
et al. 2020).

Comparison methods. The comparative methods include
1 traditional algorithm (i.e., DeepWalk (Perozzi, Al-Rfou,
and Skiena 2014)), 2 semi-supervised learning algorithms
(i.e., GCN (Kipf and Welling 2017) and GAT (Velickovic et al.
2018)), and 8 unsupervised learning algorithms (i.e., Graph
Auto-Encoders (GAE) (Kipf and Welling 2016), Variational
Graph Auto-Encoders (VGAE) (Kipf and Welling 2016),
DGI (Velickovic et al. 2019), GRACE (Zhu et al. 2020),
GMI (Peng et al. 2020), MVGRL (Hassani and Khasahmadi
2020), and GCA (Zhu et al. 2021)), GIC (Mavromatis and
Karypis 2021). In particular, raw features were directly used
to conduct the node classification task.
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LS LN LU Cora CiteSeer PubMed Photo Computers Ogbn-arxiv Ogbn-mag Ogbn-products
√

− − 73.8 ± 0.6 71.7 ± 0.5 70.7 ± 0.3 91.0 ± 0.2 84.4 ± 0.2 68.1 ± 0.1 31.2 ± 0.2 82.3 ± 0.1
−

√
− 78.1 ± 0.4 71.8 ± 0.3 80.5 ± 0.3 79.7 ± 0.2 72.5 ± 0.4 67.9 ± 0.2 31.1 ± 0.1 82.1 ± 0.1√ √
− 78.5 ± 0.4 71.9 ± 0.4 81.6 ± 0.3 91.6 ± 0.3 86.6 ± 0.4 68.5 ± 0.1 31.6 ± 0.1 82.4 ± 0.1√

−
√

81.5 ± 0.5 72.2 ± 0.5 79.3 ± 0.4 91.9 ± 0.2 86.9 ± 0.3 68.6 ± 0.2 31.8 ± 0.1 82.5 ± 0.2
−

√ √
81.9 ± 0.4 72.1 ± 0.3 80.3 ± 0.3 82.6 ± 0.3 74.9 ± 0.4 68.0 ± 0.2 31.6 ± 0.2 82.5 ± 0.1√ √ √
83.4 ± 0.4 73.0 ± 0.3 81.9 ± 0.3 93.2 ± 0.2 88.9 ± 0.3 68.8 ± 0.1 31.9 ± 0.1 82.6 ± 0.1

Table 3: Classification accuracy (%) of each component in our proposed method on all datasets.

Setting-up. All experiments were implemented in PyTorch
and conducted on a server with 8 NVIDIA GeForce 3090
(24GB memory each). In all experiments, we repeated the ex-
periments five times with random seeds for all algorithms to
finally report the average results, and the corresponding stan-
dard deviation (std). We obtained the author-verified codes
for all comparison methods and achieved their best perfor-
mance via a grid search method. For large-scale datasets, the
comparison methods utilized the mini-batch strategy (Zeng
et al. 2020) since they would be out of memory if employing
the full-batch strategy, and we also provided the results of
our method on both the mini-batch and full-batch strategies
to ensure a fair comparison.

In SUGRL, all parameters were initialized by the Glorot
initialization (Glorot and Bengio 2010) and optimized by the
Adam optimizer (Kingma and Ba 2015). For the optimizer,
we set the initial learning rate during the range of [0.001,
0.01] and the weight decay within [0, 0.0001] for all datasets,
respectively. We applly the ReLU function (Nair and Hinton
2010) as a nonlinear activation for each layer and conduct
the row normalization on input features. Moreover, a dropout
function is applied behind each layer. In addition, for the node
classification task, we follow the standard linear evaluation
protocol in DGI.

Results and Analysis
Node classification. Tables 1 and 2 summarize classifica-
tion accuracy and execution time of all methods on 8 real
graph-structure datasets. First, SUGRL outperforms all self-
supervised methods (i.e., DGI, GMI, GRACE, MVGRL, GIC
and GCA) in terms of classification accuracy. For exam-
ple, our method on average improves by 4.0% and 1.9%,
respectively, compared to the worst method DGI and the best
comparison method MVGRL. Compared to semi-supervised
methods (i.e., GCN and GAT) which adopt the label infor-
mation in the learning process, SUGRL also achieves the
superior performance. Second, our SUGRL has the best ef-
ficiency. Specifically, compared with other self-supervised
methods on 8 datasets, SUGRL is on average 122.4× and
4.4× faster, respectively, compared to the slowest comparison
method GMI and the fastest comparison method GIC.

Analysis. In conclusion, our method outperforms the other
comparison methods on almost all datasets, in terms of model
performance and execution time, on node classification. The
reasons can be summarized as follows. First, SUGRL jointly
considers structural information and neighbor information
to generate two kinds of positive embeddings and their con-
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0.4
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0.8

1.0

R
at
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w/o structural info 
w/o neighbor info
w/o upper bound 
Proposed

Figure 3: The ratio of intra-class variation to inter-class vari-
ation on the dataset Photo.

trastive loss (i.e., LS and LN ), which can push the nega-
tive embedding further away from the anchor embedding
(i.e., achieving large inter-class variation). Second, SUGRL
employs an upper bound to ensure that the distance be-
tween positive embeddings and anchor embeddings is finite
(i.e., achieving small intra-class variation). Third, SUGRL
removes the step of both data augmentation and discrimina-
tor, leading to a significant reduction of training time. Finally,
SUGRL is available to output low-dimensional and high-
quality embeddings as well as to reduce the training time
while keeping the model effectiveness.

Ablation Study
SUGRL considers three types of information, i.e., semantic
information, structural information and neighbor information,
to generate two types of positive pairs with corresponding
contrastive losses (i.e., LS and LN ). To verify the effective-
ness of each component of our framework, we investigate 1)
the effectiveness of structural information, neighbor informa-
tion and upper bound, respectively, and 2) the effectiveness
of each component in our contrastive loss.

Effectiveness of the ratio of intra-class to inter-class vari-
ations. Considering different magnitudes between intra-
class and inter-class variations, we follow (Li, Zhong, and
Zheng 2019) to report the ratio of intra-class to inter-class
variations on dataset Photo in Figure 3 by normalizing the
ratio into [0, 1]. First, the method without structural or neigh-
bor information generally outputs a larger ratio (i.e., a smaller
inter-class variation), compare to the proposed method. Sec-
ond, the method without an upper bound (i.e., w/o upper
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Figure 4: Classification results of our method at different
parameter settings (i.e., α and β, ω1 and ω2) on the dataset
Photo.

bound) also outputs a larger ratio (i.e., a larger intra-class
variation), compared to our method. Thus, the effectiveness
of either structural or neighbor information or an upper bound
is verified.

Effectiveness of each component in our contrastive loss.
To analyze the effectiveness of each component (i.e., LS , LN

and LU ) on downstream tasks, we conduct experiments on
all combinations of all components (except individual LU )
for the node classification task since only using LU cannot
form the contrastive loss and thus cause model collapse. In
Table 3, the last row using all components achieves the best
performance as these components are complementary to each
other. If an individual component (i.e., either LS or LN ) is
implemented, the performance is inferior. By contrast, the
combination of any two components can help to learn better
embeddings than that with only one component. Hence, the
effectiveness of each component is verified.

Hyper-parameter Analysis
We investigate the impact of hyper-parameters in SUGRL,
i.e., α and β in Eq. (11) as well as ω1 and ω2 in Eq. (12). We
conduct node classification by varying the values of α and β
from 0.1 to 0.9 on the dataset Photo, and report the results
in the left sub-figure of Figure 4. SUGRL achieves good
performance while setting large values for α and β. If the
values of α and β are too small, SUGRL obtains bad results
as these scenarios result in a small margin between positive
and negative pairs. We also conduct node classification on the
dataset Photo by varying the values of ω1 and ω2 from 10−3

to 103, and fix the weight of LU to 1, then report the results in
the right sub-figure of Figure 4. The accuracy reduces if the
values of ω1 and ω2 are too small (e.g., 10−3). This indicates
that both LS and LN are important as they contribute to
further push positive embeddings far away from negative
embeddings.

Efficiency Analysis
We divide the training process of all methods into three parts
(i.e., pretext, encoding and loss). Due to space limitations, we
only report the time cost of each part on the dataset Photo.
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Figure 5: Execution time (seconds) of different parts in all
methods in one epoch on the dataset Photo.

Without data augmentation. Previous works conduct data
augmentation for contrastive learning while our SUGRL
does not require it. Previous methods enquire generating
new views as well as encoding them, while SUGRL gets
diverse information by GCN and neighbors sampling. Obvi-
ously, our method consumes the least time, as shown in the
left sub-figure of Figure 5.

Fast encoding. SUGRL generates the representations of an-
chors by the MLP and the representations of negative samples
by row-shuffling the anchors, instead of using the GCN en-
coder. Moreover, our method generates the representations of
positive samples containing neighbor information by neigh-
bors sampling. Thus, SUGRL can employ fewer graph convo-
lution operations and lead to fewer encoding time, compared
to all comparison methods, as shown in the middle sub-figure
of Figure 5.

Low-dimensional embeddings. SUGRL obtains its best
performance with a 128-dimensional embedding, while other
methods generally need 512 dimensions to achieve their best
performance. The dimension of embeddings has a significant
impact on time costs, as shown in Figure 1.

Contrastive loss. SUGRL does not require to design a
discriminator for contrastive learning, but previous methods
do need. Therefore, L in our method takes fewer time costs,
as shown in the right sub-figure of Figure 5.

Conclusion
In this paper, we designed a simple framework, namely Sim-
ple Unsupervised Graph Representation Learning (SUGRL),
to achieve effective and efficient contrastive learning. To
obtain the effectiveness, we designed two triplet losses to
explore complementary information between the structural
information and neighbor information to enlarge the inter-
class variation, as well as an upper band loss to reduce the
intra-class variation. To attain the efficiency, our method was
designed to remove the GCN for generating anchor and nega-
tive embeddings, as well as remove data augmentation and
discriminator from previous graph contrastive learning. We
conducted comprehensive experiments on various real-world
datasets. Experimental results demonstrate that our method
consistently outperforms state-of-the-art methods in terms of
both accuracy and scalability.
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