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Abstract

In this paper we show that behavioral cloning can be used
to learn effective sketches of programmatic strategies. We
show that even the sketches learned by cloning the behav-
ior of weak players can help the synthesis of programmatic
strategies. This is because even weak players can provide
helpful information, e.g., that a player must choose an ac-
tion in their turn of the game. If behavioral cloning is not
employed, the synthesizer needs to learn even the most basic
information by playing the game, which can be computation-
ally expensive. We demonstrate empirically the advantages of
our sketch-learning approach with simulated annealing and
UCT synthesizers. We evaluate our synthesizers in the games
of Can’t Stop and MicroRTS. The sketch-based synthesizers
are able to learn stronger programmatic strategies than their
original counterparts. Our synthesizers generate strategies of
Can’t Stop that defeat a traditional programmatic strategy for
the game. They also synthesize strategies that defeat the best
performing method from the latest MicroRTS competition.

Introduction

One needs to search in large program spaces to synthe-
size effective programmatic strategies. In addition to dealing
with large spaces, synthesizers often lack effective functions
for guiding the search. This is in contrast with neural meth-
ods, where gradient information is available to guide the
search. The problem of neural methods is their lack of inter-
pretability. Despite being elusive, we can often understand,
verify, and even manually modify programmatic strategies.
In this paper we show that behavioral cloning (Bain and
Sammut 1996) can be used to learn program sketches (Solar-
Lezama 2009) to speed up the synthesis of strong pro-
grammatic strategies. Sketches are incomplete programs that
serve as starting points for synthesis. We investigate the use
of this sketch learning approach with synthesizers employ-
ing Simulated Annealing (SA) (Kirkpatrick, Gelatt, and Vec-
chi 1983) and UCT (Kocsis and Szepesvari 2006) as search
algorithms and evaluate them in the context of computing
a best response for a target strategy in two-player zero-sum
games. Specifically, we evaluate our methods in the board
game of Can’t Stop and in the real-time strategy (RTS) game
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of MicroRTS. We show that our methods can be effective
even when cloning the behavior of weak players, such as
a player that chooses their actions at random in the game
of Can’t Stop. Our sketch learning method can be effective
when the cloned strategy is weak because even such strate-
gies might convey information that is helpful for the synthe-
sis of programmatic strategies, such as the program struc-
ture required to decide when to stop playing in Can’t Stop
or when to build a specific structure in MicroRTS.

We evaluated our sketch-based SA and UCT methods by
synthesizing approximated best responses to a known pro-
grammatic strategy for Can’t Stop (Glenn and Aloi 2009)
and to COAC, the winner of the latest MicroRTS Compe-
tition (Ontafién 2020), on four maps. Our sketch-based SA
synthesized strong strategies in all settings tested. As a high-
light, it synthesized a strategy that defeats COAC on large
maps of MicroRTS; none of the strategies synthesized by
the baselines were able to defeat COAC on large maps.

Related Works

Our work is related to methods for synthesizing program-
matic policies, in particular those that use some form of be-
havioral cloning such as imitation learning (Schaal 1999).
Bastani, Pu, and Solar-Lezama (2018) presented an algo-
rithm that uses a variant of the imitation learning algorithm
DAgger (Ross, Gordon, and Bagnell 2011) to distill a high-
performing neural policy into an interpretable decision tree.

Verma et al. (2018) use DAgger and a neural policy
to help with the synthesis of programmatic policies. The
actions the neural policy chooses on a set of states are
used in a Bayesian optimization procedure for finding suit-
able constant values for the programmatic policies. Verma
et al. (2019) use a similar approach, but the neural model is
trained so that it is not “too different” from the synthesized
policies, with the goal of easing the optimization task.

We differ from previous work in that we do not assume
the oracle is available for queries as in DAgger-like methods.
We also do not assume that the oracle is a neural network as
Verma et al. (2019) do. For example, in our experiments we
use a data set from a human oracle. We also do not require
the strategy to be cloned to be high performing; we are able
to learn effective sketches even from weak strategies.

Mariiio et al. (2021) introduced Lasi, a method that uses
behavioral cloning to simplify the language used for syn-



thesis. Lasi removes from the language the instructions that
are not needed to clone a strategy. Lasi can be used with our
sketch-learning methods by simplifying the language to only
then learn a sketch. Lasi is not as general as our methods be-
cause it cannot be applied to domains in which all symbols
in the language are needed, such as Can’t Stop.

Others have synthesized programs to serve as evaluation
functions (Benbassat and Sipper 2011), but not to serve as
complete strategies. Others explored the synthesis of strate-
gies for cooperative games (Canaan et al. 2018) and single-
agent problems (Butler, Torlak, and Popovi¢ 2017; De Fre-
itas, de Souza, and Bernardino 2018). These methods can
potentially benefit from our sketch-learning methods.

While most previous work assume that the user provides
the program sketch (Solar-Lezama 2009), Nye et al. (2019)
use a neural model to generate sketches. Their approach is
designed to solve program synthesis tasks, where one syn-
thesizes a program mapping a set of input values to the de-
sired output values; we synthesize strategies. Also, we are
unable to train a neural model for sketch generation because
the amount of data we consider is insufficient for training
(we use data sets with state-actions of as few as 3 matches).

Problem Definition

Let G be a sequential two-player zero-sum game defined by
a set .S of states, a pair of players P = {i, —i}, an initial
state s;n;¢ in S, a function A;(s) that receives a state s and
returns the set of actions player ¢ can perform at s, and a
function U;(s) that returns the utility of player ¢ at s. Since
G is zero sum, U;(s) = —U_;(s). A strategy for player 7 is
a function 0; : S — A; mapping a state s to an action a.
A programmatic strategy is a computer program encoding a
strategy o. The value of the game for state s is denoted by
U(s,0;,0_;), which returns the utility of player 4 if ¢ and
—i follow the strategies given by o; and o_;. We also call a
match a game played between two strategies.

We consider programmatic strategies written in a domain-
specific language (DSL) (Van Deursen, Klint, and Visser
2000). Let D be a DSL and D be the set of programs writ-
ten in D. The best response for a strategy o_; in D is a
strategy that maximizes player ¢’s utility against o_;, i.e.,
maxy,ep U(Sinit, 04, 0—;). The computation of a best re-
sponse for a fixed strategy is a basic operation in game the-
ory approaches such as iterated best response for approxi-
mating a Nash equilibrium profile (Lanctot et al. 2017).

In this paper we evaluate different search methods for syn-
thesizing a best response to a strategy. We provide a game G,
a DSL D and a strategy o_; and the synthesizer searches in
the space defined by D and returns an approximated best re-
sponse o; in D to o_;. We also consider the setting in which
a data set with state-action pairs L = {(s;,a;)}72; with the
actions a; a player takes at states s; is available.

Synthesis of Programmatic Strategies

In this section we review DSLs and explain how SA and
UCT can be used to synthesize programmatic strategies.
While SA and UCT have been applied to program synthe-
sis tasks, e.g., (Husien and Schewe 2016; Cazenave 2013),
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this is the first time these approaches are applied to synthe-
size programmatic strategies, so we describe them in detail.
Domain-Specific Languages

A DSL is defined as a context-free grammar (V, X, R, I),
where V', 3, and R are sets of non-terminals, terminals, re-
lations defining the production rules of the grammar, respec-
tively. I is the grammar’s start symbol. Figure 1 shows a
DSL where V = {I,C, B}, ¥ = {c1, 2, b1, by if, then}, R

Figure 1: DSL (left) and AST for “if b; then ¢;” (right).

I— Cif(B)thenC
C— C1C2
B — b1b2

are the relations (e.g., C' — c1), and [ is the start symbol.
The DSL allows programs with a single command (c; or
c2) and programs with branching. We represent programs as
abstract syntax trees (AST), where the root of the tree is I,
the internal nodes are non-terminals and leaf nodes are ter-
minals. Figure 1 shows an example of an AST, where leaves
are terminal symbols and internal nodes are non-terminals.

Simulated Annealing for Synthesis of Strategies

SA is a local search algorithm that uses a temperature pa-
rameter to control the greediness of the search. SA be-
haves like a random walk in the beginning of the search
and more like hill climbing later in search. We use SA
to approximate a programmatic best response to a tar-
get strategy o_;, i.e., SA approximates a solution to
arg maxq,ep U(Sinit, 0i, 0—).

SA starts with a program that is randomly generated as
follows. We start with I and we replace it with a ran-
domly chosen production rule for I; we then repeatedly
replace a non-terminal symbol in the generated program
with a random and valid production rule; we stop when
the program contains only terminals. For example, the pro-
duction rules used to obtain program “if b; then c;,” are:
I — if(B)thenCelseC; B — by; C — 1.

Once the initial program p is defined, SA generates a
neighbor p’ of p by changing a subtree in p’s AST. We
randomly choose a non-terminal symbol n in the AST (all
non-terminal symbols can be chosen with equal probabil-
ity) and we replace the subtree rooted at n with a subtree
that is generated with the same procedure used to generate
the initial program. For example, if the subtree rooted at C'
(Figure 1) is chosen and we replace it with co, then p’ is “if
by then cy.” SA decides if it accepts or rejects p’. If it ac-
cepts, then p’ is assigned to p and the process is repeated.
If it rejects, SA repeats the procedure by generating another
neighbor of p. The probability in which SA accepts p’ is

given by min (1, exp (W)) . Here, T} is the



temperature at iteration j, and U is an evaluation function.
In program synthesis tasks, ¥ (p) counts the number of input
examples that p correctly maps to the desired output (Alur
et al. 2013). In the context of games, ¥ (p) returns the utility
of p against the opponent o_;. If ¥(p') > ¥(p), then SA
accepts p’ with probability 1.0. Otherwise, the probability
of acceptance depends on 7} and . 3 is an input param-
eter that allows us to adjust how greedy SA is; larger val-
ues of /3 result in a greedier search by more often rejecting
programs with small W-values. Larger values of T; make
the search less greedy since large T-values increase the
chances of accepting p’. The initial temperature, T}, is an in-
put parameter and 77 is computed according to the schedule

T; = —L . Once the temperature becomes smaller than
J (A+aj)

€, we stop searching and the program with largest W-value
encountered in search is returned as the SA’s approximated
best response to o_;. In our experiments we run SA multi-
ple times, while we have not exhausted the time allowed for
synthesis, and we initialize the search with the program re-
turned in the latest run as it often allows the search to start
in a more promising region of the space.

UCT for Synthesis of Strategies

UCT grows a search tree while exploring the space. Each
node in the tree represents a program, which can be com-
plete or incomplete. A program is complete if all leaves in
its AST are terminals. The root of the UCT tree represents
the incomplete program of the initial symbol I. The chil-
dren of a node n in the UCT tree are the programs that can
be generated by applying a production rule to the leftmost
non-terminal symbol of the program n represents. For ex-
ample, if n represents “i f (B)thenC”, then its children rep-
resent “i f (b1 )thenC” and “i f (by)thenC” because B is the
leftmost non-terminal symbol of the program n represents.
UCT operates in four steps: selection, expansion, simu-
lation, and backpropagation. The selection step starts at the
root of the tree and it chooses the j-th child that maximizes

X+K 10%()

of the j-th ch1ld of n, N is the number of times node n was
visited in previous selection steps, /V; is the number of times
n was visited and the j-th child was selected, and K is an
exploration constant. The first term of the equation is an ex-
ploitation term as it favors the child with highest average
evaluation value; the second term is an exploration term.
The selection step stops when it encounters a node n with
at least one child n’ that is not in the UCT tree. In the ex-
pansion step, UCT adds n’ to the tree; if more than one child
is not in the UCT tree, the algorithm chooses one arbitrar-
ily. The simulation step applies a policy to turn n’ into a
complete program, which is then evaluated with W. Finally,
the backpropagation step updates the X;-values of all nodes
visited in the selection step with the V- value from the sim-
ulation step. The four steps are repeated multiple times and
UCT returns the program with largest W-value, among all
programs evaluated during search, when it reaches a user-
specified time limit. UCT caches the W-values of programs
that were evaluated in previous iterations of the algorithm.
The UCT tree might grow to include complete programs

. Here, X is the average evaluation value
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(i.e., nodes with no children). If the selection step ends at
a complete program, it performs no expansion and returns
the cached W-value of n in the backpropagation step.

We use a single run of SA as UCT’s simulation policy.
When running SA as simulation policy for an incomplete
program p, the neighbors of a program can only be obtained
by changing the subtrees of the AST that are rooted at a non-
terminal leaf node. For example, if p is “i f (B)thenC”, then
the neighbors of p can be obtained by changing only B and
C, but not the root of the AST, I, because [ is not a leaf in
the AST. This constraint ensures that the simulation policy
does not change the structure of p, which is defined by the
production rules along the path in the UCT tree.

Learning Sketches with Behavioral Cloning

We consider the setting in which the synthesizer receives
as input a data set of state-action pairs L = {(s;,a;)}7";
with actions chosen by strategy o, for states of one or more
matches of the game. We use this data set to learn a sketch
to speed up the synthesis of strong programmatic strategies.
SA and UCT can be used to clone the behavior of o,
by replacing ¥ with an evaluation function C'(L, p) that re-
ceives the data set L and a program p and returns a score of
how well p clones o,. Note, however, that cloning the be-
havior of o, can result in weak strategies. This is because o,
might not be represented in D. Or the data set L is limited
and one needs to perform DAgger-like queries (Ross, Gor-
don, and Bagnell 2011) to augment it and o, might not be
available for such queries (e.g., o, is a human player who is
unavailable). Or o, is a weak strategy and exactly cloning its
behavior would result in a weak strategy. Instead of learning
a strategy directly with behavioral cloning, we use it to learn
a sketch that helps the synthesis process of a strong strategy.
Sketch-learning methods can be more effective than those
that optimize for W directly for two reasons. First, ¥ can be
computationally more expensive than C. Using C' to learn
parts of the programmatic strategy will tend to be more effi-
cient than to learn the entire strategy with W. Second, the
function C can offer a denser signal for search (e.g., the
neighbor p’ of p might not defeat o_;, but it might have a
higher C-score, which can be helpful to guide the search).

Sketch Learning with UCT

We run UCT with the evaluation function C'(L, p) for a num-
ber of iterations and, whenever we find a complete program
p with a C-value larger than the current best solution, we
evaluate it with W. We call this search the sketch-search.
Once we reach a time limit, we use the program found in
the sketch-search with the largest W-value to initialize a sec-
ond UCT search, which we call best response (BR)-search.
Let p be the program with largest W-value encountered in
the sketch-search. The program is defined by a sequence of
production rules that replace the leftmost non-terminal sym-
bol in the sequence of partial programs, starting with the
initial symbol of the DSL. We start the UCT tree of the BR-
search with a branch that represents the production rules of
p. For example, let “i f (b1 )thenc;” be the program p with
largest W-value from the sketch-search. The UCT tree of the



BR-search is initialized with the branch with nodes repre-
senting the programs: “I”, “i f (B)thenC”, “i f (b1 )thenC”,
and “if(by)thenc;”. We then perform a backpropagation
step on the added branch with W(p), which was computed in
the sketch-search. By adding the branch leading to p to the
tree of the BR-search we are biasing it to explore programs
that share the structure of p. This is because the nodes along
the added branch will likely have higher X -values than other
branches, specially in the first iterations of search.

The branch added to the UCT tree of the BR-search acts
as a sketch as defined in the literature (Solar-Lezama 2009)
because it represents a program with “holes” that are filled
by the BR-search. In our example, assuming that the V-
value of p is somewhat large, the BR-search will be biased
to explore the sketches that share the structure of p, such
as “if(?)thenc,” and “if(?)then?”, where each question
mark represents a hole that needs to be filled. Sketch learn-
ing provides a set of sketches with varied levels of detail
(deeper nodes in the branch represent sketches with more
information) that the BR-search explores while optimizing
for 0.

Sketch Learning with Simulated Annealing

Like with UCT, we run SA to clone o, by using C(L,p)
as evaluation function. During search, every time we find
a solution with better C-value, we also evaluate it with W.
Once we reach a time limit, SA returns the program p with
largest W-value. We also call this search the sketch-search.
We then use p as the initial program of another SA search
that optimizes for ¥ directly, which we also refer to as the
BR-search. We hypothesize that the program p allows the
BR-search to start in a more promising part of the space, be-
cause p might have a structure that is similar to the structure
of a program that approximates a best response to o_;.
While the branch added to the UCT tree of the BR-search
can be seen as a set of sketches that are explored according
to the prioritization defined by UCT, the connection between
using program p to initialize the BR-search and sketches is
not as clear. We see the program p as a soft sketch, because
it provides an initial structure to the synthesizer, but it does
not explicitly specify a set of holes. Since SA can change
any subtree of p’s AST, any subtree can be seen as a soft
hole of p. Some subtrees are more likely to be replaced than
others due to SA’s acceptance function, i.e., SA prefers to
change subtrees that will result in an increase in W-value.

Score Functions for Behavioral Cloning

We use domain dependent functions C'(L, p) and describe
them in the empirical section. We consider score functions
that use both the state and actions in the data set L =
{(sj,a;)}jL, and functions that use only the states in L,
as in recent approaches on imitation learning from observa-
tions (Torabi, Warnell, and Stone 2018).

Empirical Evaluation

The goal of our evaluation is to verify if synthesizers that
learn a sketch with behavioral cloning generate stronger ap-
proximated best responses to o_; than their counterparts,
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that optimize directly for W. All experiments were run on
a single 2.4 GHz CPU with 8§ GB of RAM and a time limit
of 2 days.1We use a = 0.9, 8 = 200, 77 = 100, ¢ = 1, and
K =10.

Problem Domains

We use the two-player versions of Can’t Stop and Mi-
croRTS. We chose these games because they have differ-
ent features and allow for a diversity of scenarios. While
Can’t Stop is a stochastic game, MicroRTS is a determin-
istic game played with real-time constraints. The branching
factor of Can’t Stop is small (2 or 3 actions per state), while
MicroRTS has an action space that can grow exponentially
with the number of game components (Lelis 2020). Finally,
there exist strong human-written programmatic strategies for
these games that we can use as o_; in our experiments.

Can’t Stop The game of Can’t Stop is played on a board
with 11 columns, numbered from 2 to 12. The column 2 has
3 rows and the number of columns increases in size by 2
for every column until column 7, which has 13 rows. The
number of rows decreases by 2, starting at column 8 until
column 12, which also has 3 rows. The player who first con-
quers 3 columns wins the game. In each round of the game
the player has 3 neutral tokens and they roll 4 six-sided dice.
The player can place a neutral token in any column that is
given by the combination of a pair of dice. A neutral to-
ken is then placed on the board, initially at the first row of
the chosen column and later immediately above the player’s
permanent marker. The player can then decide to stop play-
ing or to roll the dice again. If the player chooses the former,
the neutral tokens are replaced by permanent tokens, thus
securing that position on the board. If the player decides to
roll the dice again, they are able to use the remaining neu-
tral tokens, if there are any, or advance in columns in which
they already have a neutral token placed. If the player does
not have neutral tokens and the combination of dice only re-
sult in column numbers for which the player does not have a
neutral token on, the player loses the neutral tokens and the
other player starts their turn. A column is conquered when a
player places a permanent token on the last row of a column.

Glenn and Aloi (2009) used a genetic algorithm to
improve an existing programmatic strategy for Can’t
Stop (Keller 1986). We use Glenn and Aloi’s strategy as o_;
and we call it GA. GA decides to stop playing in a turn of the
game whenever the sum of scores of the neutral markers ex-
ceeds a threshold. GA defines a program for computing such
a score (yes-no decision) and another program to decide in
which column to advance next (column decision).

We have developed a DSL for synthesizing programs for
both the yes-no and column decisions. The DSL includes op-
erators such as map, sum, argmax, and lambda functions.
The DSL also includes a set of domain-specific functions
such as a function for counting the number of rows a player
has advanced in a turn. See our codebase for more informa-
tion about the DSL. The task is to synthesize a program that

!The implementation of all algorithms used in our experiments
is available at https://github.com/leandrocouto/sketch-learning.



simultaneously solves the yes-no and the column decisions
while maximizing the player’s utility against GA.

The ¥ function for Can’t Stop is the average number of
victories of p against o_; on 1,000 matches. We run the
sketch-search of SA for 1 hour and the BR-search for the re-
maining time. We run the sketch-search of UCT for 10 hours
because UCT is slower than SA in exploring the space. We
did not evaluate other time schedules for the synthesis of
strategies with the sketch learning approaches.

MicroRTS In MicroRTS each player controls a set of
units of different types. Worker units can collect resources,
build structures (Barracks and Bases), and attack opponent
units. Barracks and Bases can neither attack opponents units
nor move, but they can train combat units and Workers, re-
spectively. Combat units can be of type Light, Heavy, or
Ranged. These units differ in how long they survive a bat-
tle, how much damage they can inflict to opponent units,
and how close they need to be from opponent units to attack
them. We use a version of MicroRTS where the actions are
deterministic and there is no hidden information. A match
is played on a map and each map might require a differ-
ent strategy for winning the game. We use four maps of dif-
ferent sizes, where the names in parenthesis are the names
in the MicroRTS codebase:?> 16x16 (TwoBasesBarracks),
24 x24 (BasesWorkers), 32 x32 (BasesWorkers), and 64 x 64
(BloodBath-B). The smallest and largest maps are from the
2020 MicroRTS Competition. We use the winner of the lat-
est MicroRTS Competition, COAC, as o_; (Ontaiién 2020).
COAC is a programmatic strategy written by humans.

We have implemented a DSL similar to the one presented
by Marifio et al. (2021). The DSL includes loops, condition-
als, and a set of domain-specific functions that assign ac-
tions to units (e.g., build a barracks) and a set of Boolean
functions; see our codebase for details.

The ¥ function for MicroRTS is the average number of
victories of p against o_; in 2 matches. Each map has two
starting locations, so we run 2 matches alternating the play-
ers’ starting location for fairness. MicroRTS does not require
an explicit time schedule for splitting the time between the
sketch-search and the BR-search. This is because both W and
C(L,p) are computed by having p play 2 matches against
o_;. The transition between sketch-search and BR-search
occurs naturally if we define the evaluation function of the
search algorithms as the ¥ function with ties being broken
according to C(L, p). In the beginning of the synthesis the
W-value will be zero for all programs evaluated in search, but
C(L,p) quickly provides different values for different pro-
grams, which will guide the search toward helpful sketches.

Score Functions

We consider an action-based score function where the score
of p is the fraction of actions that p chooses at states in
pairs (s;,a;) of L that match the action in the pair, i.e.,
> (s;.ap)er Ha; = p(s;)]/|L|, where 11is the indicator func-
tion. We denote SA and UCT learning sketches with this
score function as Sketch-SA(A) and Sketch-UCT(A).

“https://github.com/santiontanon/microrts
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Can’t Stop We use an observation-based score function
that measures the percentage of permanent markers on the
end-game state of a match that overlaps with the permanent
markers obtained by a program p on the match’s end-game
state if p had played it. This score is computed by iterating
through each state s; of a match in L and applying the effects
of actions p(s;) to an initially empty board of the game; once
an end-game state s is reached, we compute the percentage
of overlapping permanent markers between s; and the end-
game state in L. For example, if the player in the end-game
state of a match in L conquered columns 2, 3, and 7, and
had one marker on column 12, and program p conquered
columns 2, 3, and had one marker on column 8, then the
scoreis (3+5)/(3+5+13+1+1) = 0.34. Here, (3+5) is
the number of positions in the intersection of the end-game
states and (3+5+ 1341+ 1) is the union of the positions. If
p and o, return the same actions for all states in L, then the
score is 1.0. If L has multiple matches, we return the average
score across all matches. We denote SA and UCT using this
score function as Sketch-SA(O) and Sketch-UCT(O).

MicroRTS We use an observation-based score function
that computes a normalized absolute difference between (i)
the number of units and resources the strategy p trains and
collects in a match of p against o_; and (ii) the number
of units and resources the strategy o, trains and collects
in a match in the data set L. Let n, and n], be the num-
ber of units of type u that p and o, have trained in their
matches. The score related to units of type w is given by

1— mlmn";"“l, For example, if the number of Ranged units
ax(ny,n’,)

the strategy p trained is 4 and if the number of Ranged units
the strategy o, trained is 10, then the score for Ranged units
is 1 —6/10 = 0.4. The value returned is the average scores
of all types of units and resources. The score is 1.0 if both p
and o, train the same number of units of each type and col-
lect the same number of resources. We denote SA and UCT
using this function as Sketch-SA(O) and Sketch-UCT(O).

Strategies to Clone

We use weak and strong strategies o, for generating the data
sets L. L is composed of state-action pairs from matches in
which o, plays the game with either itself or another strat-
egy, which is specified below. For self-play matches, we in-
clude in L only the state-action pairs of the winner.

Can’tStop We consider 3 data sets L, each generated with
a different o,. The first o, randomly chooses one of the
available actions at each state of the game. The data set is
composed of 3 self-play matches of this strategy, which wins
approximately only 2.8% of the matches it plays against
o_;. We use a data set composed of 3 self-play matches of
the GA strategy and a data set composed of 3 matches a hu-
man played with GA; the human player won all matches.

MicroRTS We also consider 3 data sets L for MicroRTS.
The first L is composed of 2 matches (one in each start-
ing location of the map) of Ranged Rush (RR), which is a
simple programmatic strategy (Stanescu et al. 2016), against
COAC. We also use a data set composed of 2 matches of
A3N, a Monte Carlo tree search algorithm (Moraes et al.



Training Strategy: Random Training Strategy: Random

—— UCT Baseline
0.5 0.4 Sketch-UCT(A)
204 @ Sketch-UCT(0)
@ ©
-4 x 0.3
go3 2
£os co2
e —— SA Baseline =
0.1 Sketch-SA(A) 0.1
Sketch-SA(O)
0.0 0.0
0 50000 100000 150000 0 50000 100000 150000
Running Time (Seconds) Running Time (Seconds)
0 GTraining Strategy: Glenn and Aloi's o 5Training Strategy: Glenn and Aloi's
UCT Baseline
0.5 0.4 Sketch-UCT(A)
Y04 o Sketch-UCT(0)
E o3
203 2
< £0.2
c c
502 —— SABaseline = //
0.1 Sketch-SA(A) 0.1 25
Sketch-SA(O)
0.0 0.0 /
0 50000 100000 150000 0 50000 100000 150000
Running Time (Seconds) Running Time (Seconds)
06 Training Strategy: Human Player 05 Training Strategy: Human Player
—— UCT Baseline
0.5 0.4 Sketch-UCT(A)
204 o Sketch-UCT(O)
@ ©
-4 x 0.3
go3 2
£os co2
= —— SA Baseline =
0.1 Sketch-SA(A) 0.1
| Sketch-SA(O)
0.0 0.0
0 50000 100000 150000 0 50000 100000 150000

Running Time (Seconds) Running Time (Seconds)

Figure 2: Winning rate of SA (left) and UCT (right) variants.

2018), against COAC. A3N considers low-level actions of
units (e.g., move one square to the right) while planning their
actions. We chose A3N because we reckon it would be hard
for the synthesizer to clone its behavior as the strategies de-
rived with A3N are unlikely to be in the space of strategies
defined by the DSL (the DSL does not allow for a fine con-
trol of the units, as A3N does). Both RR and A3N are unable
to win any matches against COAC, our o_;, in all maps eval-
uated. We also consider a data set composed of states from
2 self-play matches of COAC.

Empirical Results: Can’t Stop

Figure 2 shows the results on Can’t Stop. Each plot shows
the winning rate against o_; (y-axis) of the best synthe-
sized strategy over time (x-axis) of the methods: a search
algorithm (either SA or UCT) without behavioral cloning
for sketch learning (Baseline), a search algorithm that learns
sketches: Sketch-SA(A), Sketch-UCT(A), Sketch-SA(O) or
Sketch-UCT(O). In the plots we account for the time used
in the sketch-searches. We ran 30 independent runs of each
method and the lines represent the average results while the
shaded areas the standard deviation of the runs.

The learning-sketch methods are much faster than their
baselines. In most of the cases, Sketch-SA and Sketch-UCT
achieve winning rates that their baseline counterparts did
not achieve within the time limit. The results also show
that the SA methods perform better than their UCT coun-
terparts. Only Sketch-SA synthesized strategies that defeat
o_; in more than 50% of the matches. In particular, Sketch-
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SA(O) is the most effective method for approximating a best
response for o_;. We conjecture SA synthesizes stronger
strategies than UCT because it explores the space more
quickly than UCT. The time complexity of UCT’s selection
step is quadratic on the program’s length. This is because, in
each selection step, the search traverses all production rules
of the current incomplete program for each production rule
applied to it. By contrast, SA can synthesize a large number
of instructions with a single neighborhood operation.

Although Sketch-SA(O) performs better by cloning the
behavior of the human player, the method performs surpris-
ingly well when it learns sketches by cloning the behavior
of a random strategy. One of the key aspects for playing
Can’t Stop is to decide when to stop playing so that the neu-
tral markers become permanent markers. The program must
have a specific structure for computing the score that leads to
a stop action, similar to sum (map (A.f, neutrals)).
Here, neutrals is a list with the neutral markers and f is a
score function for individual markers. The sum and map op-
erators return the sum of the scores of all markers. While the
structure of this program is not trivial, the random strategy
has a 50% chance of choosing the stop action, and its effects
are reflected on the states in L (i.e., neutral markers become
permanent markers). The synthesizers discover sketches like
the program above because such programs place permanent
markers on the board, as the random strategy does. The BR-
search modifies the sketch to maximize the player’s utility,
but most of program’s structure is maintained.

The sketch-based methods perform worse with the action-
based function. This is because the observation-based func-
tion captures the effects of even rare actions. A good player
of Can’t Stop chooses to continue playing in most states, but
at crucial states they choose to stop. A player that never stops
has a high action-based score because the stop action is rare.
As a result, the sketch-based methods often fail to learn the
program structure needed to correctly decide when to stop.

Empirical Results: MicroRTS

Figure 3 shows the results of the SA variants on MicroRTS;
we omit the UCT plots for space. The results of the UCT
variants on MicroRTS are similar to those on Can’t Stop.
The UCT variants perform worse than their SA counter-
parts. In particular, no UCT method, including the baseline
UCT, is able to synthesize a strategy that defeats o_; on the
larger 3232 and 64 x64 maps. Moreover, the approaches
that learn sketches perform better than their counterparts on
the smaller 16x 16 and 24 x24 maps. The plots for maps of
size 16x 16 and 24 x24 in Figure 3 show a reduced running
time (approximately 6 hours for the former and 24 hours for
the latter) so we can better visualize the curves. Each line
represents the average winning rate and the shaded areas the
standard deviation of 10 independent runs of each method.
Like in Can’t Stop, the sketch-based methods are superior
to the baseline, with Sketch-SA(O) achieving winning rates
near 1.0 even when learning sketches from A3N, which is a
strategy unable to defeat o_;. There is also a gap between
the action and the observation-based functions and the gap
seems to increase with the map size. Sketch-SA(A) did not
synthesize strategies that defeated o_; for L generated with
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Figure 3: Winning rate of strategies SA variants synthesize; the maps increase in size from left to right and top to bottom.

1def Sketch-SA-0-24x24 (state s):
2 for u in s:

3 if not u.isWorker():

4 u.moveToUnit (Ally, LessHealthy)
5 u.train(Ranged)

6 for u in s:

7 u.attackIfInRange()

8 u.build(Barracks)

9 for u in s:

0 u.harvest (4)

1

1
1 u.attack (LessHealthy)

Figure 4: Sketch-SA(O)’s strategy for the 24 x 24 map.

A3N and COAC on the 64x64 map. The explanation for
the poor performance of Sketch-SA(A) is similar to that on
Can’t Stop: some actions are rare but play an important role
in the game (e.g., one can only train Ranged units after build-
ing a barracks, which might happen only once in a match).

Sample of Programmatic Strategy

Figure 4 shows a strategy Sketch-SA(O) synthesized for
the 24 x24 map. We lightly edited the strategy for readabil-
ity. This strategy achieves the winning rate of 1.0 against
COAC. The strategy receives a state s and assigns an ac-
tion to each unit in s; if a unit is not assigned an action,
then it does not perform an action in the next round of the
game. Once the strategy assigns an action to a unit u, the
action cannot be replaced by another action. For example,
the strategy does not change the action assigned to units in

line 4, even if we try to assign them a different action later in
the program. This strategy trains Ranged units (line 5) once
a barracks is built (line 8); a single barracks is built because
all resources are spent training Ranged units once the bar-
racks is available. The Ranged units cluster together (line 4)
and attack enemy units within their range of attack (line 7).
If there are no enemy units within their range, they attack the
enemy’s units that are close to being removed from the game
(line 11). The strategy assigns 4 Workers to collect resources
(line 10). This strategy is representative of the strategies our
methods synthesize for both domains.

Conclusions

In this paper we showed that behavioral cloning can be
used to learn effective sketches for speeding up the synthe-
sis of programmatic strategies. We presented Sketch-UCT
and Sketch-SA, two synthesizers based on UCT and SA
that learn a sketch for a program encoding an approximated
best response to a target strategy by cloning the behavior
of an existing strategy. The synthesizers use the sketch as
a starting point in the search for an approximated best re-
sponse. Experimental results on Can’t Stop and MicroRTS
showed that Sketch-SA can synthesize strategies able to de-
feat programmatic strategies written by human programmers
in all settings tested, even when learning sketches from weak
strategies. In particular, Sketch-SA synthesized strategies
that defeated the winner of the latest MicroRTS competition
on all maps used in our experiments, while baseline synthe-
sizers failed to generate good strategies in these settings.
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