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Abstract

We consider Reinforcement Learning (RL) problems where
an agent attempts to maximize a reward signal while min-
imizing a cost function that models unsafe behaviors. Such
formalization is addressed in the literature using constrained
optimization on the cost, limiting the exploration and lead-
ing to a significant trade-off between cost and reward. In
contrast, we propose a Safety-Oriented Search that comple-
ments Deep RL algorithms to bias the policy toward safety
within an evolutionary cost optimization. We leverage evolu-
tionary exploration benefits to design a novel concept of safe
mutations that use visited unsafe states to explore safer ac-
tions. We further characterize the behaviors of the policies
over desired specifics with a sample-based bound estimation,
which makes prior verification analysis tractable in the train-
ing loop. Hence, driving the learning process towards safer
regions of the policy space. Empirical evidence on the Safety
Gym benchmark shows that we successfully avoid drawbacks
on the return while improving the safety of the policy.

Introduction
A Deep Reinforcement Learning (DRL) agent tries to learn a
policy maximizing a long-term objective by trials and errors
in large state spaces (Sutton and Barto 2018). This learning
paradigm achieved impressive performance in various do-
mains (e.g., games (Silver et al. 2018)). However, several
applications (e.g., robotics (OpenAI et al. 2019)) typically
involve safety criteria that are complex to model with sim-
ple reward shaping (Amodei et al. 2016).

We consider the class of problems where unsafe behav-
iors are specified with an auxiliary cost signal to maintain
safety specifications separate from the task objective (e.g.,
the long-term reward) (Garcıa and Fernández 2015). In the
literature, Constrained Markov Decision Processes (CMDP)
(Altman 1999) are used to formalize such problems due
to the intuitive way of constraints (on the cost) to encode
safety criteria (Liu, Ding, and Liu 2020; Stooke, Achiam,
and Abbeel 2020). However, constrained DRL often violates
the constraints introduced in the optimization and naturally
limits exploration (Ray, Achiam, and Amodei 2019). Con-
versely, efficient exploration is crucial to avoid getting stuck
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Figure 1: Overview of SOS

in local optima or failing to learn proper behaviors, obtain-
ing low returns (Hong et al. 2018). Such trade-off between
having efficient exploration to achieve good performance,
and the limitation induced by constraints, suggest to inves-
tigate alternative ways to overcome the typical contrast in
the design of Safe DRL algorithms that are either based on
the optimality criterion (e.g., introduce the concept of risk in
the optimization), or on the exploration process (e.g., avoid
undesirable situations) (Garcıa and Fernández 2015).

To this end, we propose Safety-Oriented Search (SOS) to
combine exploration process and optimality criterion into a
unique framework, depicted in Figure 1, that works on top
of existing DRL algorithms. Our goal is to bias policies to-
ward safety without multi-objective or constrained optimiza-
tion, hence without formalizing the problem as a CMDP.
We leverage Evolutionary Algorithms (EA) (Fogel 2006) for
SOS to augment DRL, proposing a novel concept of Safe
Mutations (SM). SM exploits the visited states deemed un-
safe according to the cost to approximate the per-weight sen-
sitivity of the actions over such undesired situations. Then,
such sensitivity is used to compute safety-informed pertur-
bations that locally biases the agent policy to explore differ-
ent behaviors (i.e., actions) in the proximity of the unsafe
states (i.e., the exploration process). In more detail, an evo-
lutionary population is periodically generated from the DRL
policy using SM, and it is evaluated independently over a
set of trials to select the subset of individuals with returns
comparable to the DRL agent and a lower cost.

Assuming that this subset improves the auxiliary cost, we
note that such signal is typically sparse (i.e., it is not triv-
ial to shape the risk associated with every state in a high-
dimensional space). Hence, the cost function does not fully
characterize the behaviors of the policy, sharing the issues
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of using sparse rewards (Hong et al. 2018). For this reason,
we argue that a tractable characterization of the behaviors
of a Deep Neural Network (DNN) is instrumental in evalu-
ating the safety of a policy (Corsi et al. 2020). To this end,
we define a novel violation metric that quantifies the num-
ber of correct decisions that a policy chooses over desired
safe specifications, using interval-analysis verification (Liu
et al. 2021). We then select the policy in the subset with the
lowest violation that will replace the agent (i.e., the opti-
mality criterion). However, Formal Verification (FV) (Wang
et al. 2018a; Weng et al. 2018) is known to be computation-
ally demanding and can not be used directly in the training
loop without assumptions that can not be satisfied in prac-
tice (e.g., having an optimal policy (Lutjens, Everett, and
How 2020)). We propose to relax the formal guarantees of
prior bound-estimation methods (Wang et al. 2018a) with
a sample-based estimation to make this analysis tractable.
Crucially, our Estimated Verification (EV) impacts the train-
ing within a negligible overhead. Summarizing, we foster
safer behaviors with periodical EA evaluations, while the re-
ward objective is optimized by the DRL training process.

We compare a SOS implementation of PPO (Dhariwal
et al. 2017) and TD3 (Fujimoto, van Hoof, and Meger
2018) over constrained approaches, namely CPO (Achiam
et al. 2017), Lagrangian-PPO (Stooke, Achiam, and Abbeel
2020), and IPO (Liu, Ding, and Liu 2020), in the recent
Safety Gym benchmarks (Ray, Achiam, and Amodei 2019).
Empirical evidence confirms that constrained DRL does not
ensure the satisfaction of constraints, while its limited ex-
ploration leads to low returns. In contrast, SOS-based algo-
rithms achieve long-term returns similar to the DRL baseline
and successfully minimizes the auxiliary cost objective, ob-
taining comparable performance to constrained DRL.

Preliminaries
A CMDP (Altman 1999) is a Markov Decision Process with
an additional set of constraints C based on Ci : S ×A → R
(i ∈ {1, . . . , k}) cost functions (similar to the reward)
and h ∈ Rk thresholds for the constraints. The Ci-return
is defined as JCi(π) := Eτ∼π[

∑∞
t=0 γ

tCi(st, at)], where
γ ∈ (0, 1) is the discount, τ = (s0, a0, . . . ) is a trajectory,
π = {π(a|s) : s ∈ S, a ∈ A} denotes a policy in state
S and actionA spaces. Constraint-satisfying (feasible) poli-
cies ΠC , and optimal policies π∗ are thus defined as:

ΠC := {π ∈ Π : JCi
(π) ≤ hi, ∀i}, π∗ = argmax

π∈ΠC

J(π)

where J(π) := Eτ∼π[
∑∞

t=0 γ
tR(st, at)] is the expected

discounted return that we aim at maximizing in a standard
MDP; Π are the stationary policies, and R : S × A → R is
the reward function. Without loss of generality, we consider
the case of one cost function (as in recent constrained DRL
literature (Ray, Achiam, and Amodei 2019; Stooke, Achiam,
and Abbeel 2020; Liu, Ding, and Liu 2020)) and we will dis-
cuss later how SOS could handle multiple cost functions.

Evolutionary Algorithms
Evolutionary approaches represent black-box optimizations
characterized by generation, perturbation (mutation), and se-

lection operators (Fogel 2006), which can be used to aug-
ment exploration (Khadka and Tumer 2018). EAs typically
evolve a population of p ∈ N individuals (genomes), rep-
resented by parameters (weights) θi (i ∈ {1, . . . , p}). The
individuals are evaluated to produce a fitness score used by
the selection operator to choose the best genome. Mutat-
ing a policy with simple Gaussian noise N , however, can
lead to disruptive changes (Lehman et al. 2018) that can be
naively address uses zero-mean and low standard deviation
(Martin H. and de Lope 2009). Otherwise, if we define a
genome as a DNN parametrized by θ that represents a func-
tion fθ : Dx → Dy (input x ∈ Dx ⊆ Rn and output
y ∈ Dy ⊆ Rm, with input/output size n, m), and a vec-
tor of states s, we can express the average divergence of the
outputs y as a result of a perturbation δ as:

d(fθ, δ) =
∥fθ(s)− fθ+δ(s)∥2

|s|
(1)

where fθ(s) are the forward propagations of the states
through the DNN. A more flexible way to avoid disruptive
mutations assumes using a differentiable DNN to approx-
imate d with gradient information (Lehman et al. 2018). In
detail, it considers the following first-order Taylor expansion
to model an output yj ∈ y (j ∈ {0, . . . , |y|}) as a function
of perturbations δ over the states s:

yj(fθ, δ) = fθ(s)j + δ∇θfθ(s)j (2)

In later sections, we discuss how our SM specializes naive
gradient-based mutations of Eq. 2 to explore safer behaviors.

Formal Verification
Formal verification for DNNs involves checking whether
desired input-output relations (properties) hold (Liu et al.
2021). For example, it is possible to examine the neighbor-
hood of a given input x0, to find the maximum possible dis-
turbance r0 that satisfy the following assertion:

x ∈ X ⇒ y = fθ(x) ∈ Y (3)

where X = {x : ∥x− x0∥2 ≤ r0} ⊆ Dx and Y ⊆ Dy is
a feasible output set. This formalization, however, encodes
the input space of the properties as a hyperrectangle, limiting
the application of Eq. 3 to general scenarios. This has been
addressed as follows to represent different geometries (e.g.,
polytopes) (Corsi et al. 2020; Liu et al. 2021):

If x0 ∈ [a0, b0] ∧ ... ∧ xn ∈ [an, bn]⇒ y ∈ [c, d] (4)

where xk ∈ x (k ∈ {0, . . . , n}) are the inputs of the DNN,
and y ∈ y is an output. We consider reachability methods
(Wang et al. 2018a,b; Weng et al. 2018) to verify proper-
ties in the form of Eq. 4. This class of approaches com-
putes an over-approximation of the exact output reachable
set propagating the domain X through the network. In de-
tail, the lower and upper bound propagation of each input k
(Ik = [lk, uk]) is approximated first by computing the ”pre-
activation” bounds with the following linear mapping, which
is used in the literature (Liu et al. 2021):

lnew = max(θ, 0) ∗ l +min(θ, 0) ∗ u
unew = max(θ, 0) ∗ u+min(θ, 0) ∗ l (5)
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then, the upper and lower bound of the activation are com-
puted as follows by propagating these values through the ac-
tivation function, which assume having monotonic activa-
tion function ρ applied to an interval I = [l, u]:1

ρ(I) =

{
[ρ(l), ρ(u)] if monotonically increasing
[ρ(u), ρ(l)] if monotonically decreasing

(6)

Eq. 5, 6 are applied layer-by-layer and node-wise to compute
the output reachable set Γ(X , fθ) := {y : y = fθ(x), ∀x ∈
X}. Hence, a property in the form of Eq. 3 (or more gener-
ally Eq. 4) is considered satisfied if it belongs to the output
set, i.e., Γ(X , fθ) ⊆ Y .

Safety-Oriented Search
SOS proposes two mechanisms to foster safety: (i) a novel
concept of Safe Mutations to augment DRL with a policy
search devoted to explore safer behaviors. (ii) An Estimated
Verification that relaxes the guarantees of FV to tractably
characterize the behaviors of the policies during the training.

The general flow of SOS is presented in Algorithm 1: we
augment the DRL agent training with a cost-buffer Bc which
stores the visited unsafe states (according to the cost). Peri-
odically, we sample a batch b from Bc to compute the per-
weight safety-informed sensitivity ω of the agent outputs
over its weights θa. This is used by SM to generate a popula-
tion of n individuals (DNNs) P = {p1, . . . , pn}∪{pa} with
weights θP (pa is a copy of the agent), voted to explore for
safer behaviors. P is evaluated in a set of epochs to collect
the individuals average reward Rp and cost Cp that define
the fitness score Fp = (Rp, Cp) ∀p ∈ P , which is used to
select a subset of genomes P ′ as:2

P ′ = {pj ∈ P : Fpj
≥ Fpa

, j ∈ {1, . . . , n}} ∪ {pa} (7)

where Fpj
≥ Fpa

⇒ Rpj
≥ Rpa

∧Cpj
≤ Cpa

. By choosing
an appropriate number of evaluation epochs for the popula-
tion, we define the individuals in P ′ to be safer than pa as
they have higher (or equal) reward and lower (or equal) cost.

AlthoughP ′ improves the auxiliary cost, such sparse met-
ric does not characterize the behaviors of the policies. For
this reason, SOS selects the ”safest” genome p∗ ∈ P ′ us-
ing the Estimated Verification detailed in the related section.
Hence, if p∗ is a SM perturbed policy (i.e., p∗ ̸= pa) it
substitutes pa to continue the training, otherwise the train-
ing that is running in parallel, continues. We note that in a
worst-case scenario we match the performance of the base-
line DRL agent as we would never switch its policy. Summa-
rizing, SOS proposes a periodical search devoted to safety-
oriented exploration to improve the DRL policy, simulating
a small gradient step toward a ”safer” (better) policy.

Safe Mutations
Perturbing the weights of a DNN via simple Gaussian noise
can lead to disruptive policy changes (Martin H. and de Lope

1This is standard in verification literature (Zhang et al. 2018),
as the most common activation, e.g., ReLU, Tanh, are monotonic.

2Note that ordering among fitness tuples is feasible as its com-
ponents R,C ∈ R.

Algorithm 1: Safety-Oriented Search

1: Given:
• a DRL agent with weights θa at training epoch e
• a reachability verifier Vr and desired safety-

properties Ps ▷ e.g., Neurify, ReluVal
• a cost-buffer Bc filled with unsafe samples
• periodicity es for SOS and population size n
• scale σ for the Gaussian noise G and threshold ω′

2: While the standard training of the agent proceeds:
3: if e % es = 0 then
4: b← Sample an unsafe batch from Bc

5: P ← n+1 copies of θa (each p ∈ P has weights θp)
6: G ← N (0, σ) ∀ weight ∈ θa (i.e., baseline noise)
7: ω ← Eq. 9 using b, replacing values ≤ ω′ with ω′

8: θp ← θp +
G
ω ; Fp ← Evaluate(θp) , ∀p ∈ P

9: Select a ”safer” subset P ′ using FP as Eq. 7
10: vp′ ← Vr(Γ̃p′ , Ps) using Def. and Def. , ∀p′ ∈ P ′
11: end if
12: θa ← minθP′ vP′

13: Continue the training of the agent until the next SOS

2009; Lehman et al. 2018). Gradient information (sensitiv-
ity) can be used to design mutations that avoid such detri-
mental behaviors, normalizing the perturbation by a per-
weight sensitivity (Lehman et al. 2018). We leverage the cost
function to design SM, avoiding disruptive changes to the
DRL policy while biasing it to explore safer behaviors. We
consider a baseline Gaussian noise G for the perturbations
and normalize it with our safety-informed sensitivity w. The
resultant mutations δSM are applied to the agent weights θa
to generate P . One way to compute ω considers the gradient
of the actual divergence (Eq. 1) (Lehman et al. 2018):
∇θad(fθa ,G) ≈ ∇θad(fθa , 0) +Hθa(d(fθa , 0))G

ω(fθa) = abs(∇θad(fθa ,G))
(8)

where Hθa is the Hessian of divergence with respect to
θa. However, this requires second-order approximations and
therefore it is computationally demanding. To address this,
we use the per-weight magnitude of the gradient of the out-
puts y = fθa(b), where b is a batch of unsafe states randomly
sampled from Bc, to estimate the sensitivity ω to that weight
with a first-order approximation:

ω(fθa) =
∑

y

(∑
s abs(∇θafθa(s))

|s|

)
∗ 1

|y|

δSM (fθa) =
G

ω(fθa)

(9)

where each unsafe experience equally contributes to ω to re-
duce the overall changes to the policy.3 In practice, we note
that using a threshold ω′ to limit the mutation rescaling (i.e.,
w) leads to better performance. To summarize, our idea is
to design safety-oriented gradient information using visited
unsafe states, to bias the policy to explore different actions
in the proximity of such situations.

3We use the absolute value due to the interest in the magnitude,
and not the sign, of the slope.
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Estimated Verification
We leverage formal verification for DNNs to evaluate the
subset of safer genomes P ′ and characterize their behavior
over a set of given properties in the form of Eq. 4. In contrast
to prior work that typically returns SAT if the property is
satisfied or UNSAT if it is not for at least one input (Wang
et al. 2018a; Katz et al. 2017), we aim at quantifying the
safety of the individuals over the properties.4 We propose
the following violation metric v to measure the number of
violations.
Definition 1 (Violation metric). Given a (safety) property
p := x ∈ X ⇒ y = fθ(x) ∈ Y on fθ, and its reach-
ability set Γ(X , fθ) := {y : y = fθ(x), ∀x ∈ X}.
Given XSAT,XUNSAT ⊆ X such that Γ(XSAT, fθ) ⊆ Y and
Γ(XUNSAT, fθ) ∩ Y = ∅.5 We define the violation metric as
v = |XUNSAT|/|X |.

Despite recent advances in the field of formal analysis for
DNNs (Wang et al. 2018a; Weng et al. 2018), existing tools
require non-negligible computation time to approximate the
reachable set using Eq. 5, 6 (Liu et al. 2021). Hence, these
approaches can not be directly applied to verify the prop-
erties (and compute v) during the training. We propose the
following empirical strategy to estimate the reachability set,
using feed-forward steps of the DNN. We thus apply the ver-
ification phase of an existing framework (Wang et al. 2018a)
to the estimated bounds, obtaining our EV method that en-
ables SOS to perform the verification in the training loop.
Definition 2 (Estimated Reachability Set). Given a (safety)
property p := x ∈ X ⇒ y = fθ(x) ∈ Y on fθ, and a set
X ′ ⊆ X of m samples. We define the reachability set:

Γ̃(X ′, fθ) := {[min(fθ(X ′)y,max(fθ(X ′)y)] ∀y ∈ y}

Crucially, given a discretization value ϵ for the input space
of a property (e.g., in practical tasks such as robotics, ϵ could
be the precision of the sensor), our estimation returns the
exact reachability set using m = |X |

ϵ different samples.
However, our interest is to characterize the behaviors in the
proximity of unsafe states, hence we further exploit the cost-
buffer Bc to compute a cost-oriented reachability set:
Definition 3 (Estimated Cost Reachability Set). Given a
(safety) property p := x ∈ X ⇒ y = fθ(x) ∈ Y on fθ,
and the cost-buffer Bc. We define the cost reachability set:

Γ̃(X ∩Bc, fθ) :=

{[min(fθ(X )y ∩Bc,max(fθ(X )y ∩Bc)] ∀y ∈ y}

Limitations of Safety-Oriented Search
Our evolutionary search assumes to have access to a simu-
lation environment. This is common in DRL, where signifi-
cant results have been achieved mainly using simulation and
transferring the policy on real platforms (Juliani et al. 2018;
Zhao, Queralta, and Westerlund 2020). We also assume a
single cost function as in prior constrained DRL literature

4We assume to have prior knowledge of desired safety specifi-
cations that allows designing such properties.

5Note that XSAT ∪ XUNSAT = X and XSAT ∩ XUNSAT = ∅.

(Ray, Achiam, and Amodei 2019). However, it would be
possible to handle multiple cost functions by using crossover
operators, similarly to (Khadka et al. 2019). Verification as-
sumes knowing desired specifications to design the proper-
ties, which is typically available in tasks with safety require-
ments. Commonly with prior formal verification (Liu et al.
2021), such properties are hand-designed, hence as the com-
plexity of the task increases, the input space typically grows,
and writing safety properties may be unfeasible. To this end,
we believe that producing compact state representations to
reduce complexity (Cuccu, Togelius, and Cudré-Mauroux
2019) could be an interesting topic for future investigation.

Experiments
We investigate an on-policy version of SOS based on PPO
(SOS-PPO) against PPO, CPO, Lagrangian-PPO (L-PPO),
and IPO6. We compare over constrained DRL as it is the
most closely related to the idea of addressing safety using
cost functions. We evaluate the effectiveness of SOS-based
algorithms at minimizing the cost signal with the evolution-
ary search while preserving returns. Conversely, constrained
DRL hinders exploration (to satisfy cost constraints) at the
expense of low returns, leading to a significant performance
trade-off (Ray, Achiam, and Amodei 2019).

We consider six tasks recommended by the authors of
Safety Gym as a benchmark for our class of problems. To
characterize the policy behaviors with EV, we designed three
properties to ensure that the agent chooses rational actions in
the visited states. Given the cardinality of the inputs in the
tasks, we report a natural language description of such prop-
erties, which are shared across the tasks. We remind to the
supplemental material for the formal definition in the form
of Eq. 4 and more details about the environments:

• p↑: If the robot has hazards too close on the front, it must
turn in any direction or move backward.

• p→: If the robot has hazards too close on the right and on
the front, it must turn left or move backward.

• p←: If the robot has hazards too close on the left and on
the front, it must turn right or move backward.

We remark that our goal is to provide a high-level overview
of core navigation skills to quantify the overall behaviors of
the agent. Hence, despite using only three properties, their
high-level formalization was sufficient to cover over 98.7±
0.5% of the visited unsafe states.

Data are collected on a RTX 2080, using the hyper-
parameters reported in the supplemental material. We use
prior implementations of CPO, PPO, and L-PPO which im-
proves the constraint satisfaction, and our version of IPO,
which we carefully tuned since authors did not release
code.7 The additional epochs required by SOS are included
in all the results for a fair comparison, but the training time
overhead is negligible due to parallelization (i.e., for each

6Supplemental material has additional experiments with a TD3
implementation of SOS, and a robotic navigation scenario.

7We refer to the original papers for specific details about the
approaches and hyper-parameters.
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Figure 2: Comparison of PPO, SOS-PPO, IPO, CPO, L-PPO in Safety Gym. Each column (i.e., each task) shows the average
reward and cost during the training, and Pareto frontier at convergence.

individual, both the search and EV are strictly independent
and SOS-PPO trains with an overhead of 4±2% over PPO).

Given the importance of the statistical significance of the
results (Colas, Sigaud, and Oudeyer 2019; Henderson et al.
2018), we report mean and standard deviation collected over
ten independent runs with different random seeds. This mo-
tivates slightly different results over the original implemen-
tations that were evaluated over few seeds. Finally, consid-
ering the recent interest in the CO2 emissions produced by
training DNNs, in the supplemental material we report the
total amount of emissions and how we offset them.

Empirical Evaluation
For each task, we plot: (i) average reward, (ii) auxiliary cost
with a dashed line for the cost-limit h of constrained DRL
(for a fair comparison, h is set to the cost reached by SOS at
convergence), and (iii) Pareto frontier of return versus cost
at convergence, which drastically improves (up and to the
left) with SOS. Figure 2 shows the results in five tasks (ar-
ranged in columns) for the complete SOS-PPO implementa-
tion. This uses EV to compute the violation metric for the se-
lection, by verifying p↑, p→, p← using the cost reachability
set (Def. 3). Considering the previously discussed limitation
of EV, we note that writing properties for the Doggo task
without knowing the kinematics of the robot is not trivial.
For this reason, we report in the supplemental material the
results of a SOS-PPO implementation without the EV part
for the Doggo task, which confirms the following results.

For the baselines we obtain the same trend of prior work
(Ray, Achiam, and Amodei 2019), where the objective of
maximizing the reward while limiting the cost present a

Figure 3: Overview of the DRL policy (a) and its mutation
with SM (b) or simple Gaussian noise (c).

meaningful trade-off: (i) PPO obtains high returns by tak-
ing unsafe actions; (ii) L-PPO is the most reliable in enforc-
ing the constraint but typically achieves very low returns;
(iii) CPO achieves interesting rewards due to its approxima-
tion errors, which prevent it from satisfying the constraints;
(iv) IPO returns similar result to CPO but has the advan-
tage of being a first-order method. Conversely, SOS-PPO
successfully maintains comparable returns over PPO, while
drastically reducing the long-term cost, attaining cost values
similar to L-PPO at convergence. A detailed analysis of the
returns of L-PPO highlights that its constrained policies are
prone to perform poor behaviors (e.g., L-PPO often learns to
stand still or move in circles for entire epochs to avoid col-
lisions). This further motivates the introduction of the EV in
the training loop to characterize the behavior of the policies
and select the safest individual using our violation metric.

Safe Mutation and Estimated Verification
We analyze SOS to show that: (i) SM avoids disruptive
changes to the policy while biasing exploration towards
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safety; (ii) the selection based on EV successfully charac-
terize the behaviors of the policies, resulting in better per-
formance.8 Figure 3 shows the plots generated by fitting a
Gaussian kernel density model on the action selected over
several epochs. This explanatory overview reports the be-
haviors (i.e., chosen actions) of the DRL policy and two per-
turbed versions with SM and simple Gaussian noise G in the
first population search. For a broader view of the mutation
operators in different stages of the training, we remind to
supplemental material. Clearly, SM locally biases the agent
policy, maintaining a similar action distribution (i.e., behav-
iors). In contrast, Gaussian noise causes disruptive changes,
resulting in very different and typically worst behaviors.

This is further supported by Figure 4 (top), which shows
the average reward and cost collected by two SOS-PPO im-
plementations that (i) uses Gaussian noise (i.e., without SM
and the cost-buffer), and (ii) uses standard output-gradient
mutations (i.e., with the sensitivity computed on arbitrary
samples). Hence, these ablation studies have no information
on the auxiliary cost to generate the population and can not
cope with the safety aspect of the tasks, resulting in lower
returns and higher cost over PPO.

Moreover, Figure 4 (bottom) shows the same metric for a
SOS-PPO implementation that selects p∗ ∈ P without EV,
i.e., it selects the individual with comparable reward to the
DRL agent and with minimum cost. Crucially, these results
confirm the importance of our framework in the scenarios
where prior knowledge can not be included for the design of
the properties for EV as it maintains superior performance
over the baselines. However, we note that this also supports
our claims on the importance of integrating EV in the selec-
tion process to characterize the actual behaviors of the poli-
cies as this allows discovering ”safer” (better) policies since
the early stages of the training, improving both the maxi-
mization of the reward and the minimization of the cost.

Approximation of the Estimated Verification
We analyze EV to show that: (i) the time required by prior
formal verification approaches prevents their application in
the training loop, and (ii) EV provides comparable results
(i.e., violation) over formal approaches. Figure 5a shows
the cumulative time required to verify our three properties
using prior formal verification (i.e., Neurify (Wang et al.
2018a)), and EV with different sample sizes m. We remark
that the analysis is periodically performed in the training
loop for each safety-oriented search. Crucially, EV drasti-
cally reduces the computational time by more than 73.8×
for each verification. Hence, in our experiments, EV is the
only feasible solution as the average training time of SOS
in PointGoal1 requires a couple of hours, while it would re-
quire more than 48 hours using formal verification.

Finally, EV also returns similar results over formal verifi-
cation as the violation metric of the latter is comparable with
the one computed with EV. Figure 5b shows an explana-
tory computation (during the training) of the violation metric
for our three safety properties. Note that we only report the

8Ablation studies are performed in PointGoal1 as we obtained
similar results across the Safety Gym tasks.

Figure 4: Top: ablation study of SOS-PPO implementations
with (i) Gaussian mutations and (ii) output-gradient muta-
tions without cost-buffer. Bottom: ablation study of SOS-
PPO that selects the best individual that have minimum cost,
instead of using EV.

curve of EV that uses the cost reachability set (Def. 3) as it
has comparable performance over the estimated reachability
set (Def. 2) in approximately half the time. Results highlight
that with little tuning of the sample size m, we obtain an
accurate estimation of the violation (i.e. in our experiments,
with m = 60 we have an error between the formal violation
and the estimated one below 0.5%).

Related Work
Safety critics (Brijen Thananjeyan 2020; Homanga Bharad-
hwaj 2021; Brijen Thananjeyan 2021) rely on estimating
the probability of incurring into unsafe states, given a state-
action pair. However, such approaches could potentially re-
turn misleading information for policy improvement, espe-
cially in the early stages of the training, where safety crit-
ics are pre-trained on offline data. Such offline demonstra-
tion represents unsafe samples which should cover a broad
variety of unsafe behaviors for a robust pre-training. This
may be challenging and a possible alternative is to use data
collected by human policies or human supervision. More-
over, these methods also introduce overhead in the action
sampling process as each step has to compute different sam-
ples (i.e., the action, the probability of failure, etc.), which
can hinder their application to the physical hardware that re-
quires high-frequency control.

In contrast, we compare SOS with constrained DRL as
it is more related to our approach. In more detail, CPO
(Achiam et al. 2017) has near-constrained satisfaction guar-
antees, but the Taylor approximations lead to inverting a
Fisher matrix, possibly resulting in infeasible updates and
demanding recovery steps. Similarly, PCPO (Yang et al.
2020) also has theoretical guarantees for constraint satisfac-
tion, but uses second-order approximations and has mixed
improvements over CPO (Zhang, Vuong, and Ross 2020).
Lyapunov-based algorithms (Chow et al. 2018, 2019), in
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Figure 5: Comparison between formal analysis and EV: (a) shows the computation time (with different values of m for EV);
(b) shows that EV can accurately estimates the violation metric.

contrast, combine a projection step with action-layer inter-
ventions, similarly to the safety layer of (Dalal et al. 2018).
However, the cardinality of Lyapunov constraints equals the
number of states, resulting in a non-negligible implementa-
tion cost. Finally, Lagrangian methods (Ray, Achiam, and
Amodei 2019; Stooke, Achiam, and Abbeel 2020) reduce
the complexity of prior approaches, with promising con-
straints satisfaction. These methods transform the equality-
constrained problem, defined over a real vector, with a dual
variable that forms the Lagrangian. Gradient-based algo-
rithms then iteratively update the primal and dual vari-
ables with the Lagrange multiplier λ that acts as a learned
penalty and is used to satisfy the constraint. This adapts to
the constrained setting (Geibel and Wysotzki 2005; Altman
1998) representing a well-known constrained DRL approach
due to its simplicity and good cost-limit satisfaction (Ray,
Achiam, and Amodei 2019; Stooke, Achiam, and Abbeel
2020). Similarly, IPO (Liu, Ding, and Liu 2020) reduces the
constrained problem into an unconstrained one by augment-
ing the objective with logarithmic barrier functions, which
provide sub-optimal solutions.

Garcı́a and Fernández (Garcıa and Fernández 2015)
shows that constrained approaches have several drawbacks
such as the careful tuning of the threshold h as high values
mean that they are too permissive, or conversely, too restric-
tive. Furthermore, such approaches rely on strong assump-
tion that typically can not be satisfied in practice (e.g., hav-
ing an optimal policy) to provide theoretical guarantees on
the constraints satisfaction. Hence, constrained DRL is also
not devoid of short-term fatal consequences as empirical evi-
dence shows that they typically fail at satisfying the imposed
constraints (Ray, Achiam, and Amodei 2019), which is also
related to the non-linear approximation nature of DNNs.

Furthermore, constraints naturally limit exploration, caus-
ing getting stuck in local optima or failing to properly learn
(Conti et al. 2018; Hong et al. 2018). In contrast, we lever-
age EA to design SOS as prior combinations of DRL and
EA show a beneficial transfer of information between the
two approaches (Khadka and Tumer 2018; Khadka et al.
2019; Marchesini, Corsi, and Farinelli 2021). These meth-
ods, however, use the EA only for improving the return and
can not be trivially extended to address the safety compo-
nent. To characterize the behaviors of the policies, we rely
on formal analysis. Given a safety property in the form of
Eq. 3, 4 and a DNN, a verification framework either guar-
antee that the property is always satisfied or return coun-

terexamples (Liu et al. 2021). The two main families of ap-
proaches to formally verify such properties are optimization
and reachability (Liu et al. 2021). While the first aims at fal-
sifying the assertion by finding a counterexample (Katz et al.
2017), the latter improve scalability and aims at propagating
a given input domain to find the reachable set for the output
(Wang et al. 2018b,a) and, using different search strategies
(Dutta et al. 2017; Bunel et al. 2018; Ehlers 2017), it aims at
finding the counterexamples.

Discussion and Broader Impact
We summarize our contributions in Safety-Oriented Search,
a framework that combines EA and DRL using novel con-
cepts of Safe Mutation and Estimated Verification to min-
imize an auxiliary cost signal to improve the policy safety
while preserving the return. In detail: (i) SM proposes the
design of an informed mutation operator that preserves the
policy while biasing exploration towards the desired objec-
tive (e.g., safety); (ii) EV enables to characterize the be-
haviors during the training, providing a significant speedup
for the verification process, with comparable performance
over prior formal verification. SOS is compatible with on-
policy and off-policy DRL and our results in the Safety Gym
benchmarks confirm that it successfully addresses the trade-
off between return and cost, achieving comparable returns
to unconstrained algorithms and comparable cost values to
constrained DRL.

SOS has several potential impacts on society as it ad-
dresses safety, which is a crucial aspect of practical DRL
applications. While the SM shows that it is possible to aug-
ment exploration toward a desired objective and success-
fully transfer beneficial information into a DRL agent, the
EV can characterize the behaviors of a policy into the train-
ing loop, hence it could be employed to design Safe DRL
algorithms. Nonetheless, the broader field of network verifi-
cation, to which EV belongs, also presents negative conse-
quences as an incorrect formalization of the properties could
result in undesired behaviors.

This work paves the way for several research directions,
which include exploiting the EV as a shield to avoid unsafe
actions during all the steps of the training, yet investigat-
ing the field of safe-exploration during the training. Another
interesting trend would be to explore crossover operators to
combine the outcome of different cost functions with related
augmented explorations into the DRL agent.
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