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Abstract

How to obtain good value estimation is a critical problem
in Reinforcement Learning (RL). Current value estimation
methods in continuous control, such as DDPG and TD3, suffer
from unnecessary over- or under- estimation. In this paper,
we explore the potential of double actors, which has been
neglected for a long time, for better value estimation in the
continuous setting. First, we interestingly find that double ac-
tors improve the exploration ability of the agent. Next, we
uncover the bias alleviation property of double actors in han-
dling overestimation with single critic, and underestimation
with double critics respectively. Finally, to mitigate the poten-
tially pessimistic value estimate in double critics, we propose
to regularize the critics under double actors architecture. To-
gether, we present Double Actors Regularized Critics (DARC)
algorithm. Extensive experiments on challenging continuous
control benchmarks, MuJoCo and PyBullet, show that DARC
significantly outperforms current baselines with higher aver-
age return and better sample efficiency.

Introduction
Actor-Critic methods (Prokhorov and Wunsch 1997; Konda
and Tsitsiklis 2000) are among the most popular methods
in Reinforcement Learning (RL) (Sutton and Barto 2018)
which involve value approximation (Baird 1995; Gordon
1995) and policy gradients (Williams 1992; Weng 2018).
Built upon actor-critic framework, Deep Deterministic Policy
Gradient (DDPG) (Lillicrap et al. 2015) is a typical and
widely-used RL algorithm for continuous control. It has been
revealed that DDPG results in severe overestimation bias
(Fujimoto, Hoof, and Meger 2018) using single critic for
function approximation (Thrun and Schwartz 1993) since the
actor network is trained to execute action with the highest
value estimate.

To tackle the overestimation issue in DDPG, Fujimoto et
al. (Fujimoto, Hoof, and Meger 2018) borrow ideas from the
Double Q-learning algorithm (Hasselt 2010; Hasselt, Guez,
and Silver 2016) and propose Twin Delayed Deep Deter-
ministic Policy Gradient (TD3), which utilizes the minimum
value from double critic networks for value estimation. With
clipped double Q-learning, TD3 alleviates the overestimation
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bias problem and significantly improves the performance of
DDPG. However, it turns out that TD3 may lead to large
underestimation bias (Ciosek et al. 2019), which negatively
affects its performance.

While many previous works have focused on enhancing
double critics (Pan, Cai, and Huang 2020; Kuznetsov et al.
2020) for better value estimation, the role and advantages
of double actors have long been overlooked. We uncover an
essential property of double actors, i.e., they enhance the
exploration ability of the agent. Double actors offer double
paths for policy optimization instead of making the agent
confined by a single policy, significantly reducing the agent’s
probability of being trapped locally.

We also explore the advantages of double actors for value
estimation correction and how they benefit continuous con-
trol. We first develop Double Actors DDPG (DADDPG),
showing that double actors can remove overestimation bias
when built upon a single critic. We experimentally find out
that DADDPG significantly outperforms DDPG, which sheds
light on the potential of double actors. Similarly, we demon-
strate that double actors lessen underestimation bias of double
critics method, and develop Double Actors TD3 (DATD3)
algorithm. Finally, we propose a soft combination of value
estimates over double actors to control the bias flexibly.

To alleviate the potential over pessimistic value estimates
of double independent critics, we propose critic regulariza-
tion, which restricts critics from differing too much. Together,
we present our Double Actors Regularized Critics (DARC)
algorithm. For illustrating the effectiveness of DARC, a thor-
ough component comparison of relevant algorithms is given
in Table 1, reporting the average performance improvement
on MuJoCo (Todorov, Erez, and Tassa 2012) environments.

We perform extensive experiments on two challenging
continuous control benchmarks, MuJoCo (Brockman et al.
2016) and PyBullet (Ellenberger 2018), where we compare
our DARC algorithm against the current common baselines,
including TD3 and Soft Actor-Critic (SAC) (Haarnoja et al.
2018a,b). The results show that DARC significantly outper-
forms them with much higher sample efficiency.

Preliminaries
Reinforcement learning studies sequential decision mak-
ing problems and it can be formulated by a Markov De-
cision Process (MDP). The MDP is defined as a 5-tuple
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Algorithms Double Actors Double Critics Value Correction Regularization Improvement

DDPG(Lillicrap et al. 2015) % % % % 100%
TD3(Fujimoto, Hoof, and Meger 2018) % " " % 245%

SAC(Haarnoja et al. 2018a) % " " " 191%
DADDPG (this work) " % " % 167%

DATD3 (this work) " " " % 291%
DARC (this work) " " " " 331%

Table 1: Algorithmic component comparison and average performance improvement compared to DDPG baseline. The improve-
ment refers to the averaged relative improvement on the mean final scores of MuJoCo environments with respect to the DDPG
baseline over 5 runs.

〈S,A, p, r, γ〉 where S,A denote state space and action
space respectively, p denotes transition probability, r : S ×
A 7→ R is the reward function and γ ∈ [0, 1) is the dis-
count factor. The agent behaves according to a determin-
istic policy πφ : S 7→ A parameterized by φ. The objec-
tive function of reinforcement learning can be written as
J(φ) = Es[

∑∞
t=0 γ

tr(st, at)|s0, a0;πφ(s)], which aims at
maximizing expected future discounted rewards following
policy πφ(s). We consider continuous control scenario with
bounded action space and we further assume a continuous
and bounded reward function r.

The policy πφ can be improved by conducting policy gra-
dient ascending in terms of the objective function J(φ). The
Deterministic Policy Gradient (DPG) Theorem (Silver et al.
2014) offers a practical way of calculating the gradient:

∇φJ(φ) = Es[∇φπφ(s)∇aQθ(s, a)|a=πφ(s)], (1)

where Qθ(s, a) is the Q-function with parameter θ that ap-
proximates the long-term rewards given state and action. In
actor-critic architecture, the critic estimates value function
Qθ(s, a) to approximate the true parameter θtrue, and the
actor is updated using Eq. (1). DDPG learns a determinis-
tic policy πφ(s) to approximate the optimal policy as it is
expensive to directly apply the max operator over the contin-
uous action space A. With TD-learning, the critic in DDPG
is updated via θ̃ ← θ + ηEs,a∼ρ[r + γQθ′(s

′, πφ′(s′)) −
Qθ(s, a)]∇θQθ(s, a), where η is the learning rate, ρ is the
sample distribution in the replay buffer, φ′ and θ′ are the
parameters of the target actor and critic network respec-
tively. TD3 addresses the overestimation problem in DDPG
by employing double critics for value estimation, which is
given by Q̂(s′, a′) ← mini=1,2Qθ′i(s

′, a′), and one actor
for policy improvement. We denote T (s′) as the value esti-
mation function that is utilized to estimate the target value
r+γT (s′), and then we have TDDPG(s′) = Qθ′(s

′, πφ′(s′))
and TTD3(s′) = mini=1,2Qθ′i(s

′, πφ′(s′)).

Double Actors for Better Continuous Control
In this section, we demonstrate how double actors work.
First, we illustrate that double actors induce a stronger explo-
ration capability in the continuous setting. Then we discuss
how to better estimate value function with double actors and
also show that double actors can help ease overestimation in
DDPG, and underestimation bias in TD3.

Figure 1: Double actors help escape from local optimum.

Enhanced Exploration with Double Actors
Intuitively, double actors allow the agent to evaluate different
policies instead of being restricted by single policy path. Sin-
gle actor πφ1(s) may make the agent stuck in a local optimum
Q(s, alocal) rather than the global optimum Q(s, a∗) due to
lack of exploration as demonstrated in Fig 1. Double actors
could enhance the exploration ability of the agent by follow-
ing the policy that results in higher return, i.e., the agent
would follow πφ1

(s) if Qθ(s, πφ1
(s)) ≥ Qθ(s, πφ2

(s)) and
πφ2

(s) otherwise. In this way, double actors help escape from
the local optimum Q(s, alocal) and reach the global optimum
Q(s, a∗).

To illustrate the exploration effect of double actors, we de-
sign a 1-dimensional, continuous state and action toy environ-
ment GoldMiner in Fig 2(a) (see Appendix A.2 for detailed
environmental setup). There are two gold mines centering at
position x1 = −3, x2 = 4 with neighboring region length to
be 1. The miner can receive a reward of +4 and +1 if he digs
in the right and left gold mine respectively, and a reward of
0 elsewhere. The miner always starts at position x0 = 0 and
could move left or right to dig for gold with actions ranging
from [−1.5, 1.5]. The boundaries for the left and right sides
are −4 and 5, and the episode length is 200 steps. We build
double actors upon DDPG, which we refer to as DDPG-e
(DDPG-exploration). The second actor in DDPG-e is merely
used for exploration. We run DDPG and DDPG-e on Gold-
Miner for 40 independent runs. It can be found that DDPG-e
significantly outperforms DDPG as shown in Fig 2(b) where
the shaded region denotes one-third a standard deviation for
better visibility.

To better understand the effectiveness of double actors,
we collect the average high-reward state (where the gold
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(a) GoldMiner
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Figure 2: Exploration ability analysis of double actors on
GoldMiner environment.

mines lie) visiting times of each method for every episode.
As shown in Fig 2(c), the visiting frequency of DDPG-e
to the right gold mine significantly exceed that of DDPG,
indicating that the agent would tend to visit the places that
could achieve higher rewards with double actors. Single actor,
however, would guide the agent to visit the left mine more
frequently as it is closer, i.e., it is stuck in a local optimum.
DDPG could hardly learn a policy towards the right gold
mine, which is shortsighted and pessimistic (see Fig 2).

Moreover, double actors help relieve the pessimistic un-
derexploration phenomenon reported in (Ciosek et al. 2019)
upon double critics, which is caused by the reliance on pes-
simistic critics for exploration. This issue can be mitigated
naturally with the aid of double actors as only the policy that
leads to higher expected return would be executed, which
is beneficial for exploration (see Appendix A.2.1 for more
details). With double actors, the exploration capability of the
agent is decoupled from value estimation and the agent could
benefit from both pessimistic estimation and optimistic explo-
ration. To conclude, double actors enable the agent to visit
more valuable states and enhance the exploration capability
of the agent, which makes the application of double actors in
continuous control setting appealing.

Better Value Estimation with Double Actors
In actor-critic-style algorithms, a good value estimation lays
a foundation for guiding policy learning. In this part, we
demonstrate how to get better value estimate with the aid of
double actors.
How to use double actors for value estimation correc-
tion? We first build double actors upon single Q-network
(the critic) parameterized by θ. For each training step, the
critic has two paths to choose from: either following πφ′

1
(s)

or πφ′
2
(s), where both paths are estimated to approximate the

optimal path for the task. Inspired by double Q-learning, we
propose to estimate the value function via

V̂ (s′)← min
i=1,2

Qθ′(s
′, πφ′

i
(s′)), (2)

where θ′, φ′i, i ∈ {1, 2} are the parameters of the target net-
works, which leads to Double Actors DDPG (DADDPG)
algorithm (see Appendix A.1 for detailed algorithm and its
comparison to TD3). We then build double actors upon dou-
ble critics networks parameterized by θ′1, θ′2 respectively. One
naive way to estimate the value function would be taking min-
imum of Q-networks for each policy πφ′

i
(s), i = 1, 2, and

employing the maximal one for final value estimation, i.e.,

V̂ (s′)← max
i=1,2

min
j=1,2

Qθ′j (s
′, πφ′

i
(s′)), (3)

which we refer to as Double Actors TD3 (DATD3) algorithm
(see Appendix A.3 for more details)1. Eq. (2) and Eq. (3)
provide us with a novel way of estimating value function
upon single and double critics. It is worth noting that our
method is different from the double Q-learning algorithm
as we adopt double actors for value estimation correction
instead of constructing double target values for the individual
update of actor-critic pairs.
What benefits can value estimation with double actors
bring? We demonstrate that double actors help mitigate
the severe overestimation problem in DDPG and the un-
derestimation bias in TD3. By the definition, we have
TDADDPG(s′) = mini=1,2Qθ′(s

′, πφ′
i
(s′)), TDATD3(s′) =

maxi=1,2 minj=1,2Qθ′j (s
′, πφ′

i
(s′)). For DADDPG (double-

actor-single-critic structure), we show in Theorem 1 that
double actors effectively alleviate the overestimation bias
problem in DDPG (see the proof in Appendix B.1).

Theorem 1. Denote the value estimation bias deviating
the true value induced by T as bias(T ) = E[T (s′)] −
E[Qθtrue(s

′, πφ′(s′))], then we have bias(TDADDPG) ≤
bias(TDDPG).

This theorem uncovers the advantages of value estimation
correction with double actors as it holds without any special
requirement or assumption on double actors. The theorem
indicates that DADDPG naturally eases the overestimation
bias in DDPG. TD3 also alleviates the overestimation issue
while it leverages double critic networks for value correction,
which differs from that of DADDPG.

Similarly, we present the relationship of the value esti-
mation of DATD3 (double-actor-double-critic structure) and
TD3 in Theorem 2, whose proof is in Appendix B.2.

Theorem 2. The bias of DATD3 is larger than that of TD3,
i.e., bias(TDATD3) ≥ bias(TTD3).

Theorem 1 and Theorem 2 theoretically ensure the bias
alleviation property of double actors, i.e., double actors archi-
tecture helps mitigate overestimation bias if built upon single
critic, and underestimation issues if built upon double critics.

To illustrate the bias alleviation effect with double ac-
tors, we conduct experiments in a typical MuJoCo (Todorov,
Erez, and Tassa 2012) environment, Walker2d-v2. The value

1One may wonder why we adopt value estimation using Eq.
(3) instead of taking maximal value of two policies first and em-
ploying smaller estimation for target value update, i.e., V̂ (s′) ←
mini=1,2 maxj=1,2Qθ′j (s

′, πφ′
i
(s′)). Such update scheme would

induce large overestimation bias by taking maximum like DDPG.
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(a) Single critic network
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Figure 3: Comparison of performance and value estimation
bias on Walker2d-v2. Double actors help (a) relieve the over-
estimation bias in DDPG; (b) mitigate the underestimation
bias in TD3.

estimates are calculated by averaging over 1000 states sam-
pled from the replay buffer each tiemstep. True values are
estimated by rolling out the current policy using the sam-
pled states as the initial states and averaging the discounted
long-term rewards. The experimental setting is identical as
in Section Experiments and the result is presented in Fig 3.
Fig 3(a) shows that DADDPG reduces the overestimation bias
in DDPG and significantly outperforms DDPG in both sam-
ple efficiency and final performance. As shown in Fig 3(b),
DATD3 outperforms TD3 and preserves larger bias than TD3,
which reveals the effectiveness and advantages of utilizing
double actors to correct value estimation. The estimation
bias comparison on broader environments can be found in
Appendix C.1.
Soft target value. To control the underestimation bias more
flexible, we propose to use a convex combination of value
estimate over two actors, which is given by:

V̂ (s′; ν) = (1− ν) max
i=1,2

min
j=1,2

Qθ′j (s
′, πφ′

i
(s′))

+ ν min
i=1,2

min
j=1,2

Qθ′j (s
′, πφ′

i
(s′)),

(4)

where ν ∈ R and ν ∈ [0, 1). Eq. (3) is a special case of Eq.
(4). V̂ (s′; ν) would lean towards the maximal value of two
evaluation paths with ν → 0 and vice versa if ν → 1. If we
set ν = 0, then slight overestimation may be introduced as
shown in Fig 3(b).

We further give estimation error analysis induced by dou-
ble actors in the following (see Appendix D for proof).
Theorem 3 (Upper Error Bound). Assume that

‖ min
i=1,2

min
j=1,2

Qθ′j (s, πφ′
i
(s))−max

a∈A
Q(s, a)‖∞ ≤ ∆1,

‖max
i=1,2

min
j=1,2

Qθ′j (s, πφ′
i
(s))−max

a∈A
Q(s, a)‖∞ ≤ ∆2.

Then for any iteration t, the difference between the optimal
value function V ∗(s) and the value function V (s) induced
by the double actors satisfies:

‖Vt(s)− V ∗(s)‖∞ ≤γt‖V0(s)− V ∗(s)‖∞

+
ν∆1

1− γ
+

(1− ν)∆2

1− γ
.

This theorem guarantees the rationality of employing the
value estimation induced by the double actors. ∆1 and ∆2

measure the deviance of minimal and maximal estimates over
double actors against optimal value functions respectively.
The upper bound would beO( 1

1−γ ) if ∆1 and ∆2 can be con-
trolled in a valid scale. The hyperparameter ν is important in
compromising between overestimation and underestimation.
If one uses large ν, then the upper bound would be domi-
nant by severe underestimation bias, i.e., ∆1 > ∆2, which is
harmful to the performance of the agent.

Beyond Double Critics: Double Actors with
Regularized Critics

In this section, we first illustrate that the independence in
double critics leads to pessimistic underestimation and value
estimate uncertainty. We then propose to regularize critics for
reduced uncertainty in value estimate. Furthermore, we build
double actors upon regularized critics and present Double
Actors Regularized Critics (DARC) algorithm.

Pessimistic Estimation in Double Critics
Despite the success in addressing the severe overestimation
bias in single critic, the double critics in TD3 introduce pes-
simism. Though underestimation is much better than that of
overestimation, TD3 is still not satisfying. We dig deeply into
the root of underestimation bias in TD3. Given s, we assume
that Qθi(s, a) = Qtrue(s, a) +Ui(a) with independent noise
Ui(a) such that ∀a ∈ A,EU [Ui(a)] = 0, ∀i = 1, 2. Then for
TD3, we have

EU
[

min
i=1,2

Qθi(s, a)

]
= EU

[
min
i=1,2

(Qtrue(s, a) + Ui(a))

]
≤ EU

[
Qtrue(s, a)

]
= Qtrue(s, a).

(5)
We note that the independence in critics is responsible

for the underestimation bias of TD3. Eq. (5) illustrates that
double critics would intrinsically induce underestimation
because of the negative bias from the minimum operation.
Furthermore, there exists some uncertainty when double crit-
ics estimate value functions at the same state. As shown in
Fig 4 (light blue line and light green line), double critics
Qθ1(s, a), Qθ2(s, a) may have large disagreement in value
estimation at the same state. If we always take minimum over
double critics, the resulting value estimate would deviate
from the true value (the grey line) largely.
Critic regularization. We then propose to constrain the
value estimates of the critics to mitigate the pessimistic value
estimation, which leads to solving the optimization problem:

min
θi

Es,a∼ρ[(Qθi(s, a)− y)2],

s.t. Es,a∼ρ |Qθ1(s, a)−Qθ2(s, a)| ≤ δ,
(6)

7658



state

𝑄𝜃1(𝑠, 𝑎)

𝑄𝜃2(𝑠, 𝑎)

𝑄𝜃1

𝑟𝑒𝑔
(𝑠, 𝑎)

𝑄𝜃2

𝑟𝑒𝑔
(𝑠, 𝑎)

𝑄𝑡𝑟𝑢𝑒(𝑠, 𝑎)

samples

v
al
u
e
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double critics and how Regularized Critics (RC) help mitigate
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yellow arrows show the effect of RC.

where i ∈ {1, 2} and y = r + γV̂ (s′; ν) is the target value.
The regularization term pushes the double critics to be close
to each other while simultaneously approximate the target
value. Specifically, in Fig 4,

Qθ1(s, a)→ Qreg
θ1

(s, a), Qθ2(s, a)→ Qreg
θ2

(s, a).

With Regularized Critics (RC), the approximation error Ui(a)
has less possibility of inducing a large negative bias. The
pessimistic underestimation phenomenon can therefore be
mitigated as also demonstrated in Fig 4 (the dark blue and
green lines deviate true value Qtrue less than the light ones).

In our implementation, we resort to penalty function meth-
ods by regularizing the original objective with deviance of
critics to avoid the complex and expensive nonlinear program-
ming costs. The critics are therefore trained by minimizing:

1

N

∑
s

{
(Qθi(s, a)− y)2 + λ[Qθ1(s, a)−Qθ2(s, a)]2

}
,

(7)
where i ∈ {1, 2}. The policy parameter φi, i ∈ {1, 2} can
then be optimized via policy gradient:

1

N

∑
s

∇aQθi(s, a)|a=πφi (s)∇φiπφi(s) (8)

Full Algorithm
In summary, we present Double Actors Regularized Critics
(DARC) algorithm in Algorithm 1, which has three key com-
ponents: (1) action that incurs higher return is executed to
enjoy better exploration capability; (2) double actors are used
for value correction to balance under- and overestimation
bias, e.g. via Eq. (4); (3) critics are regularized for reduced
uncertainty in value estimate. We also adopt a cross update
scheme (see graphical illustration in Appendix A.5) where
only one actor-critic pair is updated each timestep and mean-
while the other pair is only used for value correction. Such
scheme naturally leads to the delayed update of the target
network and contributes to policy smoothing.

The estimation bias of DARC is less conservative than that
of DATD3. We present detailed bias comparison of DARC
with DATD3 and TD3 in Appendix C.2. DARC is more
optimistic and efficient with soft value estimate and critic
regularization.

Algorithm 1: Double Actors Regularized Critics (DARC)

1: Initialize critic networks Qθ1 , Qθ2 and actor networks
πφ1 , πφ2 with random parameters

2: Initialize target networks θ′1 ← θ1, θ
′
2 ← θ2, φ

′
1 ←

φ1, φ
′
2 ← φ2 and replay buffer B = {}

3: for t = 1 to T do
4: Select action a with maxi maxj Qθi(s, πφj (s)) added

ε ∼ N (0, σ)
5: Execute action a and observe reward r, new state s′

and done flag d
6: Store transitions in the replay buffer, i.e., B ←

B
⋃
{(s, a, r, s′, d)}

7: for i = 1, 2 do
8: Sample N transitions {(sj , aj , rj , s′j , dj)}Nj=1 ∼ B
9: Get actions: a′ ← πφ′

1
(s′) + ε, a′′ ← πφ′

2
(s′) + ε,

ε ∼ clip(N (0, σ̄),−c, c)
10: Calculate V̂ (s′) with Eq. (4)
11: yt ← r + γ(1− d)V̂ (s′)
12: Update critic θi with Eq. (7)
13: Update actor φi with Eq. (8)
14: Update target networks: θ′i ← τθi+(1−τ)θ′i, φ

′
i ←

τφi + (1− τ)φ′i
15: end for
16: end for

DARC benefits from double actors while it is different
from A3C (Mnih et al. 2016) because: (1) A3C adopts multi-
ple processes while DARC only adopts one; (2) There is no
synchronization of actors in DARC; (3) The actors in A3C
are merely used for exploration while DARC also uses them
for value correction.

Experiments
In this section, we first conduct a detailed ablation study
on DARC to investigate what contributes most to the per-
formance improvement. We then extensively evaluate our
method on two continuous control benchmarks, where we
compare with common baseline methods including TD3 (Fu-
jimoto, Hoof, and Meger 2018) and SAC (Haarnoja et al.
2018a). Moreover, we extensively compare DARC with other
value estimation correction methods to further illustrate the
effectiveness of DARC.

We adopt two widely-used continuous control benchmarks,
OpenAI Gym (Brockman et al. 2016) simulated by MuJoCo
(Todorov, Erez, and Tassa 2012) and Box2d (Catto 2011), and
PyBullet Gym simulated by PyBullet (Ellenberger 2018). We
compare our method against DDPG, TD3, and SAC. We use
the fine-tuned version of DDPG proposed in TD3 and temper-
ature auto-tuned SAC (Haarnoja et al. 2018b). The baselines
are conducted by open-sourced implementations (Fujimoto
2018; Tianhong 2019). Each algorithm is repeated with 5
independent seeds and evaluated for 10 times every 5000
timesteps. DARC shares the identical network configuration
with TD3. The regularization coefficient is set to be 0.005
by default and the value estimation weight ν is mainly se-
lected from [0, 0.5] with 0.05 as interval by using grid search.
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Figure 5: Ablation study on HalfCheetah-v2 (5 runs, mean ±
standard deviation). (a) Components; (b) Regularization; (c)
Regularization parameter λ; (d) Weighting coefficient ν.

We use the same hyperparameters in DARC as the default
setting for TD3 on all tasks except Humanoid-v2 where all
these methods fail with default hyperparameters. We run for
3× 106 timesteps for Humanoid-v2 and 1× 106 timesteps
for the rest of the tasks for better illustration. Details for
hyperparameters are listed in Appendix E.

Ablation Study
We conduct the ablation study and parameter study on one
typical MuJoCo environment, HalfCheetah-v2, which is ade-
quate to show the influence of different parts and parameters.

Components. We show in Fig 5(a) that double actors are
vital for DARC, where DARC with a single actor signifi-
cantly underperforms DARC. We further exclude the explo-
ration effect by executing actions following the first actor in
DARC (see Fig 5(a)), which results in a bad performance.
Moreover, a decrease in the performance on HalfCheetah-v2
occurs without either double actors or regularization on crit-
ics as demonstrated in Fig 5(a) and Fig 5(b). We find that
value correction with double actors contributes most to the
performance improvement upon TD3, e.g., DARC without
regularization outperforms DARC with a single actor. Critic
regularization can only be powerful if the value estimation is
good enough.

The regularization parameter λ. λ balances the influ-
ence of the difference in two critic networks. Large λ may
cause instability in value estimation and impede the agent
from learning a good policy. While small λ may induce a
slow and conservative update, which weakens the effect and
benefits of critic regularization. Luckily, there does exist an
intermediate value (λ = 0.005) that could achieve a trade-off
as shown in Fig 5(c). Since DARC is not sensitive to λ as
long as it is not too large, we set λ = 0.005 as default in the
rest experiments.

The weighting coefficient ν. The weighting coefficient ν
directly influences the value estimation of DARC. Large ν
would yield underestimation issues and small ν may induce
overestimation bias. We show in Fig 5(d) that there exists a
suitable ν that could offer the best trade-off.

Extensive Experiments
The overall performance comparison is presented in Fig 6
where the solid line represents the averaged return and the
shaded region denotes standard deviation. We use the smooth-
ing strategy with sliding window 3 that is suggested in Ope-
nAI baselines (Dhariwal et al. 2017) for better demonstration.
As demonstrated in Fig 6, DARC significantly outperforms
TD3 with much higher sample efficiency, e.g., DARC con-
sumes 50% fewer interaction times to reach the highest return
than TD3 in HalfCheetah-v2 task with around 30% additional
training steps. DARC learns much faster than other methods.

Comparison with Other Value Correction Methods
We additionally compare DARC with other recent value cor-
rection methods, SD3 (Pan, Cai, and Huang 2020) and TADD
(Wu et al. 2020), where SD3 leverages softmax operator on
value function for a softer estimation and TADD leverages
triple critics by weighting over them for better estimation.
We also compare DARC with Double Actors TD3 (DATD3).
We conduct numerous experiments in identical environments
in the above section and report the final mean score over 5 in-
dependent runs in Table 2, showing that DARC significantly
outperforms these value correction methods in all tasks.

Related Work
Actor-Critic methods (Konda and Tsitsiklis 2000; Prokhorov
and Wunsch 1997; Konda and Borkar 1999) are widely-used
in Reinforcement Learning (RL). The quality of the learned
critic network is vital for a good performance in an RL agent
when applying function approximation (Barth-Maron et al.
2018b), e.g., we can get an unbiased estimate of policy gradi-
ent if we enforce the critic to meet the compatibility condi-
tions (Silver et al. 2014).

How to estimate the value function in a good way remains
an ongoing problem in RL, and has been widely investigated
in deep Q-network (DQN) (Hasselt, Guez, and Silver 2016;
Sabry and Khalifa 2019) in discrete regime control. Lan et al.
(Lan et al. 2020) propose to take the minimum Q-value under
the ensemble scheme to control the estimation bias in DQN,
while Anschel et al. (Anschel, Baram, and Shimkin 2017)
leverage the average value of an ensemble of Q-networks for
variance reduction. Apart from Q-ensemble methods, many
effective methods involving estimation weighting (Zhang,
Pan, and Kochenderfer 2017), softmax operator (Song, Parr,
and Carin 2019) are also explored.

In continuous control domain, DDPG suffers from large
overestimation bias. The improvement upon DDPG includes
distributional (Barth-Maron et al. 2018a; Bellemare, Dab-
ney, and Munos 2017), model-based (Feinberg et al. 2018),
prioritized experience replay (Horgan et al. 2018) method,
etc. TD3 tackles the issue by using double critics for value
correction, while it may suffer from severe underestimation
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Figure 6: Performance comparison in OpenAI Gym and PyBullet Gym environments.

Environment TD3 TADD SD3 DATD3 (ours) DARC (ours)
Ant 4164.10 4593.01 4541.71 5180.29 5642.33±188.82
BipedalWalker 294.08 303.42 299.69 305.09 311.25±2.66
HalfCheetah 10237.62 10099.80 10934.72 10623.96 11600.74±499.11
Hopper 3145.20 3142.16 3286.24 2822.94 3577.93±133.97
Humanoid 5992.28 6182.54 5809.18 5960.03 6737.63±743.95
Walker2d 4605.25 4834.59 4622.89 4694.75 5159.84±687.84
AntPyBullet 3683.49 3216.75 3762.93 3949.02 4100.01±19.24
Walker2dPybullet 1385.01 1150.07 1497.06 1777.24 1902.46±217.25

Table 2: Numerical performance comparison on final score (3M steps for Humanoid and 1M steps for the rest) between DARC
and other value estimation correction methods. The best results are in bold.

problem. There are many efforts in utilizing TD3 for distri-
butional training (Ma et al. 2020), Hierarchical RL (HRL)
(Nachum et al. 2018), and so on, while value estimation
correction methods for performance improvement are rarely
investigated. Wu et al. (Wu et al. 2020) adopt triple critics and
correct the value estimation by weighting over these critics.
There are also some prior works (Kuznetsov et al. 2020; Roy,
Bakshi, and Maharaj 2020) that adopt critic ensemble for
bias alleviation. Also, two parallel actor-critic architecture
are explored to learn better options (Zhang and Whiteson
2019). Despite these advances, few of them investigate the
role and benefits of double actors in value correction, which
is the focus of our work. Also, training multiple critic or actor
networks can be expensive, while DARC is efficient.

Finally, our method is related to the regularization method,
which has been broadly used outside RL, for instance, ma-
chine learning (Bauer, Pereverzev, and Rosasco 2007), com-
puter vision (Girosi, Jones, and Poggio 1995; Wan et al.
2013; Xu et al. 2021), etc. Inside RL, regularization strat-
egy is widely used in offline RL (Lange, Gabel, and Ried-
miller 2012; Wu, Tucker, and Nachum 2019), model-based
RL (Boney, Kannala, and Ilin 2020; D’Oro and Jaśkowski
2020), and maximum entropy RL (Haarnoja et al. 2018a;

Zhao, Sun, and Tresp 2019). We, however, propose to regu-
larize critics to ensure that the value estimation from them
would not deviate far from each other, which reduces value
estimate uncertainty.

Conclusion
In this paper, we explore and illustrate the benefits of double
actors in continuous control tasks, which has long been ig-
nored. We show the preeminent exploration property and the
bias alleviation property of double actors on both single critic
and double critics. We further propose to regularize critics to
mitigate large difference in value estimation from two inde-
pendent critics. Putting together, we present Double Actors
Regularized Critics (DARC) algorithm which extensively and
significantly outperforms baseline methods as well as other
value estimation correction methods on standard continuous
control benchmarks.

For future work, it will be interesting to extend DARC from
double-actor-double-critic architecture into multi-actor-multi-
critic structure. Critic ensemble can be utilized to measure
the uncertainty of value estimate. Meanwhile, multiple actors
show strength in better exploration and have more advantages
to tackle multimodal distribution.
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