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Abstract

Knowledge graph completion is the task of inferring missing
facts based on existing data in a knowledge graph. Temporal
knowledge graph completion (TKGC) is an extension of this
task to temporal knowledge graphs, where each fact is addi-
tionally associated with a time stamp. Current approaches for
TKGC primarily build on existing embedding models which
are developed for (static) knowledge graph completion, and
extend these models to incorporate time, where the idea is
to learn latent representations for entities, relations, and time
stamps and then use the learned representations to predict
missing facts at various time steps. In this paper, we pro-
pose BoxTE, a box embedding model for TKGC, building
on the static knowledge graph embedding model BoxE. We
show that BoxTE is fully expressive, and possesses strong in-
ductive capacity in the temporal setting. We then empirically
evaluate our model and show that it achieves state-of-the-art
results on several TKGC benchmarks.

1 Introduction
Knowledge graphs (KGs) are sets of (binary) facts of the
form r(h, t), where h and t represent entities, and r rep-
resents a relation that holds between these entities. KGs
play an increasingly prominent role in representing, storing,
and processing information. KGs such as YAGO (Mahdis-
oltani, Biega, and Suchanek 2015), Knowledge Vault (Dong
et al. 2014), Freebase (Bollacker, Cook, and Tufts 2007)
and NELL (Mitchell et al. 2018) store hundreds of millions
of facts, and are key drivers for downstream tasks, such as
question answering (Bordes, Chopra, and Weston 2014), in-
formation retrieval (Xiong, Power, and Callan 2017), and
recommender systems (Wang et al. 2018).

Notably, most KGs are inherently incomplete, which neg-
atively affects their use in downstream applications. This has
motivated a large body of work for automatically inferring
missing facts, a task known as knowledge graph comple-
tion (KGC). One prominent approach for KGC is based on
KG embedding models, where the idea is to learn embed-
dings for entities and relations through training over known
facts, and subsequently use the learned embeddings to com-
pute plausibility scores for all possible facts (Bordes et al.
2013).

Copyright © 2022, Association for the Advancement of Artificial
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Standard KG embedding models, however, operate under
the assumption that the input KG is static, i.e., the ground
truth of a fact is independent of time. This assumption is not
always realistic, as, e.g., a person living in a location could
move to a different location, invalidating the associated fact
in the future. Indeed, many real-world KGs include temporal
information for their facts, most commonly in the form of
time stamps, indicating when the fact holds (Kazemi et al.
2020). Specifically, a temporal (binary) fact is a fact of the
form r(h, t|τ), where h and t represent entities, τ is a time
stamp, and r represents a relation that holds between these
entities at the time specified by τ . A temporal knowledge
graph (TKG) is then a (finite) set of temporal facts.

The focus of this work is on temporal knowledge graph
completion (TKGC) which is the task of inferring missing
temporal facts from a TKG. The main challenge in TKGC is
to additionally learn embeddings for time stamps, such that
embedding models perform scoring jointly based on rela-
tion, entity and time stamp embeddings. This perspective has
led to the development of several embedding models, build-
ing on static embedding models (Leblay and Chekol 2018;
Lacroix, Obozinski, and Usunier 2020), or having dedicated
neural architectures (Wu et al. 2020; Garcı́a-Durán, Du-
mančić, and Niepert 2018), to appropriately represent tem-
poral information. However, no current embedding model,
to our knowledge, studies TKGC from the perspective of
capturing temporal inference patterns despite their preva-
lence in real-world data (Toutanova and Chen 2015).

In this paper, we propose BoxTE, a box embedding model
for TKGC. BoxTE builds on the static KG embedding model
BoxE (Abboud et al. 2020), and extends it with dedicated
time embeddings, allowing to flexibly represent temporal in-
formation. In BoxTE, time embeddings are unique for each
time point, but they are specific for every relation, which
yields a very flexible and powerful representation. Our con-
tibutions are manifold. We first show that BoxTE is fully ex-
pressive, and has strong inductive capacity, capturing, e.g.,
a rich class of rigid inference patterns, and cross-time infer-
ence patterns. Our study presents the first thorough analysis
of inductive capacity in the context of TKGC. Empirically,
we conduct a detailed experimental evaluation, and show
that BoxTE achieves state-of-the-art performance on several
TKGC baselines, even with a limited number of parameters.

The full version of this work, including all proofs and ex-
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perimental details, is available on arXiv (Messner, Abboud,
and Ceylan 2021). This version additionally includes a ded-
icated ablation study in its appendix, where we validate the
BoxTE temporal mechanism by comparing with alternate
model variations, inspired by existing literature, and show
the strength of our proposal.

2 Temporal Knowledge Graph Completion
In what follows, we consider a relational vocabulary, which
consists of a finite set E of entities, and a finite set R of
relations. We additionally consider a finite set of time stamps
T. We denote static binary facts as r(h, t), and temporal
binary facts as r(h, t|τ), where h, t ∈ E are entities, r ∈ R
is a binary relation, and τ ∈ T is a time stamp. Temporal
facts are also referred as quadruples; and, for a temporal fact
r(h, t|τ), h is referred to as the head entity and t as the tail
entity, a convention inherited from static binary facts.

A knowledge graph (KG) G consists of a finite set
of binary facts over (E,R); or equivalently, a KG is a
multi-labeled graph, where the nodes correspond to entities,
and labels correspond to relations. A temporal knowledge
graph (TKG) G consists of a finite set of temporal binary
facts over (E,R,T). Given a TKG G, temporal knowledge
graph completion (TKGC) is the task of predicting new, un-
seen facts over (E,R,T) based on existing facts in G.

Typically, TKGC models define a scoring function for
temporal facts, and are optimized to score true facts in G
higher than corrupted, negatively sampled facts. This neg-
ative sampling produces corrupted facts from a true fact
r(h, t|τ) from G by replacing either h or t with a random
entity h′ 6= h (resp., t′ 6= t). Empirically, TKGC models are
evaluated by scoring true facts from the TKG test set, and
then comparing with scores for all possible corrupted facts
not appearing in the training, validation, or test set. Using all
scores, standard metrics (Bordes et al. 2013) are then com-
puted, and these include mean rank (MR), the average rank
of facts against their corrupted counterparts, mean recipro-
cal rank (MRR), their average inverse rank (i.e., 1/rank), and
Hits@K, the proportion of facts with rank at most K.

Conceptually, TKGC models are characterized by their
expressiveness and inductive capacity. More specifically, a
model is fully expressive if, for any disjoint sets of true and
false facts, it admits a configuration that accurately classifies
all facts. On the other hand, inductive capacity describes the
inference patterns that a model can learn and capture. Exam-
ple inference patterns include relation symmetry, hierarchy
and mutual exclusion. Both expressiveness and inductive ca-
pacity are key for TKGC, as the former enables fitting the in-
put TKG, and the latter offers a strong inductive bias which
improves model generalization.

3 Related Work
Knowledge graph embedding models. Knowledge graph
embedding (KGE) models represent KG entities and re-
lations using embeddings, which are learned from data to
compute scores for all possible KG facts. KGE models can
broadly be classified into translational, bilinear, and neu-
ral models. Translational models, such as TransE (Bordes

et al. 2013) and RotatE (Sun et al. 2019), represent entities
as points in a low-dimensional space, relations as transla-
tions or rotations in this space, and score binary facts based
on the distance between the relation-translated head embed-
ding and the tail embedding. A variation on this approach
is spatio-translational models, such as BoxE (Abboud et al.
2020), where fact correctness depends on absolute repre-
sentation position in the embedding space. Bilinear mod-
els, such as RESCAL (Nickel, Tresp, and Kriegel 2011),
TuckER (Balazevic, Allen, and Hospedales 2019) and Com-
plEx (Trouillon et al. 2016) are based on tensor factoriza-
tion: they embed entities as vectors, and relations as matrices
or tensors, such that the bilinear product between these em-
beddings yields fact scores. Finally, neural models, such as
rGCN (Schlichtkrull et al. 2018) and ConvE (Dettmers et al.
2018) use a neural architecture to perform scoring over KG
embeddings. KGE models have widely been investigated in
recent years, but these models assume that facts are static,
and thus do not incorporate temporal information.

Temporal knowledge graph embedding models. Analo-
gously to KGE models, temporal knowledge graph embed-
ding (TKGE) models use embeddings to represent entities,
relations, and time stamps in a TKG, and subsequently per-
form fact scoring. Most TKGE models hence build on exist-
ing KGE models. For instance, TTransE (Leblay and Chekol
2018) extends TransE, and encodes time stamps as transla-
tions, analogously to relations, such that these translations
additionally move head representations in the embedding
space. ChronoR (Sadeghian et al. 2021) builds on RotatE,
and represents time-relation pairs with rotation and scal-
ing in the embedding space. Concretely, relation and time
stamp representations are concatenated to yield an overall
rotation vector applied on entity representations. Further-
more, TComplEx and TNTComplEx (Lacroix, Obozinski,
and Usunier 2020) are based on ComplEx, and analogously
factorize the input TKGC, which both models represent as a
fourth-order tensor. TComplEx applies this factorization di-
rectly, whereas TNTComplEx divides this factorization into
a temporal and a non-temporal component.

Other proposals include TKGE models which initially
process temporal information, and subsequently pass the
resulting time-conditioned representation to a static KGE
model. For example, TeRo (Xu et al. 2020) represents time
as a rotation in complex vector space that applies on en-
tity embeddings, following which the TransE scoring mech-
anism applies. HyTE (Dasgupta, Ray, and Talukdar 2018)
represents each time stamp as a learnable hyper-plane in
d-dimensional space, and then projects entity and relation
embeddings into this hyper-plane and applies the TransE
scoring function on the projections. Diachronic embeddings
(Goel et al. 2020) map entity and relation embeddings,
paired with temporal information, into a KGE model space,
thus defining a framework yielding specific models such as
DE-TransE and DE-SimplE.

Finally, dedicated neural architectures are used to exploit
the sequential structure inherent in time, and to leverage the
graph structure present in temporal knowledge graphs. Re-
current neural networks (RNNs) (Garcı́a-Durán, Dumančić,
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and Niepert 2018) are used to model the changes in relations
over time, thereby encoding the sequential nature of time.
More recently, TeMP (Wu et al. 2020) is proposed, which
leverages message passing graph neural networks (MPNNs)
to learn structure-based entity representations at every time
stamp, and then aggregates representations across all time
stamps using an encoder, yielding the models TeMP-GRU
(gated recurrent unit encoder) and TeMP-SA (self-attention
encoder). Similarly to other models, the final entity rep-
resentations can subsequently be used with a static KGE
model, e.g., TransE.

4 A Temporal Box Embedding Model
In this section, we introduce BoxTE, a box embedding
model for temporal knowledge graph completion. BoxTE
builds on the static BoxE model (Abboud et al. 2020),
and extends it with a temporal representation, which al-
lows to additionally capture inference patterns across time
and model certain temporal relational information. We first
briefly recall BoxE, and then present BoxTE.

The Box Embedding Model BoxE
BoxE (Abboud et al. 2020) is a spatio-translational knowl-
edge base completion model that can predict facts across re-
lations of arbitrary arity. For our purposes, we only present
BoxE restricted to the binary setting.

Representation. In BoxE, every entity h ∈ E is repre-
sented by two vectors, a base position vector eh ∈ Rd, and a
translational bump vector bh ∈ Rd , which translates the en-
tity that co-occurs in a fact with h. For a binary fact r(h, t),
the final embeddings of the head entity h and the tail entity
t are respectively given as:

e
r(h,t)
h = eh + bt, e

r(h,t)
t = et + bh.

BoxE represents every binary relation r with two d-
dimensional boxes: a head box rh, and a tail box rt. Seman-
tically, a fact r(h, t) is considered true if final entity repre-
sentations for h and t appear in their corresponding boxes:

e
r(h,t)
h ∈ rh, e

r(h,t)
t ∈ rt.

Scoring. BoxE scoring function for a true fact r(h, t) en-
courages box membership, and is defined as:

score(r(h, t)) =
∥∥∥δ(er(h,t)h , rh)

∥∥∥
x
+

∥∥∥δ(er(h,t)t , rt)
∥∥∥
x
,

where δ intuitively computes the distance between a point
and a box, and x indicates the L-x norm.

Properties. BoxE has several desirable properties. First, it
is fully expressive. Second, it captures a wide array of in-
ference patterns, and thus has strong inductive capacity. For
more details and illustrations, we refer the reader to the orig-
inal paper (Abboud et al. 2020).

The Temporal Box Embedding Model BoxTE
We now introduce BoxTE, a box embedding model for tem-
poral knowledge graph completion. At a high level, BoxTE
extends BoxE with time bumps to represent time stamps in

an input knowledge graph, such that these time bumps addi-
tionally translate final entity representations. However, un-
like entity bumps, time bumps are not standard learnable
embeddings, but are induced by the relation of a given target
fact, based on a set of time stamp embeddings.

Representation. In addition to entity and relation repre-
sentations, BoxTE defines, (i) for every time stamp τ ∈ T, a
set of k d-dimensional embeddings, represented by a matrix
Kτ ∈ Rk×d, and (ii) for every relation r, a k-dimensional
scalar vector αr . Then, for every time stamp τ ∈ T and
relation r ∈ R, a corresponding time bump is given by:

τ r = αrKτ

For a temporal fact r(h, t|τ), the final entity representations
for h and t are given as:

e
r(h,t|τ)
h = eh + bt + τ

r, e
r(h,t|τ)
t = et + bh + τ r.

Scoring is then performed analogously to BoxE. Intuitively,
time bumps produce distinct final embeddings at every time
stamp. However, within this time stamp, every relation also
induces potentially distinct entity representations. In partic-
ular, time bumps induce distinct final embeddings for h and
t for facts r(h, t|τ) and s(h, t|τ), due to the distinct scalars
of relations r and s, respectively. Therefore, time bumps
in BoxTE represent relation-specific temporal dynamics by
learning appropriate scalars αr .

The role of relation-specific representation. BoxTE de-
fines k embeddings per time stamp τ (via the matrix Kτ )
and k scalars per relation r (the vectorαr), which it linearly
combines to compute time bumps. This allows individual re-
lations to learn distinct temporal behaviors, while maintain-
ing information sharing. To illustrate this, we consider two
extreme scenarios. On one hand, if k = 1, then relations can
only vary the magnitude of time bumps, which is restric-
tive. On the other hand, if relations are assigned their own
learnable time bumps (k = |R|,αr is a one-hot encoding of
r), then the model is overparametrized, and time bumps do
not share parameters. Therefore, the current setup provides a
trade-off using the hyper-parameter k, supporting both rep-
resentational flexibility and efficient parameter sharing.

Illustrating the model. We illustrate BoxTE with an ex-
ample, shown in Figure 1. In this example, and throughout
the paper, we fix T = {τ1, ..., τ|T |} and refer to individual
time stamps as τi, to reflect natural temporal ordering.
Example 4.1. Consider the following temporal knowledge
graph G = {r(h, t|τ1), s(t, h|τ1), s(t, h|τ2)}, defined over
E = {h, t}, R = {r, s}, and T = {τ1, τ2}. The BoxTE con-
figurations at time stamps τ1 and τ2 are shown on the left
and right of Figure 1, respectively. The relations r and s are
color coded with black and red, respectively.

Observe that the fact r(h, t) is true in time stamp τ1, but
false at time stamp τ2, while the fact s(t, h) remains true
for both time stamps. In more detail, BoxTE assigns larger-
magnitude time bumps τ r1 and τ r2 for the relation r. In turn,
τ r1 makes r(h, t|τ1) true, as this bump moves the final rep-
resentation of h into rh, and τ r2 makes r(h, t|τ2) false, by
bumping this representation away from rh. By contrast, for
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Figure 1: A sample BoxTE configuration for the TKG G at time stamps τ1 (left) and τ2 (right). Time bumps τ r1 , τ r2 , τ s1 and τ s2
are computed as τ r1 = αrKτ1 , τ r2 = αrKτ2 , τ s1 = αsKτ1 , and τ s2 = αsKτ2 , respectively, and represented by dotted arrows.
Relation r and corresponding time bumps τ r1 , τ r2 are color coded with black, whereas the relation s, and the corresponding
time bumps τ s1 , τ s2 are color coded in red. For all time bumps, relation superscripts are dropped in the figure for better visibility.

the relation s, τ s1 and τ s2 are smaller, and do not ultimately
affect the correctness of the fact s(t, h) over time. As all time
bumps are computed from the same matrices Kτ1 and Kτ2 ,
this implies that BoxTE learns a smaller-normαs, reflecting
the temporal stability of relation s.

5 Model Properties
We now study the representation power and inductive ca-
pacity of BoxTE. In particular, we show that BoxTE is fully
expressive and extends the inductive capacity of BoxE to
capture inference patterns across time.

Full Expressiveness
We first show that BoxTE is fully expressive:
Theorem 5.1. BoxTE is a fully expressive model for tem-
poral knowledge graphs with the embedding dimensional-
ity d of entities, relations, bumps, and time bumps set to
d = min(|R| |T| |E| , |R| |E|2).

Importantly, this result already holds for the special case
where k = 1 and αr = 1, ∀r ∈ R, i.e., for time bumps
defined as relation-independent learnable embeddings.

The full proof of this result can be found in the extended
version. Briefly, the proof verifies two lemmas, correspond-
ing to the |R||T||E| and |R||E|2 bounds respectively, by
providing two BoxTE constructions. For the former lemma,
the construction builds on the original BoxE full expressive-
ness proof (Abboud et al. 2020), as bumps are used to make
a given fact false without affecting other facts. However, this
proof additionally relies on time bumps to make a temporal
fact r(h, t|τi) false without affecting the correctness of facts
of the form r(h, t|τj), where j 6= i. For the latter lemma,
the construction starts from a static BoxE configuration, and
uses time bumps to make temporal facts true, while using
relation boxes to maintain the correctness and falsehood of
other facts. Finally, we note that this result is only a worst-
case bound that is only tight when all KG facts are indepen-

dent (i.e., random). In real-world applications, much smaller
dimensionalities are sufficient, as we will later show in our
experimental evaluation.

Inference Patterns
When studying inductive capacity, we say a model captures
an inference pattern if it admits a set of parameters exactly
and exclusively satisfying the pattern, following BoxE (Ab-
boud et al. 2020).

Rigid inference patterns and relations. BoxTE inherits
the inductive capacity of BoxE in the static setting, where
each pattern holds at all time stamps. We refer to such pat-
terns as rigid inference patterns, as, for example, the rule:

∀τi, τj ∈ T :
(
∀x, y r1(x, y|τi)⇒ r2(x, y|τj)

)
specifies that the relation r1 is subsumed by the relation r2
regardless of the time stamps we consider, and thus repre-
sents a rigid property. While we quantify over given time
stamps T, it is worthwhile noting that rigidity holds beyond
known time stamps (i.e, the property extrapolates).

Rigid inference patterns can be captured in BoxTE, as
standard BoxE can be emulated by setting identical (or zero-
valued) relation scalars, i.e., ∀r, s ∈ R,αr = αs. Hence,
BoxTE captures any inference pattern, and even rule lan-
guage, captured by BoxE, in this sense.

Additionally, BoxTE can capture rigid relations, i.e., rela-
tions that do not vary with time, defined as:

∀x, y
(
(∀τ ∈ T : r(x, y|τ)) ∨ (∀τ ∈ T : ¬r(x, y|τ))

)
This essentially implies that a relation r is static over time,
and corresponds to the parametrization αr = 0.

Cross-time inference patterns. In the temporal setting,
a more interesting case is the study of inference patterns
across specific time stamps. For example, we may be inter-
ested in capturing the pattern for some fixed τ1, τ2:

∀x, y r1(x, y|τ1)⇒ r2(x, y|τ2),
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Cross-time inference patterns
Inversion: r1(x, y|τ1)⇔ r2(y, x|τ2)
Hierarchy: r1(x, y|τ1)⇒ r2(x, y|τ2)
Intersection: r1(x, y|τ1) ∧ r2(x, y|τ2)⇒ r3(x, y|τ3)
Composition r1(x, y|τ1) ∧ r2(y, z|τ2)⇒ r3(x, z|τ3)
Mutual exclusion: r1(x, y|τ1) ∧ r2(x, y|τ2)⇒ ⊥

Table 1: Cross-time inference patterns, where we omit uni-
versal quantification over variables. BoxTE captures all
these patterns, but composition. Fixed-time inference pat-
terns are the special case where the time stamps coincide.

which requires r1 at τ1 to be subsumed in r2 at τ2, with-
out any implications on the state of these relations on other
time stamps. The list of such cross-time inference patterns
is provided in Table 1. BoxTE captures all these cross-time
inference patterns, but composition. To study cross-time pat-
terns, we define, for a time stamp τ and relation r, the time-
induced relation head box rh|τ and the time-induced rela-
tion tail box rt|τ as:

rh|τ = rh − τ r, rt|τ = rt − τ r.
Intuitively, time-induced relation boxes offer an alterna-

tive, but equivalent, perspective to BoxTE representations,
where time bumps apply to relation boxes and translate them
in the opposite direction. To show this equivalence, we recall
the correctness criteria for BoxTE for a given fact r(h, t|τ):

e
r(h,t|τ)
h ∈ rh, e

r(h,t|τ)
t ∈ rt.

Subtracting τ r from both sides, respectively, yields:

e
r(h,t)
h ∈ rh|τ , e

r(h,t)
t ∈ rt|τ .

Hence, BoxTE can be interpreted as inducing, at every time
stamp, a translated set of relation boxes, which can then
be compared with static final entity embeddings to verify
temporal fact correctness. Therefore, cross-time inference
patterns can be studied by comparing time-induced relation
boxes, analogously to standard BoxE. In particular, the hier-
archy pattern is captured with the parametrization:

r
h|τ1
1 ⊂ rh|τ22 , r

t|τ1
1 ⊂ rt|τ22 ,

where ⊂ denotes box containment. The intersection pattern
is captured by setting:

r
h|τ3
3 = r

h|τ1
1 ∩ rh|τ22 , r

t|τ3
3 = r

t|τ1
1 ∩ rt|τ22 ,

where ∩ denotes box intersection. Mutual exclusion and in-
version hold by analogous arguments. Note that capturing
inference patterns at a fixed time stamp is a special case.

By capturing cross-time inference patterns, BoxTE can
model the interplay between relations across time. For in-
stance, BoxTE can represent that any two entities engaging
in formal negotiations at time stamp τ1 sign a formal agree-
ment at time stamp τ2. It can also model relation behavior
at single time stamp granularity, and thus capture patterns
specifically at times when they hold, while learning appro-
priate temporal relation-specific behaviors. By contrast, ex-
isting models have shortcomings when combining inference

ICEWS14 ICEWS05-15 GDELT

|E| 7,128 10,488 500
|R| 230 251 20
|T| 365 4017 366
|Gtrain| 72,826 386,962 2,735,685
|Gvalid| 8,963 46,092 341,961
|Gtest| 8,941 46,275 341,961
|G| 90,730 479,329 3,419,607
Timespan 1 year 11 years 1 year
Granularity Daily Daily Daily

Table 2: TKGC datasets with dataset statistics

patterns and time modeling. For instance, TTransE can only
capture rigid inverse relations if either the relation transla-
tion is set to 0, or if the time translation is set to 0, effectively
eliminating the temporal component of the model.

6 Experiments
In this section, we evaluate BoxTE on TKG bench-
marks ICEWS14, ICEWS15 (Garcı́a-Durán, Dumančić, and
Niepert 2018), and GDELT (Leetaru and Schrodt 2013). We
run experiments both in the standard temporal graph com-
pletion setting, and with the recently proposed bounded-
parameter setting (Lacroix, Obozinski, and Usunier 2020).
We first present these datasets, and then report setup and re-
sults for both aforementioned experiments.

In addition to these two experiments, we study the inter-
pretability of BoxTE using a subset of YAGO (Suchanek,
Kasneci, and Weikum 2007), perform an ablation study
on BoxTE with different model variations, and conduct a
robustness analysis relative to embedding dimensionality.
These additional experiments can be found in the appendix
of the full paper.

Datasets. We briefly present ICEWS14, ICEWS5-15, and
GDELT, and report their statistics in Table 2. ICEWS14 and
ICEWS5-15 (Garcı́a-Durán, Dumančić, and Niepert 2018)
are both subsets of the Integrated Crisis Early Warning Sys-
tem (ICEWS) dataset (Boschee et al. 2015), which stores
temporal socio-political facts starting from 1995. More
specifically, ICEWS14 includes facts from 2014 involv-
ing frequently occurring entities, and ICEWS5-15 includes
analogous facts between 2005 and 2015 inclusive. By de-
sign, ICEWS datasets are limited in their temporal patterns,
as geo-political events, e.g., negotiations, visits, are sparse
and largely temporally uncorrelated across distinct entities.

GDELT is a subset of the larger Global Database of
Events, Language, and Tone (GDELT) TKG (Leetaru and
Schrodt 2013), which stores facts about human behavior
starting from 1979. GDELT contains facts with daily time
stamps between April 1, 2015 and March 31, 2016 inclusive,
and only includes facts involving the 500 most frequent enti-
ties and 20 most common relations. Unlike ICEWS, GDELT
is dense (∼2.7 million facts for 500 entities, 20 relations),
includes rich temporal patterns, and captures a diverse range
of relationships with complicated temporal dynamics.
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Model ICEWS14 ICEWS5-15 GDELT

MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10
TTransE - .255 .074 - .601 - .271 .084 - .616 - .115 0.0 .160 .318
DE-SimplE - .526 .418 .592 .725 - .513 .392 .578 .748 - .230 .141 .248 .403
TA-DistMult - .477 .363 - .686 - .474 .346 - .728 - .206 .124 .219 .365
ChronoR(a) - .594 .496 .654 .773 - .684 .611 .730 .821 - - - - -
ChronoR(b) - .625 .547 .669 .773 - .675 .596 .723 .820 - - - - -

TComplEx - .610 - - - - .660 - - - - - - - -
TNTComplEx - .620 .520 .660 .760 - .670 .590 .710 .810 - - - - -
TeLM - .625 .545 .673 .774 - .678 .599 .728 .823 - - - - -

TeMP-SA - .607 .484 .684 .840 - .680 .553 .769 .913 - .232 .152 .245 .377
TeMP-GRU - .601 .478 .681 .825 - .691 .566 .782 .917 - .275 .191 .297 .437

BoxTE (k=2) 161 .615 .532 .667 .767 98 .664 .576 .720 .822 48 .339 .251 .366 .507
BoxTE (k=3) 162 .614 .530 .668 .765 101 .666 .582 .719 .820 49 .344 .259 .369 .507
BoxTE (k=5) 160 .613 .528 .664 .763 96 .667 .582 .719 .820 50 .352 .269 .377 .511

Table 3: Temporal knowledge graph completion results for BoxTE on ICEWS14, ICEWS5-15, and GDELT. Results for com-
peting models are the best reported from their respective papers, which are referenced in Section 3.

Temporal Knowledge Graph Completion
Experimental setup. In this experiment, we train BoxTE
on all three benchmark datasets, report test set performance
for the best validation setup and compare against baseline
models for TKGC. More specifically, we evaluate BoxTE
using mean rank (MR), mean reciprocal rank (MRR), and
Hits@{1,3,10}. We experiment with k values in the set
{2, 3, 5}, and use validation to tune embedding dimension-
ality d, training batch size, and the number of negative sam-
ples. We additionally conduct experiments using the tem-
poral smoothness regularizer from TNTComplEx (Lacroix,
Obozinski, and Usunier 2020), and also consider factoriza-
tions of time embeddings to encourage parameter sharing.
Finally, we train BoxTE with cross-entropy loss, and use
the Adam optimizer (Kingma and Ba 2015) (learning rate
10−3). Full details and explanations about hyper-parameter
setup are provided in the appendix of the full version.

Results. The empirical results for the standard TKGC set-
ting can be found in Table 3. We observe that BoxTE
achieves state-of-the art performance on GDELT, comfort-
ably surpassing TeMP (Wu et al. 2020) in terms of MRR.
Furthermore, BoxTE also performs strongly on ICEWS14,
and ICEWS15. On ICEWS14, BoxTE also outperforms
TeMP, and is competitive with TNTComplEx and ChronoR.
This trend also carries to ICEWS15, where BoxTE remains
strong despite the sparsity of the dataset.

These results are encouraging, particularly given the dif-
ficulty of GDELT. Indeed, GDELT involves significant tem-
poral variability: some facts persist across multiple consecu-
tive time stamps, whereas others are momentary and sparse.
Hence, GDELT requires strong temporal inductive capac-
ity. In fact, most TKGC models fail to beat the simple rule-
based system TED (Wu et al. 2020) on GDELT, further high-
lighting the prevalence of temporal patterns in this dataset.
Hence, the very strong performance of BoxTE suggests that
the model captures temporal patterns, and exploits this in-
formation to outperform existing models.

On the other hand, both ICEWS datasets offer limited
temporal information. Indeed, the relations in these datasets
are rather sparse, and typically encode one-time patterns
with limited, if any, regularity, e.g., official visits, nego-
tiations, statements. Hence, ICEWS datasets are substan-
tially less temporally rich and variable, instead relying more
on entity-driven predictions. This is further highlighted by
the fact that the same TKGC models performing poorly on
GDELT now substantially outperform TED on ICEWS14
and ICEWS5-15 (Wu et al. 2020). Hence, both ICEWS
datasets include few temporal patterns for BoxTE to cap-
ture, and this substantially reduces the inductive advantage
of this model relative to its competitors.

In terms of performance relative to k, BoxTE performs
best with k = 2 on ICEWS14, whereas the optimal k value
is 5 for both ICEWS5-15 and GDELT. This may seem un-
intuitive, especially given the large similarity between both
ICEWS datasets, but this can be attributed to the signifi-
cantly larger number of time steps in ICEWS5-15. Indeed,
ICEWS5-15 includes 4017 time stamps, whereas ICEWS14
only includes 365. Thus, more flexibility is needed to learn
sufficiently distinct temporal behaviors across these time
stamps, and this aligns with our intuition about the advan-
tages of higher k. GDELT results also highlight the impor-
tance of higher k, as they confirm the need for more flexibil-
ity to fit the rich set of facts it provides.

Finally, we note that BoxTE is robust when training on all
benchmarks, as it maintains strong performance even when
not supplemented with temporal smoothness regularization.
By contrast, TNTComplEx and ChronoR suffer significantly
without regularization. This further highlights the inductive
capacity of BoxTE, which can autonomously learn temporal
properties from data, and suggests that this model is a strong,
natural choice for applications on novel datasets where such
regularizations are not known, or are not compatible with
the data. We discuss this experiment in more detail as an
ablation study in the appendix of the full paper.
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Model ICEWS14 ICEWS5-15 GDELT

MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10
DE-SimplE - .526 .418 .592 .725 - .513 .392 .578 .748 - .230 .141 .248 .403
TComplEx - .560 - - - - .580 - - - - - - - -
TNTComplEx - .560 - - - - .600 - - - - - - - -

BoxTE (k=1) 183 .576 .478 .639 .753 122 .564 .452 .635 .770 62 .250 .167 .270 .411
BoxTE (k=2) 177 .580 .483 .642 .755 110 .567 .458 .631 .775 63 .246 .164 .265 .404
BoxTE (k=3) 182 .582 .491 .640 .748 125 .570 .465 .636 .763 64 .242 .161 .260 .398
BoxTE (k=5) 183 .581 .493 .632 .742 134 .567 .469 .623 .746 66 .236 .156 .253 .390

Table 4: TKGC results for BoxTE and competing models in the bounded-parameter setting.

Parameter-bounded Experiments for TKGC
Experimental setup. In this experiment, we train and
evaluate BoxTE analogously to the standard TKGC setup,
but, we impose a dimensionality constraint, such that the to-
tal number of parameters used by the model does not exceed
that of 100-dimensional DE-SimplE, in keeping with the lit-
erature (Lacroix, Obozinski, and Usunier 2020). Hence, this
experiment aims to evaluate the robustness of models with a
restricted computational budget. Given this restriction, we
additionally evaluate BoxTE with k = 1, so as to allow
for a slightly improved dimensionality, albeit at the expense
of flexibility. Further details about the parameter counts of
BoxTE and competing models are provided in the appendix
of the full paper.

Results. The empirical results for the bounded-parameter
setup are reported in Table 4. In this setup, we see that
BoxTE now achieves state-of-the-art performance on both
ICEWS14 and GDELT, and maintains its strong perfor-
mance despite parametrization constraints. In particular,
BoxTE only drops by 0.03 in terms of MRR on ICEWS14
relative to its performance on in the standard setup, whereas
it drops by 0.10 on GDELT, and by 0.09 on ICEWS5-15.
This further reflects the simplicity of ICEWS14, as a low
number of parameters remains sufficient for high perfor-
mance, and highlights the richness of GDELT, as well as
the complexity of ICEWS5-15, owing primarily to its larger
number of time stamps.

The results of this experiment relative to different k
also portray an interesting interplay between this parame-
ter and embedding dimensionality d, which manifests dif-
ferently across the three benchmark datasets. Conceptually,
the bounded-parameter setting imposes a trade-off on the
choice of k: a small kmaximizes dimensionality, but reduces
flexibility, whereas a larger k is more flexible, but substan-
tially reduces the available dimensionality. Hence, the opti-
mal value of k is not obvious, and varies substantially among
datasets. On ICEWS14, we see that k values of 2 and above
perform similarly well, and slightly outperform the k = 1
model, despite their lower dimensionality. This also aligns
with the optimal k in the standard setting, and suggests that
capturing relational temporal dynamics to some extent (via
k > 1) on ICEWS14 is more important than storing more
information through larger dimensionality.

On ICEWS5-15, we see that MRR improves as k in-

creases, and that k = 3 provides strong overall performance.
This improvement relative to k is surprising, as the large
number of time stamps in this dataset causes embedding di-
mensionality to decrease substantially as k increases. In fact,
d = 137 when k = 1, but this drops to d = 104 when
k = 3. Nonetheless, model performance improves. This fur-
ther highlights the higher importance of capturing relational
temporal dynamics in ICEWS5-15 relative to higher dimen-
sionality, and aligns with our expectations given the large
number of time stamps in this dataset.

Finally, for GDELT, BoxTE achieves optimal perfor-
mance with only k = 1, which stands in sharp contrast
with k = 5 being optimal in the standard setting. How-
ever, this can be traced back to the density of this dataset.
Indeed, as every entity and relation appears in a large num-
ber of facts, more dimensionality is needed to capture the
information represented by existing facts. Hence, the reduc-
tion of dimensionality in this setup causes significant loss
in representation capacity, and this severely hurts BoxTE on
GDELT. Given this bottleneck, increasing dimensionality is
substantially more beneficial in the parameter-bounded set-
ting than improving flexibility, and thus lowering k offers
more gain on GDELT.

Overall, these results show that BoxTE offers a state-of-
the-art, robust baseline for temporal knowledge base com-
pletion even under a restricted computational budget.

7 Summary and Outlook
In this paper, we presented BoxTE, a temporal knowledge
graph embedding model, and showed that this model is fully
expressive and captures a rich class of temporal inference
patterns. We then evaluated BoxTE empirically, and showed
that the model achieves state-of-the-art performance for
TKGC, and benefits substantially from its inductive capacity
and robustness. Similarly to BoxE, BoxTE naturally applies
to higher-arity knowledge bases. Unfortunately, there are
no established benchmarks for higher-arity temporal knowl-
edge graph completion, despite its significant potential and
wide applicability. One interesting future direction is there-
fore, introducing new benchmarks for temporal knowledge
base completion, involving higher-arity facts to study the
performance of BoxTE, as well as other models, in this set-
ting. We think that this work will motivate further research
leading to the development of expressive, inductively rich
TKGE models.
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