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Abstract

We study the problem of learning generative adversarial net-
works (GANs) for a rare class of an unlabeled dataset subject
to a labeling budget. This problem is motivated from practical
applications in domains including security (e.g., synthesizing
packets for DNS amplification attacks), systems and network-
ing (e.g., synthesizing workloads that trigger high resource
usage), and machine learning (e.g., generating images from a
rare class). Existing approaches are unsuitable, either requir-
ing fully-labeled datasets or sacrificing the fidelity of the rare
class for that of the common classes. We propose RareGAN, a
novel synthesis of three key ideas: (1) extending conditional
GANs to use labelled and unlabelled data for better gener-
alization; (2) an active learning approach that requests the
most useful labels; and (3) a weighted loss function to favor
learning the rare class. We show that RareGAN achieves a
better fidelity-diversity tradeoff on the rare class than prior
work across different applications, budgets, rare class fractions,
GAN losses, and architectures.

1 Introduction
Many practitioners in diverse domains such as security, net-
working, and systems require samples from rare classes. For
example, operators often want to generate queries that force
servers to send undesirable responses (Moon et al. 2021),
or generate packets that trigger high CPU/memory usage or
processing delays for performance evaluation (Petsios et al.
2017).

Prior domain-specific solutions to these problems rely
heavily on prior knowledge (e.g., source code) of the sys-
tems, which is often unavailable (Lin et al. 2019). Indeed, in
response to a recent executive order Improving the Nation’s
Cybersecurity1, the U.S. National Institute of Standards and
Technology published guidance highlighting the importance
of creating ‘black box’ tests for device and software security
that do not rely on the implementation or source code of
systems (Black, Guttman, and Okun 2021).

Given the success of generative adversarial networks
(GANs) (Goodfellow et al. 2014) on data generation, we
ask if we can use GANs to generate samples from a rare class
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1https://www.federalregister.gov/documents/2021/05/17/2021-
10460/improving-the-nations-cybersecurity

Budget↓ Fidelity↓ Diversity↑
AmpMAP 14,788,089 16.60 1.68%

RareGAN (ours) 200,000 4.16 98.07%

Table 1: RareGAN achieves better fidelity and diversity with
lower budget on DNS amplification attacks than domain-
specific techniques. See § 5.1 for the definition of metrics.

(e.g., attack packets, packets that trigger high CPU usage)
without requiring prior knowledge about the systems. Note
that there are two unique characteristics in our problem:
C1. High labeling cost. Labels (whether a sample belongs to

the rare class) are often not available a priori, and getting
labels is often resource intensive. For example, for a new
system, we often do not know a priori which packets will
trigger high CPU usage, and evaluating the CPU usage
of a packet (for labeling it) can be time consuming.

C2. Rare class only. We only need samples from the rare
class (e.g., attack packets); system operators are often
less concerned about common class samples (e.g., benign
packets).

To the best of our knowledge, no prior GAN paper considers
both constraints. Prior related work (see § 3.2) often assumes
that the labels are available (failing C1), or tries to generate
both rare and common samples, which sacrifices the fidelity
on the rare class (failing C2). We will see in § 4 that these
new characteristics bring unique challenges.
Contributions. We propose RareGAN, a generative model
for rare data classes, given an unlabeled dataset and a label-
ing budget. It combines three ideas: (1) It modifies existing
conditional GANs (Odena, Olah, and Shlens 2017) to use
both labelled and unlabelled data for better generalization.
(2) It uses active learning to label samples; we show theo-
retically that unlike prior work (Xie and Huang 2019), our
implementation does not bias the learned rare class distribu-
tion. (3) It uses a weighted loss function that favors learning
the rare class over the common class; we propose efficient
optimization techniques for realizing this reweighting.

We show that RareGAN achieves a better fidelity-diversity
tradeoff on the rare class than baselines across different use
cases, budgets, rare class fractions, GAN losses, and architec-
tures. Table 1 shows that RareGAN achieves better fidelity
and diversity (with a smaller labeling budget) when gen-
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Figure 1: Random generated samples (no cherry-picking) on
MNIST class ’0’ with B = 1,000 and α = 1%. The red
channel plots a generated image, and the green channel the
nearest real image from the training set. Yellow pixels show
where the two overlap. RareGAN achieves the high sample
quality and diversity without memorizing training data.

erating DNS amplification attack packets, compared to a
state-of-the-art domain-specific technique (Moon et al. 2021).
Although RareGAN is primarily motivated from the appli-
cations in security, networking, and systems, we also con-
sider image generation, both as a useful tool in its own right
and to visualize the improvements. Fig. 1 shows generated
samples trained on a modified MNIST handwritten digit
dataset (LeCun et al. 1998) where we artificially forcing
‘0’ digit as the rare class (1% of the training data). ACGAN
(Odena, Olah, and Shlens 2017), ALCG (Xie and Huang
2019), and BAGAN (Mariani et al. 2018) produces severely
mode-collapsed samples. Elastic-InfoGAN (Ojha et al. 2019)
produces samples from the wrong class. GAN memorizes the
training dataset. RareGAN (bottom) produces high-quality,
diverse samples from the correct class without memorizing
the training data.

This work builds on our previous workshop paper (Section
4.2 of (Lin et al. 2019)). The version with full appendix is at
(Lin et al. 2022).

2 Problem Formulation and Use Cases
Problem formulation. We focus on learning a genera-
tive model for a “rare” (under-represented) class, subject
to two constraints: (1) We assume a limited budget for la-
beling training data. (2) We only want to learn the rare
class distribution, not the common class. More precisely,
we are given i.i.d samples D = {x1, ..., xn} from a mixture
distribution p = αpr + (1 − α)pc, where pr denotes the
rare class distribution, pc is the common class distribution,
α � 1 denotes the weight of the rare class, and we have
Support (pr) ∩ Support (pc) = ∅. Each sample xi has a la-
bel yi ∈ {rare, common}. The training dataset D does not
include these labels y1, ..., yn beforehand, but we can request
to label up toB samples during training. Given this budgetB,
we want to learn a generative model p̂r that faithfully repro-
duces the rare class distribution, i.e., to minimize d (p̂r, pr),
where d (·, ·) is a distance metric between distributions.

This formulation is motivated from the following use cases.
Motivating scenario 1: amplification attacks (secu-

rity). Many widely deployed public servers and protocols
like DNS, NTP, and Memcached are vulnerable to amplifi-
cation attacks (Moon et al. 2021; Rossow 2014), where the
attacker send requests (network packets) to public servers
with spoofed source IP addresses, so the response goes to the
specified victims. These requests are designed to maximize
response size, thus exhausting victims’ bandwidth. Server
operators want to know which requests trigger these ampli-
fication attacks to e.g., drop attack requests. Prior solutions
require detailed information about the server, such as source
code (Rossow 2014), which may be unavailable (Lin et al.
2019).

Our problem formulation. As in (Moon et al. 2021), we
treat the rare class as all requests with an amplification fac-
tor (size of response packet)/(size of request packet) ≥ T , a pre-defined
threshold. All other requests belong to the common class. To
label a request (i.e., check its amplification factor), we send
the request through the server, which can be costly. Hence,
we want to limit the number of label queries. We want to
learn a uniform distribution over high-amplification requests
to maximize coverage of the input space.
Motivating scenario 2: performance stress testing (sys-
tems & networking). Many deployed systems and networks
today rely on black-box components (e.g., lacking source
code, detailed specifications). System operators may there-
fore want to understand worst-case system performance (e.g.,
CPU/memory usage or delay in the presence of congestion)
and optimize for such scenarios (Pedrosa et al. 2018). How-
ever, current tools for generating such workloads often rely
on a system’s source code (Caballero et al. 2007; Petsios et al.
2017; Pedrosa et al. 2018), which may be unavailable (Lin
et al. 2019; Black, Guttman, and Okun 2021).

Our problem formulation. We treat the rare class as pack-
ets with resource usage (e.g., CPU/memory/processing delay)
≥ T , a pre-defined threshold. The operator can use the trained
p̂r to synthesize such workloads. For the same reasons as the
previous case, we want to limit the number of label queries
and learn the rare class faithfully.
Motivating scenario 3: inspecting rare class images
(ML). Prior GANs on unbalanced image datasets focus on
generating samples from both rare and common classes for
improving downstream classification accuracy (§ 3.2). How-
ever, in some other applications, we may only need rare class
samples. For example, in federated learning, we may want to
inspect the samples from specific client/class slices that have
bad accuracy for debugging (Augenstein et al. 2019).

We will see in § 5.2 that RareGAN outperforms baselines
across all these very different use cases and data types.

3 Background and Related Work
3.1 Background
Generative Adversarial Networks (GANs). GANs (Good-
fellow et al. 2014) are a class of deep generative models
that have spurred significant interest in recent years. GANs
involve two neural networks: a generatorG for mapping a ran-
dom vector z to a random sample G(z), and a discriminator
D for guessing whether the input image is generated or from
the real distribution p. The vanilla GAN loss (Goodfellow
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et al. 2014) is minGmaxD LJS
GAN (D, p̂; p), where

LJS
GAN (D, p̂; p) = Ex∼p [logD(x)] + Ex∼p̂ [log (1−D(x))] , (1)

and p̂ denotes the generated distribution induced by G(z)
where z is sampled from a fixed prior distribution pz (e.g.,
Gaussian or uniform). It has been shown that under some
assumptions, Eq. (1) is equivalent to minG dJS (p, p̂), where
dJS (·, ·) denotes Jensen-Shannon divergence between the
two distributions. Several other distance metrics have later
been proposed to improve the stability of training (Ar-
jovsky, Chintala, and Bottou 2017; Gulrajani et al. 2017;
Nowozin, Cseke, and Tomioka 2016; Mao et al. 2017).
Wasserstein distance dW (·, ·) is one of the most widely used
metrics (Arjovsky, Chintala, and Bottou 2017; Gulrajani et al.
2017). The loss of Wasserstein GAN is minG dW (p, p̂) =
minGmax‖D‖L≤1 L

W
GAN (D, p̂; p), where

LW
GAN (D, p̂; p) = Ex∼p [D(x)]− Ex∼p̂ [D(x)] (2)

and ‖D‖L denotes the Lipschitz constant of D. RareGAN
works well with both of these losses.
Auxiliary Classifier GANs (ACGAN). Conditional GANs
(CGANs) (Mirza and Osindero 2014; Odena, Olah, and
Shlens 2017) are a variant of GANs that support conditional
sampling. Besides z, the generators in CGANs have an addi-
tional input c which controls the properties (e.g., category) of
the generated sample. For example, in a face image dataset
(with male/female labeled), instead of only sampling from
the entire face distribution, generators in CGANs could allow
us to control whether to generate a male or female by speci-
fying c. Several different techniques have been proposed to
train such a conditional generator (Mirza and Osindero 2014;
Odena, Olah, and Shlens 2017; Salimans et al. 2016; Mariani
et al. 2018). ACGAN (Odena, Olah, and Shlens 2017) is one
such widely-used variant (Kong et al. 2019; Xie and Huang
2019; Choi et al. 2018; Liang et al. 2020). ACGAN adds a
classifier C which discriminates the labels for both generated
data and real data. The ACGAN loss function is:

minC minGmaxD LGAN (D, p̂; p) + Lclassification (C, p̂xl; pxl) , (3)

where LGAN(D, p̂; p) is the regular GAN loss (e.g., Eq. (1)
(Kong et al. 2019; Xie and Huang 2019; Choi et al. 2018)
or Eq. (2) (Lee 2018)), except that p̂ is induced by G(z, c),
where z ∼ pz and c ∼ pl, where pl is the ground truth label
distribution. Lclassification is defined by

Lclassification (C, p̂xl; pxl) =

−E(x,c)∼pxl
[logC(x, c)]− E(x,c)∼p̂xl

[logC(x, c)] , (4)

where C(x, c) denotes classifier C’s probability prediction
for class c on input sample x, pxl denotes the real joint dis-
tribution of samples and labels, and p̂xl denotes the joint
distribution over labels and generated samples in p̂. In prac-
tice, D and C usually share some layers. Note that in Eq. (4)
the classifier is trained to match not only the real data, but
also the generated data, as in (Kong et al. 2019; Lee 2018;
Odena, Olah, and Shlens 2017). However, in some other im-
plementations, the second part of loss only applies on G, so
that the classifier will not be misled by errors in the generator
(Xie and Huang 2019; Choi et al. 2018).

3.2 Related Work
Depending on the availability of the labels, prior related
works can be classified into fully-labeled, unsupervised, semi-
supervised, and self-supervised GANs.
Fully supervised GANs. Prior work has studied how to
use GANs (particularly ACGAN) to augment imbalanced, la-
beled datasets, e.g., for downstream classification tasks (Mul-
lick, Datta, and Das 2019; Douzas and Bacao 2018; Ren,
Liu, and Liu 2019; Ali-Gombe and Elyan 2019; Mariani
et al. 2018; Rangwani, Mopuri, and Babu 2021; Asokan and
Seelamantula 2020; Yang and Zhou 2021). For example, EW-
GAN (Ren, Liu, and Liu 2019), MFC-GAN (Ali-Gombe and
Elyan 2019), Douzas and Bacao (2018), Wei et al. (2019),
and BAGAN (Mariani et al. 2018) all augment the original
dataset by generating samples from the minority class with
a conditional GAN. Wei et al. (2019) utilizes known map-
pings between images in different classes (e.g., mapping an
image of normal colon tissue to precancerous colon tissue).
BAGAN (Mariani et al. 2018) instead trains an autoencoder
on the entire dataset, learns a Gaussian latent distribution
for each class, and uses that as the input noise for each class
to the GAN generator. We cannot utilize these approaches
because we lack labels.
Unsupervised GANs. Unsupervised GANs (Chen et al.
2016; Ojha et al. 2019; Lin et al. 2020) do not control which
factors to learn. Hence, there is no guarantee that they will
learn to separate samples along the desired factor and thresh-
old (e.g., classification time of the generated packets).
Semi-supervised GANs. Our proposed approach in § 4.1
is one instance of semi-supervised GANs (Odena 2016; Sal-
imans et al. 2016; Dai et al. 2017; Kumar, Sattigeri, and
Fletcher 2017; Haque 2020; Zhou et al. 2018). Other semi-
supervised GANs could also be used, like the seminal one
(Salimans et al. 2016), which uses a single modified discrim-
inator both to separate fake from real samples (as in classical
GANs) and to classify the labels of real data. We choose
to use separated classifier (as in ACGAN) as the classifier
is not influenced by real/fake objective and therefore pro-
vides cleaner signal for our active learning technique in § 4.2.
The closest prior work, ALCG (Xie and Huang 2019), is
also an instance of semi-supervised GANs. Like us, they are
training conditional GANs in an active learning setting. How-
ever, their goal is to synthesize high-quality samples from
all classes, whereas we want to faithfully reproduce only the
rare class. We show how this distinction requires different
algorithmic designs (§ 4), and leads to poor performance by
ALCG on our problems (§ 5).
Self-supervised GANs. Self-supervision has been used in
both unsupervised and semi-supervised GANs (Sun, Bhat-
tarai, and Kim 2020; Chen et al. 2019; Ojha et al. 2019). It
is also unclear how to apply self-supervised GANs in our
problem, as they are most useful when we have some prior
understanding of the physical or semantic of a system, but in
our problem we are given an arbitrary system whose internal
structure is unknown. For example, for disentangling digit
types (e.g., 0 v.s. 1), Elastic-InfoGAN (Ojha et al. 2019) ap-
plies operations like rotation on images to construct positive
pairs for self-supervised loss, as we know these operations
do not change digit types. However, it is unclear what cor-
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responding operations should be in our problem due to the
‘black box’ nature of the systems. For example, in motivating
scenario 2 (§ 2), it is unclear what operations on packets
would keep the CPU/memory usage of the system.

Our work is also related to prior work on weighted loss
and data augmentation for GANs, which we discuss below.
Weighted loss. Our proposed approach involves a weighted
loss for GANs (§ 4.3). Although weighted loss for GANs and
classification has been proposed in prior work (Zadorozhnyy,
Cheng, and Ye 2021; Cui et al. 2019), the weighting schemes
and the goals are completely different to ours. For exam-
ple, awGAN (Zadorozhnyy, Cheng, and Ye 2021) adjusts the
weights on the real/fake losses, with the goal of balancing
the gradient directions of these two losses and making train-
ing more stable. Instead, as we see in § 4.3, the proposed
RareGAN uses different weights for samples in the rare and
the common classes (regardless of whether they are fake or
real), with the goal of balancing the learning of the rare and
the common classes.
Data augmentation. Data augmentation techniques have
been proposed for improving GANs’ performance in limited
data regimes (Karras et al. 2020; Zhao et al. 2020). However,
these techniques usually focus on image datasets and the aug-
mentation operations (e.g., random cropping) do not extend
to other domains (e.g., our networking datasets).

4 Approach
As mentioned in § 2 and § 3.2, our problem is distinguished
by two factors: (1) We want to learn only the rare class dis-
tribution; (2) The rare/common labels are not available in
advance, and we have a fixed labeling budget (can be used
online during training).

The most obvious straw-man solution to our problem is to
randomly and uniformly draw B samples from the dataset
and request their labels. Then, we train a vanilla GAN on the
packets with label “rare”. However, since the rare class could
have a very low fraction, the number of training samples
will be small and the GAN is likely to overfit to the training
dataset and generalize poorly.

As in prior work (Xie and Huang 2019; Ren, Liu, and Liu
2019; Ali-Gombe and Elyan 2019; Mariani et al. 2018), we
can use conditional GANs like ACGAN (§ 3.1) to incorpo-
rate common class samples into training, because they could
actually be useful for learning the rare class. For example, in
face image datasets, the rare class (e.g., men with long hair)
and common classes share same characteristics (i.e., faces).
However, due to the small number of rare samples, ACGAN
still has bad fidelity and diversity (§ 5.2).

In the following, we progressively discuss the design
choices we make in RareGAN to address the challenges,
and highlight the differences to ALCG (§ 3.2), the most
closely-related work.

4.1 Better Distribution Learning with Unlabeled
Samples

In the above process, the majority of samples from D are
unlabeled because of the labeling budget. Those samples are

not used in training (as in ALCG). However, they contain in-
formation about the mixture distribution of rare and common
classes, and could therefore help learn the rare class.

Our proposed approach relies on carefully altering the AC-
GAN loss. Recall that the loss has two parts: a classification
loss separating rare and common samples, and a GAN loss
evaluating their mixture distribution (§ 3.1). Note that the
GAN loss does not require labels. We propose a modified
ACGAN training that uses labeled samples for the classi-
fication loss, and all samples for the GAN loss. However,
when training the GAN loss, we need to know the fraction
of rare/common classes in order to feed the condition input
to the generator. This can be estimated from the labeled sam-
ples. The maximum likelihood estimate α̂ = x

n has variance
α(1−α)

n , which is small for reasonable n.

4.2 Improving Classifier Performance with Active
Learning

Because the rare and common classes are highly imbalanced,
the classifier in ACGAN could have a bad accuracy. In classi-
fication literature, confidence-based active learning has been
widely used for solving this challenge (Li and Sethi 2006;
Joshi, Porikli, and Papanikolopoulos 2009; Sivaraman and
Trivedi 2010), which expends the labeling budget on samples
about which the classifier is least confident.

Inspired by these works, our approach is to divide the
training into S stages. At the beginning of each stage, we
pass all unlabeled samples through the classifier, and re-
quest the labels for the B/S samples that have the lowest
max {C(x, rare), C(x, common)}, where C(x, c) denotes
the classifier’s (normalized) output.2 This sample selection
criterion is called “least confidence sampling” in prior liter-
ature (Lewis and Catlett 1994). There are other criteria like
margin of confidence sampling and entropy-based sampling
(Vlachos 2008; Kong et al. 2019; Xie and Huang 2019). Since
we have only two classes, they are in fact equivalent.

While ALCG also uses confidence-based active learning,
it does so in a diametrically opposite way: they request the
labels for the most certain samples. These two completely
different designs result from having different goals: ALCG
aims to generate high-quality images, whereas we aim to
faithfully reproduce the rare class distribution. The most cer-
tain samples usually have better image quality, and therefore
ALCG wants to include them in the training. The least cer-
tain samples are more informative for learning distribution
boundaries, and therefore we label them.
Relation to § 4.1. Naively using active learning is actually
counterproductive; if we only use labeled samples in the train-
ing (as is done in ALCG), the learned rare distribution will be
biased, which partially explains ALCG’s poor performance
in our setting (§ 5). As discussed in § 4.1, we instead use all
unlabeled samples for training the GAN loss. The following
proposition explains how this circumvents the problem (proof
in App. A (Lin et al. 2022)).

2In the first stage, the samples for labeling are randomly chosen
from the dataset.
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Proposition 1 The optimization

p∗ ∈ argmin
p̂

min
C∈C

d (p̂, p) + Lclassification (C, p̂xl; p
′
xl)

satisfies d (p∗r , pr) = 0, where: (a) p∗r is p∗ under condition
“rare”, (b) p′xl is any joint (sample, label) distribution where
the support of p′xl covers the entire sample space, (c) p̂xl is
the generated joint distribution of samples and labels, and
(d) C is the set of measurable functions.

The above optimization is a generalization of the ACGAN
loss function, where d(·, ·) denotes an appropriately-chosen
distance function for the GAN loss (e.g., Wasserstein-1). Note
that the classification loss is computed over the (possibly bi-
ased) distribution induced by active learning, p′, whereas the
GAN loss is computed with respect to the true distribution
p, which uses all samples, labeled or not. The proposition is
saying that even though we use the biased p′ for the classifi-
cation loss, we can still learn pr. On the other hand, if we had
used p′ for the GAN loss (as is done in ALCG), we would
recover a biased version of pr.

4.3 Better Rare Class Learning with Weighted
Loss

Because the rare class has low mass, errors in the rare distri-
bution have only bounded effect on the GAN loss in Eq. (3).
Next, we propose a re-weighting technique for reducing this
effect at the expense of learning the common class. Let p̂
be the learned sample mixture distribution (without labels).
Let α̂ =

∫
Support(pr)

p̂(x)dx be the fraction of rare samples
under p̂, and let p̂′r be p̂ restricted to and normalized over
Support (pr). (Recall that p̂r is the generated distribution
under condition y =“rare”; it need not be the case that
Support (pr) = Support (p̂r).) Similarly, let p̂′c be p̂ over
X − Support (pr) where X is the entire sample space. Recall
that the original GAN loss in Eq. (3) tries to minimize

d (p, p̂) = d (α · pr + (1− α) · pc, α̂ · p̂′r + (1− α̂) · p̂′c)

where d is dJS or dW. We propose to modify this objective
function to instead minimize

d
(
wα · pr + ·(1− wα) · pc, wα̂s · p̂

′
r +

(1−wα)·(1−α̂)
s·(1−α) · p̂′c

)
, (5)

where w ∈ (1, 1/α) is the additional multiplicative weight
to put on the rare class; and s = wα̂+ 1−wα

1−α (1− α̂) is the
normalization constant, which is 1 when α = α̂. It is straight-
forward to see that Eq. (5)= 0 ⇔ d (p, p̂) = 0. However,
these two objective functions have different effects in train-
ing: this modified loss will more heavily penalize errors in the
rare distribution. Consider two extremes: (1) When w = 1,
Eq. (5) is reduced to the original d (p, p̂), placing no addi-
tional emphasis on the rare class; (2) When w = 1/α, Eq. (5)
is reduced to d (pr, p̂′r), focusing only on the rare class and
placing no constraint on the common class. This completely
loses the benefit of learning the classes jointly (§ 4). For a
w ∈ (1, 1/α), we can achieve a better trade-off between the
information from the common class and the penalty on the
error of rare class.

To implement the above idea, we propose to add a multi-
plicative weight to the loss of both real and generated samples

according to their label, i.e. changing Eqs. (1) and (2) to

LJS′

GAN (D, p̂; p) =

Ex∼p [W (x) · logD(x)] + 1
s · Ex∼p̂ [W (x) · log (1−D(x))] (6)

for Jensen-Shannon divergence and

LW′

GAN (D, p̂; p) =

Ex∼p [W (x) ·D(x)]− 1
s · Ex∼p̂ [W (x) ·D(x)] (7)

for Wasserstein distance, where

W (x) =

{
w (x ∈ Support (pr))

1−wα
1−α (x 6∈ Support (pr))

. (8)

Using Eq. (6) and Eq. (7) is equivalent to minimizing Eq. (5)
for dJS and dW respectively (proof in App. B (Lin et al.
2022)):
Proposition 2 For any D, p, and p̂, we have

LJS′
GAN (D, p̂; p) = LJS

GAN (D, q̂; q) (9)

LW′

GAN (D, p̂; p) = LW
GAN (D, q̂; q) (10)

where q̂ = wα̂
s · p̂

′
r +

(1−wα)·(1−α̂)
s·(1−α) · p̂′c, and q = wα · pr +

·(1− wα) · pc.
Implementing this weighting is nontrivial, however: (1)

The above implementation requires the ground truth labels of
all real and generated samples for evaluating Eq. (8), and we
do not want to waste labeling budget on weight estimation.
For this, we use the ACGAN rare/common classifier as a sur-
rogate labeler. Although this classifier is imperfect, weighting
real and generated samples according to the same labeler is
sufficient to ensure that the optimum is still d (p, p̂) = 0. (2)
Evaluating the normalization constant s in Eqs. (6) and (7)
requires estimating α̂, which is inefficient as α̂ changes dur-
ing training. Empirically, we found that setting s = 1 gave
good and stable results.

5 Experiments
We conduct experiments on all three applications in § 1. The
code can be found at https://github.com/fjxmlzn/RareGAN.
Use case 1: DNS amplification attacks. DNS is one of the
most widely-used protocols in amplification attacks (Rossow
2014). DNS requests that trigger high amplification have
been extensively analyzed in the security community (Kam-
bourakis et al. 2007; Anagnostopoulos et al. 2013; Rossow
2014), though most of the those analyses are manual or use
tools specifically designed for (DNS) amplification attacks.
We show that RareGAN, though designed for a more gen-
eral set of problems, can also be effectively used for finding
amplification attack requests. In this setting, we define the
rare class as DNS requests that have size of response

size of request ≥ T , where
T is a threshold specified by users. For the request space,
we follow the configuration of (Lin et al. 2019; Moon et al.
2021): we let GANs generate 17 fields in the DNS request;
for 5 fields among them (qr, opcode, rdatatype, rdataclass,
and url), we provide candidate values; for all other 12 fields,
we let GANs explore all possible bits. The entire search space
is 3.6× 1017. Unlike image datasets where samples from the
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mixture distribution p are given, here we need to define p.
Since our goal is to find all DNS requests with amplification
≥ T , we define p as a uniform distribution over the search
space. More details are in App. C (Lin et al. 2022).

Note on ethics: For this experiment, we needed to make
many DNS queries. To avoid harming the public DNS re-
solvers, we set up our own DNS resolvers on Cloudlab (Du-
plyakin et al. 2019) for the experiments.3

Use case 2: packet classification. Network packet classifi-
cation is a fundamental building block of modern networks.
Switches or routers classify incoming packets to determine
what action to take (e.g., forward, drop) (Liang et al. 2019).
An active research area in networking is to propose classi-
fiers with low inference latency (Chiu et al. 2018; Liang et al.
2019; Soylu, Erdem, and Carus 2020; Rashelbach, Rotten-
streich, and Silberstein 2020). We take a recently-proposed
packet classifier (Liang et al. 2019) for example, which
was designed to optimize classification time and memory
footprint. We define the rare class as network packets that
have classification time ≥ T , a threshold specified by users.
GANs generate the bits of 5 fields: source/destination IP,
source/destination port, and protocol. The search space is
1.0 × 1031. As before, p is a uniform distribution over the
entire search space. To avoid harming network users, we ran
all measurements on our own infrastructure rather than active
switches. More details are in App. C (Lin et al. 2022).
Use case 3: inspecting rare images. Although RareGAN is
primarily designed for the above use cases, we also use im-
ages for visualizing the improvements. Following the settings
of related work (Mariani et al. 2018), we simulate the im-
balanced dataset with widely-used datasets: MNIST (LeCun
et al. 1998) and CIFAR10 (Krizhevsky 2009). For MNIST,
we treat digit 0 as the rare class, and all other digits as the
common class. For CIFAR10, we treat airplane as the rare
class, and all other images as the common class. In both cases,
the default class fraction is 10%. To simulate a smaller rare
class, we randomly drop images from the rare class.

5.1 Evaluation Setup
Baselines. To demonstrate the effect of each design choice,
we compare all intermediate versions of RareGAN: vanilla
GAN (§ 4), ACGAN (§ 4), ACGAN trained with all unlabled
samples (§ 4.1), plus active learning (§ 4.2), plus weighted
loss (§ 4.3). In all figures and tables, they are called: “GAN”,
“ACGAN”, “RareGAN (no AL)” , “RareGAN” annotated
with 1.0, and “RareGAN” annotated with weight (> 1.0),
respectively. All the above baselines and RareGAN use the
same network architectures. For the first two applications,
the generators and discriminators are MLPs. The GAN loss
is Wasserstein distance (Eq. (2)), as it is known to be more

3These experiments did not involve collecting any sensitive data.
Such “penetration testing” of services is common practice in the
security literature and we followed best practices (Matwyshyn et al.
2010). Two leading guidelines are responsible disclosure and avoid
unintentional harm. We avoided harming the public Internet by
running our experiments in sandboxed environments. Since we only
reproduced synthetic (known) attack modes (Moon et al. 2021), we
did not need to disclose new vulnerabilities.

stable than Jensen-Shannon divergence on categorical vari-
ables (Arjovsky, Chintala, and Bottou 2017; Gulrajani et al.
2017). For the image datasets, we follow the popular public
ACGAN implementation (Lee 2018), where the generator
and discriminator are CNNs, and the GAN loss is Jensen-
Shannon divergence (Eq. (1)).

We also evaluate representative prior work on three di-
rections: (1) GANs with active learning: ALCG (using only
labeled samples in training and using the most certain sam-
ples for labeling) (Xie and Huang 2019); (2) GANs for
imbalanced datasets: BAGAN (Mariani et al. 2018); (3)
Unsupervised/Self-supervised GANs: Elastic-InfoGAN (Ojha
et al. 2019). We only evaluate the last two on MNIST, as they
only released codes for that. As we cannot directly apply the
last two in our problem (§ 3.2); we make minimal modifica-
tions to make them suitable (App. C (Lin et al. 2022)).

Metrics. We aim to minimize the distance between real and
generated rare class d (p̂r, pr). In practice, generative models
are often evaluated along two axes: fidelity and diversity
(Naeem et al. 2020). Because the data types differ across
applications, we use different ways to quantify them:

Network packets (use cases 1, 2). (1) Fidelity. Network pack-
ets are a high-dimensional list of categorical variables. We
lack the ground truth pr to estimate fidelity. Instead, we esti-
mate the true distribution of “scores” in pr (i.e., size of response

size of request
in DNS amplification attacks, and classification time in
packet classifiers). This surrogate distribution is operationally
meaningful, e.g., for quantifying mean or maximum security
risk. We define hr as the ground truth distribution of this
number over the rare class (estimated by drawing random
samples from the entire search space, computing their scores,
and then filtering out the scores that belong to the rare class),
and ĥr as its corresponding generated distribution. We use
dW1

(
hr, ĥr

)
as the fidelity metric, where dW1 (·, ·) denotes

Wasserstein-1 distance, as it has a simple, interpretable ge-
ometric meaning (integrated absolute error between the 2
CDFs). (2) Diversity. When GANs overfit, many generated
packets are duplicates. Therefore, we count the fraction of
unique rare packets (i.e., those with a threshold score ≥ T )
in a set of 500,000 generated samples as the diversity metric.

Images (use case 3). (1) Fidelity. We use widely-used
Fréchet Inception Distance (FID) (Heusel et al. 2017) be-
tween generated data and real rare data to measure fidelity.
(2) Diversity. The previous diversity metric is not applica-
ble here, as duplicate images are very rare. Instead, we take
a widely used heuristic (Wang, Zhang, and Van De Weijer
2016) to check if GAN overfits to the training data: for each
generated image, we find its nearest neighbor (in L2 pixel dis-
tance) in the training dataset. We then compute the average of
nearest distances among a set of generated samples. Note that
these two metrics are not completely decoupled: when GAN
overfits severely, FID also detects that. Nonetheless, these
metrics are widely used in the literature (Wang, Zhang, and
Van De Weijer 2016; Heusel et al. 2017; Arora and Zhang
2017; Shmelkov, Schmid, and Alahari 2018).
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GAN

ACGAN

ALCG

RareGAN

Figure 2: Generated samples (no cherry-picking) on CI-
FAR10 ‘airplanes’ with B = 10,000 and α = 10%. Each
baseline’s upper row is generated samples; lower row is the
closest real sample.

5.2 Results
Unless otherwise specified, the default configurations are:
the number of stages S = 2 (for RareGAN and ALCG),
weight w = 3 (for RareGAN); in DNS, labeling budget B =
200,000, rare class fraction α = 0.776% (corresponding
to T = 10); in packet classification, B = 200,000, α =
1.150% (corresponding to T = 0.055); in MNIST, B =
5, 000, α = 1%; in CIFAR10, B = 10,000, α = 10%. Note
that the choice of these default configurations do not influence
the ranking of different algorithms too much, as we will show
in the studies later. All experiments are run over 5 random
seeds. More details are in App. C (Lin et al. 2022).
Robustness across applications. We start with a qualitative
comparison between baselines. We show randomly-generated
samples on MNIST and CIFAR10.4 GAN produces high-
quality MNIST images in Fig. 1 by memorizing the labeled
rare data (9 samples). Other baselines do not memorize, but
either produce mode-collapsed samples (e.g., BAGAN (Mar-
iani et al. 2018)), low-quality and mode-collapsed samples
(e.g., ACGAN (Odena, Olah, and Shlens 2017), ALCG (Xie
and Huang 2019)), or samples from wrong classes (e.g.,
Elastic-InfoGAN (Ojha et al. 2019)). RareGAN produces
samples that are of the same quality as GANs, but with bet-
ter diversity. On CIFAR10, Fig. 2 shows for each baseline
randomly-generated samples (top row) and the closest real
samples (bottom row). Again, GAN memorizes the train-
ing data, ACGAN and ALCG have poor image quality, and
RareGAN trades off between the two (its sample quality is
slightly worse than GAN, but its diversity is much better).

Quantitatively, Fig. 3 plots the fidelity-diversity tradeoff
of each baseline on our datasets. Lower fidelity scores (left)
and higher diversity scores (upwards) are better. The main
takeaway of Fig. 3 is that RareGAN has the best tradeoff in
our experiments. We discuss each method. (a) GAN. In all
cases, GANs have poor diversity due to memorization. In net-

4All samples are drawn from the model with the median FID
score over 5 runs.
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(c) MNIST.
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(d) CIFAR10.

Figure 3: RareGAN achieves the best fidelity-diversity trade-
off on all applications. Horizontal axis is fidelity (lower is
better). Vertical axis is diversity (higher is better). Fidelity/-
diversity metrics are explained in § 5.1. Bars show standard
error over 5 runs.
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Figure 4: MNIST with different labeling budgetB. RareGAN
is insensitive to B.

work applications, GAN fidelity is good due to overfitting. In
the image datasets, FID is bad, as FID scores capture overfit-
ting. (b) ALCG and BAGAN. Generally, ALCG and BAGAN
have much worse fidelity than other methods, consistent to
the qualitative results. (c) Elastic-InfoGAN. Elastic-InfoGAN
has higher diversity but much worse fidelity (Fig. 3c). Note
that the higher diversity metric here is an artifact of Elastic-
InfoGAN incorrectly generating digits that are mostly not
0 (Fig. 1), as it is not able to learn the boundary between
rare and common classes well. (d) ACGAN. ACGAN has
better diversity metrics and less overfitting than GAN, at the
cost of sample fidelity. (e) Using unlabeled data. Comparing
“RareGAN (no AL)” with “ACGAN”, we see that unlabeled
data significantly helps the image datasets, but not the net-
work datasets. This may be because of problem dimension-
ality: the dimension of the images are much larger than the
other two cases, so additional data gives a more prominent
benefit. (f) Active learning and weighted loss. Comparing
RareGAN (3.0 and 1.0) with RareGAN (no AL), we see
that weighted loss benefits the network packet datasets, but
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Figure 5: MNIST with varying rare class fraction. RareGAN
has the best tradeoff.

not the image datasets. This could be due to the complexity
of the rare class boundary, which is nonsmooth in network
applications (Moon et al. 2021).

Due to space limitations, the following parametric studies
show plots for a single dataset; we defer the results on the
other datasets to the appendices, where we see similar trends.
Robustness to labeling budget B. We decrease B to show
how algorithms react to small budgets. The results on MNIST
are in Fig. 4. All three RareGAN versions are insensitive to
budget. For the baselines, the sample qualities of ACGAN,
ALCG, and BAGAN degrade significantly, as evidenced by
the bad FIDs for small budgets. Elastic-InfoGAN has higher
diversity again due to the incorrect generated digits. GANs
always have the worst diversity, no matter the budget. Results
on other datasets are in App. D (Lin et al. 2022); RareGAN
generally has the best robustness across budgets.
Robustness to rare class fraction α. In Fig. 5, we vary α to
measure the effect of class imbalance. All algorithms exhibit
worse sample quality when the rare class fraction is decreased.
However, for all α, RareGAN has a better fidelity-diversity
tradeoff than ACGAN, ALCG, and BAGAN (achieving much
better fidelity and similar diversity). Elastic-InfoGAN still
has worse fidelity than RareGAN due to wrong generated
digits. GANs always have the worst diversity. Results on the
other datasets are in App. D (Lin et al. 2022), where we see
that RareGAN generally has the best robustness to α.
Variance across trials. The standard error bars in Fig. 3
show that ACGAN, ALCG, and BAGAN have high variance
across trials, and RareGAN with weighted loss has lower
variance. This is because the weighted loss penalizes errors
in the rare class, thus providing better stability.

The following ablation studies give additional insights into
each tunable component of RareGAN.
Influence of the number of stages S (§ 4.2) and the loss
weight w (§ 4.3). We have seen that active learning and
weighted loss do not influence the image dataset results much
(Figs. 3c, 3d, 4 and 5). Therefore, we focus on DNS in Fig.
14 (App. E (Lin et al. 2022)). As we increase the weight from
w = 1 to 5, both metrics improve, saturating at w ≥ 3. At
the default weight w = 3.0, choosing S = 2 or S = 4 makes
little difference. Comparing Fig. 14 with Fig. 3a RareGAN
improves upon ACGAN and ALCG for almost all S and w.
Ablation study on RareGAN components. RareGAN has
three parts: (1) using unlabeled samples (§ 4.1), (2) active

learning (§ 4.2), and (3) weighted loss (§ 4.3). Active learning
only makes sense with unlabeled samples, so there are 6 pos-
sible combinations. Fig. 15 (App. F (Lin et al. 2022)) shows
each variant on DNS. Including all components, RareGAN
yields the best diversity-fidelity tradeoff and low variance.
Comparison to domain-specific techniques. We compare
to AmpMAP, the state-of-the-art work on (DNS) amplifica-
tion attacks in the security community (Moon et al. 2021),
in Table 1. AmpMAP finds high amplification packets by
drawing random packets and requesting their amplification
factors, and then doing random field perturbation on high am-
plification packets. AmpMAP uses amplification threshold
10, and the same packet space as ours. Note that AmpMAP is
specifically designed for amplification attacks, not applicable
for other applications we did. Even in that case, our proposed
RareGAN still achieves much better fidelity and diversity
with a fraction of the budget.

6 Conclusions

We propose RareGAN for generating samples from a rare
class subject to a limited labeling budget. We show that
RareGAN has good, stable diversity and fidelity in experi-
ments covering different loss functions (e.g., Jensen-Shannon
divergence (Goodfellow et al. 2014), Wasserstein distance
(Arjovsky, Chintala, and Bottou 2017; Gulrajani et al. 2017)),
architectures (e.g., CNN, MLP), data types (e.g., network
packets, images), budgets, and rare class fractions.
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