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Abstract

We present Nonparametric Approximation of Inter-Trace re-
turns (NAIT), a Reinforcement Learning algorithm for dis-
crete action, pixel-based environments that is both highly
sample and computation efficient. NAIT is a lazy-learning
approach with an update that is equivalent to episodic Monte-
Carlo on episode completion, but that allows the stable incor-
poration of rewards while an episode is ongoing. We make
use of a fixed domain-agnostic representation, simple dis-
tance based exploration and a proximity graph-based lookup
to facilitate extremely fast execution. We empirically evalu-
ate NAIT on both the 26 and 57 game variants of ATARI100k
where, despite its simplicity, it achieves competitive perfor-
mance in the online setting with greater than 100x speedup in
wall-time.

1 Introduction
Deep Reinforcement Learning (DRL) has become the stan-
dard approach to tackle complex non-linear sequential de-
cision making problems exhibiting a high number of obser-
vational variables (Li 2017), a subset of which are image, or
pixel, based. Although tabular Reinforcement Learning (RL)
algorithms will learn (and in fact provably converge) in such
environments, they are too slow to be practically useful. Pol-
icy and value function parametrization is thus typically used
to facilitate learning, which has led to several breakthrough
results (Berner et al. 2019; Badia and Piot 2020).

Advances in raw performance, however, have been
achieved at the cost of increased sample, and computational
complexity. Agent 57 (Badia and Piot 2020) for example, re-
quires 256 actors collecting approximately 57 years of real-
time game play per game. For systems tackling more com-
plex environments, these numbers are significantly higher.
In an online, real-world setting this presents a major road-
block and, as a consequence, research attention has begun to
shift towards improving sample efficiency with the goal of
broadening the applicability of Deep Reinforcement Learn-
ing (DRL) in real world control and robotics. In these do-
mains, sample efficiency is critical as the cost of each in-
teraction is high; a physical robot must actually move. Im-
provements in sample efficiency, however, typically come at
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Figure 1: Comparison of our approach to other online sam-
ple efficient RL algorithms baselined on ATARI100k. NAIT
achieves a >100x speedup over all other methods and is only
outperformed in terms of median HNS by augmented SPR.
Up and to the right is better. Algorithm labels are provided
in Related Work.

the cost of increased computational complexity, where ad-
ditional CPU cycles are used to “squeeze” more from the
available data, through a learned model (Hafner et al. 2019),
data augmentation (Laskin et al. 2020), or similar.

The dominant evaluation framework for online RL al-
gorithms remains simulated environments. In this setting,
high computational complexity is not a bottleneck on perfor-
mance. It does, however, decrease the practical relevance of
the associated results by increasing the cost (in dollar terms),
and thus reducing accessibility (Henderson et al. 2018). Sci-
entific progress in the area is also impacted, as is visible in
the fact that the high computational cost of SimPLe (Kaiser
et al. 2019) was one cause of the choice to evaluate on the
26 game “easy exploration” subset of the full 57 game suit,
which made comparison to previous work difficult. It also
make comparisons difficult, and expensive, for subsequent
authors.

Computationally efficient approaches increase the scale
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at which algorithms can operate. For this reason several
works have made attempts to speed up the evaluation sim-
ulators, such as CuLE for ATARI (Dalton, Frosio, and Gar-
land 2019). Few, however, have focused on improving the
computational efficiency of the RL algorithms themselves,
instead focusing on distributed implementations (Stooke and
Abbeel 2018), or the use of specialized hardware (Cho et al.
2019). Increasing the wall-clock speed with which decisions
can be reached also directly increases the responsiveness of
the system, which greatly simplifies tasks such as tracking
and control (Wagner et al. 2010).

In this paper, we present Nonparametric Approximation
of Inter-Trace returns (NAIT), an algorithm that is both com-
putation and sample efficient. NAIT makes use of fast ap-
proximate k-nearest neighbour algorithms to generalise lo-
cally, and approximate a value function from stored memory.
We combine this with a novel inter-trace update that pro-
vides the stability of episodic returns as well as the ability to
immediately learn from an experience prior to completion
of the episode (an advantage that is particularly pronounced
in the low sample domain). We make use of a Discrete Co-
sine Transform (DCT) based transformation as the state rep-
resentation, with no use of a learned encoder, prior knowl-
edge, domain specific observation transformations or data
augmentation.

We focus our evaluation on the ATARI100k suite of en-
vironments (Kaiser et al. 2019) in the online setting. Our
approach is able to achieve 0.31 Median Human Normalized
Score (MHNS), outperforming several previous state-of-the-
art approaches such as Dr. Q (Kostrikov, Yarats, and Fergus
2020) and CURL (Srinivas, Laskin, and Abbeel 2020), de-
spite making no use of a learned representations. In addition
to this high level of sample efficiency, our approach is over
two orders of magnitude faster than the current state of the
art, SPR (Schwarzer et al. 2020), in terms of wall-time. In a
single thread, NAIT is able to complete training for one en-
vironment in 7.2 minutes, where SPR requires 3.5 hours on
the same GPU-enabled node. We examine our approach with
ablation and sensitivity analysis, demonstrating the ability of
NAIT to trade-off performance for speed, as well as a high
level of robustness across hyperparameter values. Because
of NAIT’s low execution time, we are able to provide base-
line results under multiple evaluation settings and sample
budgets, providing a strong baseline for future work.

2 Related Work
Recently significant focus has turned towards sample ef-
ficient RL in image-based environments. SimPLe (Kaiser
et al. 2019) consists of a novel network architecture used
to model ATARI forward dynamics in the observation
space, integrated within a Dyna-style (Sutton 1990) training
loop. This work introduced the ATARI100k benchmark, and
achieved 0.144 median human normalised score (MHNS),
significantly outperforming Rainbow (Hessel et al. 2018)
and PPO (Schulman et al. 2017). Data Efficient Rainbow
(DE-Rainbow) (van Hasselt, Hessel, and Aslanides 2019)
was introduced to make use of more frequent value network
updates per environment step, matching the update/step ratio
used in SimPLe and achieved 0.161 MHNS while making

no use of a learned model. Concurrently, Kielak presented
OT-Rainbow (Kielak 2020), a similarly “over-trained” but
otherwise unaltered version of rainbow capable of achieving
0.26 MHNS.

Several works have identified representation learning as
the bottleneck in this domain and have proposed techniques
to accelerate it. CuRL (Srinivas, Laskin, and Abbeel 2020)
introduced an auxiliary contrastive loss able to be utilized
within existing RL algorithms. Dr. Q (Kostrikov, Yarats, and
Fergus 2020), focused solely on image augmentation (ran-
dom shifts and random crops of observations), and demon-
strated their inclusion raised the performance of an effi-
cient DQN implementation from 0.058 to 0.284 MHNS.
SPR (Schwarzer et al. 2020) proposes a latent space for-
ward dynamics model, combined with an auxiliary predic-
tion loss, that achieves 0.415 MHNS when combined with
an augmentation scheme similar to that in Dr. Q.

Recently, several works such as APT (Liu and Abbeel
2021) and VISR (Hansen et al. 2019) have considered an ad-
ditional unsupervised pretraining phase prior to online learn-
ing. In this setting, agents are provided a 250M frame bud-
get with no environment rewards, after which rewards are
restored for the standard 100k steps. Although we do not
adopt this setting to evaluate out agent, we include several
results to help contextualize the performance of NAIT.

Non-parametric, or lazy learning (Sutton and Barto 1998)
has been applied to ATARI previously. In the original work
proposing the ALE environment (Bellemare et al. 2015),
a Locality Sensitive Hashing (LSH) algorithm was pro-
posed to convert pixel observations to binary features for
SARSA(λ). Linear learners ingesting fixed features were ex-
amined in (Liang et al. 2016), and remain strong baselines.
In Model Free Episodic Control (MFEC) (Blundell et al.
2016), a gaussian random projection to a 64-dimensional la-
tent space is used on ATARI frames, however performance
is poor, possibly due to the small latent space dimensional-
ity chosen. Berariu et. al. (Berariu and Gogianu 2017) aug-
mented MFEC with sparse projections (Achlioptas 2003)
along with variance normalisation in the projected space and
demonstrated a improvement in performance, along with
significant computational gains on ATARI.

3 Method
3.1 Background
We consider the standard formulation and notation (Sutton
and Barto 1998) of an agent interacting with some environ-
ment at discrete time steps to maximise total expected re-
ward. The environment is modelled as a Partially Observable
Markov Decision Process (POMDP) (O,A, P, r, γ) with a
D dimensional observation space o ∈ O : RD and dis-
crete action space a ∈ A. Traces are denoted as τ =
{(o0, a0, r0), (o1, a1, r1), . . .}. P = Prob(o′t|o≤t, a≤t) de-
notes the transition probability dynamics, r : O × A → R
denotes the reward function and γ ∈ [0, 1) denotes a dis-
count rate. We make use of a fixed projection ϕ : R4×D →
RF , to convert a stack of four observations (as is stan-
dard in ATARI) to a more compact space s ∈ S : RF ,
st = ϕ (ot, ot−1, ot−2, ot−3) where F ≪ D. We treat s
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as the base state henceforth, with P = Prob(s′t|st, at) and
rt = r(st, at). The discounted return from state st and ac-
tion at ∈ A taken at time t, is defined as G(st, at)

.
=∑H

k=t γ
k−tr(sk, ak) where H is the time horizon of the

episode. For brevity, we often abbreviate this as Gt =
G(st, at) indicating the return from time t onwards. If a
range is specified as in Gt:T , this denotes the return from
time t until T . Our goal is to learn the optimal policy
π∗(st) that maximises EP [G(st, at)] for all st ∈ S where
at ∼ π∗(st). We make use of a memory M , where Ma(s)
refers to the value in memory for action a and state s.

At a high level, our approach acts by representing all ob-
servations via a fixed projection, calculating Q-values via
local approximation, and updating these values iteratively as
new rewards are encountered. The final algorithm is shown
in Algorithm 1. We outline each component below.

3.2 Representation
As a fixed representation, we use a Discrete Cosine Trans-
form (DCT) and select the first F DCT coefficients ordered
by frequency. The major advantage of the DCT as repre-
sentation is that it is able to capture broad detail about the
image extremely compactly, while being fast to compute, as
O(D logD) implementations based on the FFT exist. This
is faster even than a random projection at O(FD) for many
values of F . We make use of DCT II, an orthonormal trans-
form RN → RN ,

DCT:Xi =
N−1∑
n=0

xn cos

[
π

N

(
n+

1

2

)
i

]
i = 0, . . . , N − 1.

(1)
We wish to apply this to the frame-stack obtained from the
environment, and thus stack the four frames in a 2x2 grid to
ensure equal weighting of vertical and horizontal frequen-
cies, and apply the 2D DCT II. To compress the state, we
discard high frequency coefficients and select the top F ;

st = ϕ (ot, ot−1, ot−2, ot−3) (2)

=

DCT

(
DCT

[
ot ot−1

ot−2 ot−3

]T)T

ij


0≤i,j≤

√
F

.

As the DCT is the only component of our approach spe-
cific to images, we also present results with domain-agnostic
random projections as the representation (see Table 3). A
random projection transforms the observation data (of di-
mension D) to a lower dimensional space (of dimension F )
ϕ : x → xR, where R ∈ RD×F . We fix F to be the same
as the number of DCT coefficients used. For each element
ui,j ∈ R:

ui,j =
√
s


+1 with prob. 1

2s

0 with prob. 1− 1
s

−1 with prob. 1
2s

. (3)

When s =
√
D, R is a very sparse random projec-

tion (Li, Hastie, and Church 2006). When s = 3, the pro-
jection becomes the more standard sparse random projec-
tion (Achlioptas 2003).

3.3 Non Parametric Value Function
Approximation

We aim to learn a local approximation of the the discounted
return Q(s, a) ≃ G(s, a) where a ∼ π∗(s). Q-values are es-
timated from action-specific memory buffers Ma, of which
frozen copies, M ′

a are made at the start of each episode,
M ′

a(s)
copy←−−Ma(s) at t = 0. This memory is updated online

with learning rate α according to the learning rule in Alg. 2.
Q-values are directly estimated from memory,

Q(s, a|k) =


Ma(s) s ∈Ma∑

s′∈L(s,a) K(s,s′)Ma(s
′)∑

s′∈L(s,a) K(s,s′) , s /∈Ma, |Ma| ≥ k

0 s /∈Ma, |Ma| < k
(4)

where L(s, a) = {s1, . . . , sk} is the result of a nearest-
neighbour (by L2 distance) lookup of s on Ma, and K :
S×S → R is a kernel function that dictates a weighting over
neighbours. In all experiments, to smooth the interpolation,
we use a normalized tricubic kernel. The kernel calculates
the weighting for each neighbour s′ ∈ L(s, a) as,

K(s, s′) =

(
1−

(
||s− s′||2

maxŝ∈L(s,a) ||s− ŝ||2

)3
)3

. (5)

Normalization is required as the standard kernel has sup-
port [0, 1] and the distance between two states can clearly ex-
ceed this. Consequently, we normalize by the maximum L2

distance to all states in L(s, a). This has significant conse-
quences in that the bandwidth of the kernel expands and con-
tracts depending on the density of the local neighbourhood
at the query point due to the fixed k. This results in broad
generalisation across large areas when samples are sparse,
and fine-grained interpolation when a region has been heav-
ily sampled. The particular choice of kernel is not a critical
component of NAIT and a gaussian, bicubic or similar may
easily be substituted. Empirically, we found the tricubic ker-
nel to give a slight bump in performance (see Table 3).

Acting is done greedily with ties broken by an estimate of
the visitation density calculated with information from the
already completed k-nn lookup. This is done by a softmax
distribution over the mean L2 distance to the neighbouring
states found on the lookup for that (s, a) pair (if there is an
exact match, the distance is considered 0). Given a candidate
set of maximum valued actions C = argmaxa∈A Q(s, a),

πtiebreak(s) ∼ softmaxa∈C

1

k

∑
s′∈L(s,a)

||s− s′||22

 . (6)

If there is no tiebreak (|C| = 1), the policy is standard
greedy action selection, π ∼ argmaxa∈A Q(s, a). This
distance-based tie-breaking is the only form of exploration
explicitly added to NAIT.

3.4 Inter-Trace Update
Monte-Carlo returns are desirable in the low-sample do-
main as they do not propagate approximation error. How-
ever, they come with the major drawback that updates can-
not be carried out until the end of a trace. When the ratio of
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Algorithm 1: NAIT: Training and Acting

Initialise: Memory Ma → {} for all a ∈ A
while training do
o← reset environment, empty trace history τ ← {}, G← {}, Γ← {}, M ′

a

copy←−−Ma for all a
for t = 0 to epsisode horizon H do

Get DCT representation s← ϕ (ot, ot−1, ot−2, ot−3)
for a ∈ A do

Get estimate of Q(s, a) using a kernel K(s, s′), set of neighbours L(s, a) = {s1, . . . , sk}

Q(s, a; k) =


Ma(s) s ∈Ma∑

s′∈L(s,a) K(s,s′)Ma(s
′)∑

s′∈L(s,a) K(s,s′) , s /∈Ma, |Ma| ≥ k

0 s /∈Ma, |Ma| < k

end for
π(s) = argmaxa∈A Q(s, a) breaking ties with πtiebreak(s) ∼ softmaxa∈C

(
1
k

∑
s′∈L(s,a) ||s− s′||22

)
Act o, r ← env(π(s))
Add (s, a) to τ
Get inter-trace targets (Alg. 3) and Update(τ,QIT) (Alg. 2)

end for
Get final returns and Update(τ,G) (Alg. 2)

end while

Algorithm 2: Batch Update

Input τ : (s, a) tuples list, Q: targets list, α: learning rate
for (s, a), Q ∈ zip(τ,Q) do

if s ∈M ′
a then

Ma(s)←M ′
a(s) + α (Q−M ′

a(s))
else
Ma(s)← Q

end if
end for

average trace length to total interactions is high, as it is in
ATARI100k, this property has a pronounced effect. To ad-
dress this, we introduce a novel inter-trace update allows the
incorporation of new information immediately upon receiv-
ing it, as is possible with bootstrapped updates, while retain-
ing the stability of MC returns. We show this update can be
calculated in constant time with respect the episode length.

During an ongoing trace, at time t < T , for an (s, a)
pair first experienced at time i, the standard MC target
Qtarget(s, a) = Gi:T (s, a), is not able to be calculated as the
episode has not completed. We can, however, incorporate the
rewards {ri . . . rt} already received into a new target as an
approximation to the MC return, bootstrapping off a fixed
copy, Q′(s, a) of the current estimator. Here Q′(s, a) indi-
cates Eq. 4, calculated with the frozen memory M ′

a. This
new target is;

Qtarget(si, ai) = ri + γri+1 + ...+ γt−irt

+ γt−i+1Q′(st+1, at+1)

= Gi:t−1 + γt−irt + γt−i+1Q′(si+1, ai+1)
(7)

In practice we vectorize this operation so as to calculate
the targets for all (s, a) pairs visited in the trace in one step,

ensuring updates can be computed in constant time. Specif-
ically, at each time t during a trace, we have encountered n
unique (s, a) pairs, with the time of their first visit given by
t = [t0, t1, ..., tn]. We can compute the target vector,

Qtarget = [Qtarget(st0 , at0), ..., Qtarget(stn , atn)] (8)

= G+ ΓQ′(st+1, at+1) (9)

where

G = [Gt0:t, Gt1:t, ..., Gtn:t], (10)

Γ = [γt−t0 , γt−t1 , ..., γt−tn ] (11)

G is simply the running discounted reward, and Γ the dis-
count that should be applied to the next reward, for each
(s, a). At the beginning of a trace, all vectors are cleared,
then are iteratively updated at each time-step following Alg.
3.

Algorithm 3: Vectorized Inter-trace Targets

Input rt, Q′(st+1, at+1), G,Γ
Append 1 to Γ
G← G + Γrt
Γ← γΓ
QIT ← G+ ΓQ′(st+1, at+1)
Return QIT,G,Γ

This update allows us to perform training once per step,
as opposed to once per episode, instantly incorporating new
information into our policy. The inter-trace update is simi-
lar to an n-step update, but n is always the maximum pos-
sible value for each state, and can be thought of as “doing
as much MC as possible” - overwriting previous updates
as new information becomes available, as opposed to boot-
strapping off them. This is an important property as it does
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not propagate errors present in the value function approxi-
mation whereas standard n-step updates do. While the calcu-
lation of targets can be done in constant time, each value up-
date isO(1), and we do not need to update each pair at each
step. Instead NAIT only utilizes new targets when (t0 − t)
(mod r) = 0. In all experiments we set r = 50.

3.5 Projected Small World Graphs
Our method relies on being able to both add high-
dimensional data to memory (Alg. 2), and query this mem-
ory (eq. 4) for neighbours with low computational cost. With
standard fast k-NN algorithms, such as KD-trees (Bentley
1975), this is not possible as they require re-indexing each
time underlying data is changed which carries a large cost.

Instead, we make use of a Proximity Graph (PG)
approach, Hierarchical Navigable Small World graphs
(HNSW) (Malkov and Yashunin 2018). PG approaches
are based around incremental index construction, and thus
adding new points can be done cheaply. We make use of a
specific standalone HNSW implementation (nsmlib 2021)
that leverages this feature to allow incremental updating,
along with the ability to control search time parameters ef
and M which directly effect the recall/query time trade-off
(for full details see (Malkov and Yashunin 2018)). In addi-
tion, querying is an order of magnitude faster than a KD-tree
on densely clustered data at high (> 0.8) recalls (Aumüller,
Bernhardsson, and Faithfull 2020).

4 Results
4.1 Image Random Walk
As a base environment, we first introduce a 19-state deter-
ministic MDP with image observations and γ = 0.9. The 19
states are arranged in a flat line, in order of index. At each
state two actions are available, a0 to the left, action a1 to
the right. State 15 is special, here the actions are reversed
(i.e. a0 moves to the right, action a1 to the left). A transition
diagram is included in the supplementary material.

At all transitions the reward is zero, except for action a0
from state 19, which yields a reward of 1. State 9 is the initial
state. Observations for each state are noisy grayscale blocks,
with the intensity corresponding to the states index oi,j =
N (n, σ), i, j ∈ {1..D}, n ∈ {1..19} where D is the height
and width of the observations and n is the index of the state,
normalized to a range of [−1, 1]. We choose D = 5 and σ =
0.1. The optimal Q-functions for the system are shown in
the supplementary material, where it can be seen that simple
policies such as “always move right” cannot succeed due to
the action switching at State 15.

We also plot the reward (see supplementary material) ob-
tained at the end of each episode for a tuned DQN agent
and our approach. Both methods settle on the optimal pol-
icy, however our memory based approach learns almost im-
mediately, whereas the DQN is still converging after 100k
steps. This result highlights that in some cases it is simply
much easier to store visited returns and generalise locally
at inference time, as opposed to trying to fit a global value
function.

Figure 2: HNS over 1M interactions averaged over the full
57 ATARI game set. Shaded region indicates 90% confi-
dence interval. DQN performance after 10M interactions is
also shown, as comparable sample efficient methods do not
evaluate on the full game set. NAIT requires only 150k in-
teractions to outperform DQN@10M on both metrics.

4.2 ATARI100k
ATARI100k was first introduced as a testbed for Sim-
PLe (Kaiser et al. 2019) and consists of 26 “easy explo-
ration” ATARI2600 games. Since its introduction numer-
ous works have focused solely on ATARI100k (van Has-
selt, Hessel, and Aslanides 2019; Kielak 2020; Kostrikov,
Yarats, and Fergus 2020; Srinivas, Laskin, and Abbeel 2020;
Schwarzer et al. 2020). In our work, we report results for
ATARI100k, but also evaluate on the 57 game set used more
frequently in the wider RL literature. We do this both to pro-
vide a more robust baseline for future work, and to evaluate
the generality of NAIT, as we do all hyperparameter tun-
ing on the 26 game set alone, and make no changes when
applying to the full evaluation suite. This setup was origi-
nally suggested by the ALE authors (Machado et al. 2018),
and demonstrates that an approach is not overfitted to the
task suit, however to date it has not been commonly adopted.
We include a comparison to state-of-the-art sample efficient
methods in Table 1. The unsupervised setting is included to
contextualize NAIT’s high level of performance on the full
57 game set, however we do not evaluate NAIT in this set-
ting. Full settings for ATARI are listed in the supplementary
material.

We run all experiments with 10 seeds, and evaluation is
done on a rolling basis following the recommendations of
(Machado et al. 2018), with the mean of the most recent 5
episodes logged for each seed. The DQN and SARSA(λ)
baselines are also reproduced from this work. Final scores
are the mean score of 50 episodes, run after the comple-
tion of training, following (Schwarzer et al. 2020). Our
main metric is the Human Normalized Score, HNS =
agent−random

human−random achieved within a fixed interaction budget. We
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ATARI100K All 57 Games
Method Samples Mdn Mean Mdn Mean

Online (low budget)

SimPLe 100K 14.39 44.3 - -
DE-R 100K 28.5 16.1 - -
OT-R 100K 26.4 20.4 - -
CURL 100K 17.5 38.1 - -
DrQ 100K 28.42 35.7 - -
SPR† 100K 41.5 70.4 - -
NAIT 100K 31.21 36.23 17.57 36.51

Online (medium budget)

NAIT 250K 39.46 52.86 26.54 48.81
PPO 500K 20.93 43.74 - -
NAIT 500K 46.73 69.97 43.63 66.46
NAIT 750K 60.64 79.38 50.05 73.26
NAIT 1M 60.60 90.38 52.04 82.81
SARSA‡ 2M 35.85 72.40 28.27 57.75
DQN 2M 27.8 52.95 8.61 27.55

Unsup. Pretraining (250M budget) + Online Finetuning

VISR 100K 9.5 128.07 6.81 102.31
APT 100K 47.5 69.55 33.41 47.73
APS∗ 100K 51.45 87.59 -

Table 1: Final performance measures. ∗No shared encoder.
†Data augmented. ‡ SARSA(λ) with Blob-PROST features.

primarily report the Median HNS (MHNS) across games as
the mean tends to be dominated by outlier performance.

As speed is a major feature of NAIT, we log median
iterations per second (itr/s) across games. Itr/s is calcu-
lated by dividing the time to complete the environment by
100k, averaged over ten seeds. Per-node speeds are the total
throughput when all threads are allocated on a single AWS
C5d.24xlarge (48 cores). This metric is indicative of real-
world performance but is dependent on the number of cores
present in the node. For this reason we also report per-thread
speeds which are independent of core count but do not con-
sider factors such as I/O blocking, although in practice we
observe these effects to be minor. SPR, SimPLE and DE-
Rainbow speeds in Table 2 are reproduced from (Schwarzer
et al. 2020), with Dr Q and CURL and OT-Rainbow bench-
marked from from open-source implementations running on
P3.16xlarge (32 core, 8xP100 GPU) instances.

NAIT achieves a high level of performance, outperform-
ing all methods with the exception of augmented SPR on the
ATARI100K benchmark (see Table 1). This is achieved with
a hugely reduced computational cost - over 100x faster than
SPR and 1000x faster than SimPLe (see Table 2).

5 Analysis
5.1 Ongoing Learning
NAIT demonstrates the high level of performance that a
nonparametric approach can learn when environment inter-
actions are limited. However, due to the fixed representa-

Algorithm 1 Node Itr/s Walltime (hours)
SimPLe 0.5 3166.67
DE-R 53.4 29.65
OT-R 48.4 32.71
CURL 58.4 27.11
DrQ 15 105.56
SPR 9.25 171.17
SPR (augmented) 6.03 262.58
NAIT 13962.24 0.11

Table 2: Average single-node iterations/s and walltime re-
quired to complete the full 57 game for various methods on
a single node.

Component Replacement MHNS Itr/s
NAIT 31.2 163.4

DCT projection Very sparse 21.5 121.3
DCT projection Sparse 28.1 91.4
DCT projection None - 1.5

Tiebreaking Uniform 12.1 125.3
Intertrace update Monte-Carlo 13.6 141.2
Tricubic kernel Mean 28.4 161.4
HNSW KD tree - 0.3

Table 3: Ablations. Median HNS and single-thread itr/s re-
ported for the 26 game subset and 100K iterations.

tion, NAIT’s performance will saturate once the importance
of a good representation (i.e. non-local generalization) out-
weighs the importance of quickly updating the value func-
tion or policy. As stated, the 100k domain is of interest in its
own right, however we are also interested in quantifying the
point at which design choices such as a fixed representation
begin to limit performance.

Using the same set of hyperparameters tuned for the
ATARI100k benchmark (26 games, 100k interactions), we
carried out a longer run over 1M interactions, and included
all 57 games in the standard evaluation set (Fig. 2). We made
no other alterations to NAIT or its hyperparameters. Learn-
ing is highly stable and indicates NAIT possesses a high
level generality. Per-game performance during training is vi-
sualized in the supplementary material.

5.2 Ablations
When removing components, if a replacement is required,
we choose what is either simplest or is already standard. For
example, in place of a tricubic kernel, we use a uniform ker-
nel, or instead of HNSW we use a KD-tree. Results are listed
in Table 3.

We find that DCT components provide better quality rep-
resentations with regard to performance and are faster to
compute. Computation on the raw frames was prohibitively
slow due to the resulting high dimensionality of the k-NN
keys.

One unusual feature is the impact of distance based
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tiebreaking, in comparison to randomly breaking ties. This is
likely because early in learning this encourages exploration
based on novel states, as all estimates are zero, rather than
simply ensuring a roughly uniform selection of actions. This
is supported by the strong level of performance on the un-
seen ‘hard’ exploration games, despite no other mechanism
of exploration being built into NAIT. Of lesser importance
is the use of tricubic kernel which is shown to result in an
increase in performance with only a small cost in computa-
tion speed in comparison to a uniform kernel (i.e. take the
mean), however this increase is minor.

5.3 Effect of Hyperparamters
Higher representation dimension F tends to be both slower,
and perform worse as it is increased past F = 289 (see sup-
plementary material). We hypothesise this is due to poorer
recall of HNSW at higher dimensions overshadowing infor-
mation preservation gained by a higher F . This could po-
tentially be offset by increasing the recall of the lookup via
the ef and M parameters, however this would come at the
cost of a significant reduction in computational efficiency.
Interestingly, as F is held constant and M increased, perfor-
mance is stable up to M = 160, but drops sharply after this.
This would indicate some level of noise in the value esti-
mate is beneficial, and perfect recall is in fact not desirable
for NAIT. Setting M too low however also degrades perfor-
mance as expected.

Such high performance with low F indicates that the in-
formation required to learn basic play is present in a sur-
prisingly small number of DCT coefficients. One implica-
tion for ATARI100k is that learning a good representation is
significantly less important in early learning than being able
quickly assign credit.

From our sweeps, k appears to have a clear optimal value
across all games (see supplementary material). This is ex-
pected as k effectively balances local generalization with
the smoothness of the value estimate, and setting k too
large removes information from the value estimate. In con-
trast, the choice of learning rate does not effect performance
smoothly, however the high-level metrics are surprisingly
strong even at large α, displaying a level of robustness to
the choice of α that departs significantly from neural-based
approaches. One explanation is due to α not being consid-
ered at new (s, a) pairs where the new value is set directly.
This forces NAIT into a high-learning rate setting by default.

6 Conclusion
We have introduced a locally generalising approach to RL
that is both sample and computationally efficient, achieving
state of the art performance in the low sample regime on
ATARI while requiring two orders of magnitude less wall-
time. Due to the very low walltime and computational re-
quirements, we hope that future work adopts our algorithm
as a benchmark when demonstrating the efficacy of learned
model or learned representation approaches. Further work
may investigate the possibility of our approach as a quick
but simple initial learner that can merge into, or inform, a
more complex learner that does produce useful representa-

tions, via mechanisms such as behavioural cloning or sim-
ilar. This has exciting potential to significantly improve the
sample efficiency of established methods while maintaining
their asymptotic performance.
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