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Abstract
Graph-based multi-view clustering (G-MVC) constructs a
graphical representation of each view and then fuses them to
a unified graph for clustering. Though demonstrating promis-
ing clustering performance in various applications, we ob-
serve that their formulations are usually non-convex, leading
to a local optimum. In this paper, we propose a novel MVC
algorithm termed robust graph-based multi-view clustering
(RG-MVC) to address this issue. In particular, we define a
min-max formulation for robust learning and then rewrite it
as a convex and differentiable objective function whose con-
vexity and differentiability are carefully proved. Thus, we can
efficiently solve the resultant problem using a reduced gradi-
ent descent algorithm, and the corresponding solution is guar-
anteed to be globally optimal. As a consequence, although
our algorithm is free of hyper-parameters, it has shown good
robustness against noisy views. Extensive experiments on
benchmark datasets verify the superiority of the proposed
method against the compared state-of-the-art algorithms. Our
codes and appendix are available at https://github.com/wx-
liang/RG-MVC.

Introduction
Multi-view clustering (Yang and Wang 2018), which aims
to fuse multiple views and learn a consensus representation
for grouping unlabeled datasets into clusters, is an important
research topic in the field of clustering. According to the in-
formation fusion strategy that is adopted, the existing algo-
rithms can be roughly divided into five categories, i.e. co-
training-based algorithms (Kumar, Rai, and Daume 2011),
kernel-based algorithms (Zhao, Kwok, and Zhang 2009;
Wang et al. 2021), subspace clustering-based algorithms
(Gao et al. 2015; Zhou et al. 2020b,a), multi-task multi-view
clustering (Zhang et al. 2016) and multi-view graph learning
clustering (Nie, Li, and Li 2016). Among these methods,
the graph learning-based methods have achieved consider-
able attention of researchers due to their superior capability
of capturing the intrinsic cluster structure within data. The
method that we studied also belongs to this category.

In recent years, numerous graph-based multi-view clus-
tering algorithms are proposed to achieve high-quality parti-
tion with different fusion mechanism. (Nie, Li, and Li 2016)
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first constructs the base Laplacian matrices from different
graphs, then combines them into an optimal Laplacian ma-
trix for clustering, in which the combination coefficients are
updated by the consensus clustering indicator matrix and ba-
sic Laplacian matrices. (Nie, Li, and Li 2017) learned a uni-
fied graph by minimizing the reconstruction error between
the optimal graph and the weighted basic graph combina-
tion. (Zhan et al. 2019) merges the information from differ-
ent graphs by first learning the cluster indicating matrices
from individual views and then find their best linear combi-
nation to the similar matrix of a low rank Laplacian matrix.
Through a graph diffusion method, (Tang et al. 2020) obtains
a consensus graph that could effectively capture the comple-
mentary information from different views. By concatenating
different graphs to a tensor, (Wu, Lin, and Zha 2019) dra-
matically improves the clustering performance through the
tensor learning. Furthermore, (Wen et al. 2021) adjusts ten-
sor framework to handle the datasets with incomplete views.
(Huang et al. 2021) assumes that each graph can be divided
into two parts, i.e., consistent part and divergent part. They
fuse all consistent parts into a unified graph, while adopting
the divergent parts to adjust the combination coefficients. In
a recent work (Pan et al. 2021), the authors provide a novel
algorithm by introducing contrastive learning for multi-view
clustering and achieve good performance.

Although large performance enhancement has been
achieved, we observe that the existing G-MVC algorithms
usually follow a non-convex formulation. More preciously,
the objective functions with multiple variables are not jointly
convex. This property causes that most of the existing algo-
rithms in this field are solved with an iterative optimization
fashion, making them hard to guarantee the optimality of the
corresponding solution. As a consequence, the performance
of these algorithms are not fully exploited.

To solve the problem, this paper proposes a novel algo-
rithm termed robust graph-based multi-view clustering (RG-
MVC). Specifically, we first design a novel min-max op-
timization formulation to adversarially optimize the ideal
consensus graph representation matrix and the graph com-
bination coefficients in a unified framework. After that, we
reformulate the min-max formulation into a differentiable
and convex formulation and adopt the reduced gradient de-
scent algorithm to solve the resulting optimization problem.
Thanks to the adversarial learning mechanism and the con-
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vexity of the revised formulation, our algorithm is guar-
anteed to converge to the global optimal solution and has
shown good robustness against the graph-level noise.

The main contributions of the paper can be summarized
as follows:
• We propose a novel convex graph-based multi-view clus-

tering formulation. An efficient gradient descent-based
algorithm is proposed to solve to resulting optimization
problem.

• We give the strict proofs of the relevant properties, i.e.,
convexity and differentiability. Thus, the solution of our
algorithm is global optimal.

• We conduct extensive experiments on seven benchmark
datasets to verify the effectiveness and robustness of our
proposed robust graph-based multi-view clustering algo-
rithm.

Related Work
Graph-based Clustering
Graph-based clustering (GC) (Gan, Ma, and Wu 2007) is an
important tool in the fields of clustering algorithms. After
initializing a graph S ∈ Rn×n, GC aims to partition this
graph into k sub-graphs, where n is the sample number and
k is the cluster number. The work in (Nie et al. 2016), which
is termed Constrained Laplacian Rank (CLR), learns a rank
constrained graph from initial graph S. Specifically, CLR
learns G ∈ Rn×n by:

min
G
‖G− S‖t s.t.G ∈ C, (1)

where S denotes an initial graph, ‖ · ‖t denotes some norm,
and C = {G|G>1 = 1, Gij ≥ 0, ∀i, j ∈ [n], rank(Ls) =
n − k} denotes the constraints of G, where Ls = Ds −
(G + G>)/2, Ds ∈ Rn×n is a diagonal matrix whose i-
th element is

∑n
j=1(Gij +Gji)/2. The output G in Eq. (1)

has k connected components. Thus, clustering indicators can
be obtained without post-processing on the graph. The con-
straint in Eq. (1) becomes mainstream in graph-based clus-
tering research. However, the rank constraint also results in
the feasible solution set being not convex, and the resulting
objective function is non-convex. To make final optimiza-
tion framework convex, we will relax the rank constraint,
but retain the stochastic matrix constraint.

Graph-based Multi-view Clustering
In the multi-view setting, there are m basic graphs
{Sp}mp=1 ⊂ Rn×n. Graph-based multi-view clustering (G-
MVC) aims to fuse these basic graphs into a consensus
graph. The work in (Nie, Li, and Li 2017) learns a rank con-
strained graph as follows:

min
G

m∑
p=1

γp‖G− Sp‖2F s.t.G ∈ C (2)

where C = {G|G>1 = 1, Gij ≥ 0, ∀i, j ∈
[n], rank(Ls) = n − k} denotes the constraints of G,
and γp is the weight of the p-th view which is given by:
γp = 1/2

(
‖G− Sp‖2F

)
.

Due to the rank constraint, the objective function in Eq.
(2) is also non-convex. Thus, the relevant problem is solved
by an alternative optimization, and the optimal solution may
not be discovered. There are also some G-MVC algorithms
(Tao et al. 2017; Liang, Huang, and Wang 2019) which are
free from the rank constraint. However, almost all of these
methods fall into alternative optimization, resulting in the
exact optimal solution that cannot guarantee to be obtained.

Proposed Method
The Proposed Formulation
Given m basic graphs {Sp}mp=1 ⊂ Rn×n, we assume that
the optimal graph Sγ =

∑m
p=1 γ

2
pSp is the combination of

{Sp}mp=1 ⊂ Rn×n, where γp is the combining coefficient of
the p-th view. With fixed γ, we aim to learn a graph G by
maximizing the alignment between the optimal graph and
the combined base graphs as follows:

max
G

Tr(G>Sγ) s.t.G ∈ G (3)

In this formulation G = {G|G>1 = 1, Gij ≥ 0, Gii =
0, ∀i, j ∈ [n]}, it follows a stochastic matrix constraint.
Moreover, the diagonal values of the solution are required to
be 0. To avoid the trivial solution, we further modify Eq.(3)
by adding a regularization term as follow:

max
G∈G

f(G,γ)

f(G,γ) = Tr(G>Sγ)− ‖G‖2F
(4)

Given an ideal consensus graph G, we further find the
optimal coefficient combination by optimizing Eq. (5).

min
γ∈4

m∑
p=1

γ2pAp, (5)

where Ap = Tr(G>Sp) and 4 = {γ|γ>1 = 1, γp ≥
0, ∀p ∈ [m]}. In our setting, we minimize Eq. (5) w.r.t. the
combination weights. By this way, 1) we can keep more di-
verse information by assigning a large coefficient to a graph
with relatively small alignment value; 2) we can forbid the
consensus graph to get too close to the noisy graphs, thus
making the algorithm more robust to graph-level noise in-
formation.

Taken the above parts into consideration, we have the fol-
lowing min-max optimization formulation:

min
γ∈4

max
G∈G

f(G,γ)

s.t. f(G,γ) = Tr(G>Sγ)− ‖G‖2F
(6)

Although carefully designed, the above formulation is
hard to be optimized by the commonly adopted iterative
optimization algorithm. To this end, we further transfer the
min-max formulation into the following equivalent form:

min
γ∈4

F (γ)

s.t. F (γ) =max
G∈G

Tr(G>Sγ)− ‖G‖2F
(7)
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The new formulation has two desirable properties,
i.e.,differentiability and convexity. As a result, we solve
the optimization problem in Eq. (7) with a gradient descent
algorithm and prove the global optimality of the obtained
solution.

Theoretical Analysis
In this subsection, we provide the proofs of the differentia-
bility and convexity of F (γ).
Theorem 1 (Differentiability). F (γ) in Eq. (7) is differen-
tiable. Specifically,

∂F (γ)

∂γp
= 2γpTr(Ĝ

>Sp),

where Ĝ = argmaxG∈G Tr(G
>Sγ)− ‖G‖2F

We aim to prove Theorem 1 by Danskin’s Theorem (Dan-
skin 1966). Before proving it, we need to prove the follow-
ing three lemmas about the properties of the unified graph
G, i.e., the uniqueness, the compactness of the feasible so-
lution set and the continuity.
Lemma 1 (Uniqueness). With fixed γ, the solution of

max
G∈G

Tr(G>Sγ)− ‖G‖2F (8)

is unique.

Proof. For the ease of understanding, we first provide the
solution of Eq. (8) and prove its uniqueness, the detailed
deduction can be found in the next algorithm optimization
subsection. Denote G = [g1, ...,gn], where gi is the i-th
column of G, gi has a closed-form solution as follows:

ĝij =

{
max(

sij
2 + η, 0) if j 6= i,

0 if j = i,
(9)

where η is any real number that makes ĝi satisfy the con-
straint G. Lemma 1 would hold if we can prove that the η in
Eq. (9) is unique. We use reduction to absurdity to acquire
the conclusion.

Assume that there are two real numbers η1 6= η2 which
can make g>i 1 = 1 hold. Without loss of generality, we as-
sume that η1 > η2. Denote that s′1, ..., s

′
n is the permutation

of s1j , ..., snj in ascending order. There exists two integers

p, q such that
s′p
2 + η1 > 0,

s′p+1

2 + η1 < 0,
s′q
2 + η1 > 0, and

s′q+1

2 + η1 < 0 hold, simultaneously. Because η1 > η2, we
have s′p > s′q , i.e., p ≥ q.

When p = q,
p∑
i=1

(
s′i
2
+ η1) =

q∑
i=1

(
s′i
2
+ η2) = 1.

We have η1 = η2, and it is in contradiction with the assump-
tion.

When p > q,

1 =

p∑
i=1

(
s′i
2
+ η1) >

q∑
i=1

s′i
2
+ pη1

>

q∑
i=1

s′i
2
+ qη2 =

q∑
i=1

(
s′i
2
+ η2) = 1.

This is also in contradiction. As a consequence, there does
not exist two different ηs which meet the constraint in Eq.
(9). This proves Lemma 1.

Lemma 2 (Compactness). G is compact.

Proof. Denote function p : Rn×n → Rn as

p(C) = C>1− 1.

Because p is continuous and ∀G ∈ G, p(G) = 0, we can
obtain that G is closed. Moreover, G is bounded. This proves
the result.

Lemma 3 (Continuity). Define the function (w.r.t γ) G :
Rn → Rn×n as

G(γ) = argmax
G∈G

f(G,γ),

where f(G,γ) = Tr(G>Sγ) − ‖G‖2F. Then, G(γ) is con-
tinuous.

The proof of Lemma 3 is omitted in the main text due
to space limited. Please refer to appendix for the proof. We
give the proof of Theorem 1 as follows.

Proof. According to Lemma 1, Lemma 2 and Lemma 3, it
can be checked that all the conditions of Danskin’s Theorem
(Danskin 1966) hold. Thus, F (γ) is differentiable.

Theorem 2 (Convexity). F (γ) is a convex function.
We give the proof of Theorem 2 in appendix due to the

space limited.
Remark. By Theorem 1, we know that F (γ) is differen-
tiable. Thus, we can optimize F (γ) by gradient descent
algorithm, and the objective function will convergence to
global minimum by Theorem 2.

The Optimization Algorithm
We first introduce how to optimize G with fixed γ in func-
tion F (γ). Denote G = [g1, ...,gn], where gi is the i-th
column of G. It is easy to verify that {gi}ni=1 are pairwise
independent. Thus, G can be optimized column-by-column
as follows:

min
gi

g>i si − g>i gi

s.t.g>i 1 = 1, gii = 0, gij ≥ 0, (∀j ∈ [n]).
(10)

where si is the i-th column of Sγ . By following (Zhan et al.
2019), the optimal solution ĝi of Eq. (10) is

ĝij =

{
max(

sij
2 + η, 0) if j 6= i,

0 if j = i,
(11)

where η is any real number that makes ĝi satisfy the con-
straint G and it is easy to obtain by a search algorithm.

Then, we will describe how to optimize F (γ). By fol-
lowing (Rakotomamonjy et al. 2008), we adopt a reduced
gradient descent algorithm to optimize Eq. (7).

By Theorem 1, we can calculate the gradient of F (γ). The
main difficulty is how to update γ with this gradient while
keeping the equality and non-negativity constraints. Denote
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∇F (γ) as the reduced gradient of F (γ) and u is the index
of γ’s largest component. The p-th (p ∈ [m]) element of
∇F (γ) is

[∇F (γ)]p =
∂F (γ)

∂γp
− ∂F (γ)

∂γu
∀p 6= u

and

[∇F (γ)]u =
m∑

p=1,p 6=u

(
∂F (γ)

∂γu
− ∂F (γ)

∂γp

)
Thus, updating by this gradient, the constraint γ>1 = 1

can be satisfied. To meet the positive constraints, we set the
descent direction as

dp =


0 if γp = 0& [∇F (γ)]p > 0
− [∇F (γ)]p , if γp > 0& p 6= u
− [∇F (γ)]u , if p = u

(12)
Denote d = [d1, ..., dm] and α is the learning step, we can

update γ as γ = γ + αd. The optimal α can be decided by
Armijo’s rule.

Obtain the Final Clustering Results
Through the optimization of Eq. (7), we obtain a graph that
fuses the information of all views. In this subsection, we will
introduce how to obtain the final clustering results. The ob-
tained graph G may not be a symmetric matrix. Thus we
perform the standard spectral clustering on G+G>

2 for the
final clustering results.

The complete procedure of the proposed RG-MVC is
summarized in Algorithm 1.

Algorithm 1: The proposed RG-MVC

Input: Pre-defined graph matrices {Sp}mp=1, cluster num-
ber k

1: initialize γ(1) = 1/m, t = 1;
2: while not converge do
3: compute Ĝ by solving Eq. (7).
4: compute ∂F (γ)

∂γp
(p ∈ [m]) and the descent direction

d(t) according to Eq. (6).
5: γ(t+1) ← γ(t) + αd(t).
6: t← t+ 1.
7: end while
8: Obtain clustering results by standard spectral clustering

on G+G>

2 .
Output: Clustering results.

Computational Complexity and Convergence
Computational complexity. As shown in Algorithm 1, dur-
ing each iteration, it has three steps: computing Ĝ, comput-
ing the corresponding reduced gradient and searching the
optimal step size. Obtaining Ĝ needs to solve n optimiza-
tion problems on the n-dimensional simplex space. In total,
these three steps cost O(n2 + mn2 + ml) time, where l is

Datasets Samples Views Clusters
Flo17 1360 7 17

Flo102 8189 4 102
DIGIT 2000 3 10
Mfeat 2000 12 10

Cal102 6773 3 20
YALE 165 5 15
PFold 694 12 27

Table 1: Benchmark datasets

the max number of steps to obtain the optimal α. At last,
the time consumption of the standard spectral clustering is
O(n3).

Convergence. By following Theorem 2, we can get that
F (γ) is convex. Thus, the objective function will converge
to the global minimum by the reduced gradient descent al-
gorithm.

Experiments
In this section, we conduct experiments to verify the effec-
tiveness of the proposed RG-MVC. Specifically, the cluster-
ing performance, algorithm convergence and the robustness
against the graph-level noise is tested to conduct the valida-
tion.

Experimental Settings
Seven benchmark datasets are adopted to demonstrate the
effectiveness of the proposed method, including Flo171,
Flo1022, DIGIT3, Mfeat4, Cal1025, PFold6 and YALE7.
All graph matrices of these datasets are pre-computed and
widely used in graph-based MVC and multiple kernel clus-
tering. The detailed information is listed in Table 1. As seen,
the numbers of samples, views and clusters vary over a large
range. As a result, we can evaluate the performance of dif-
ferent algorithms comprehensively. For all experiments, we
set the number of clusters to the true class number of the
corresponding dataset. Three widely used metrics, i.e., ac-
curacy (ACC), normalized mutual information (NMI) and
purity, are adopted to verify the clustering performance. To
get rid of the adverse effect of the randomness of k-means
clustering evaluation, we repeat this process for 50 times and
record their average values as final clustering results. All the
experiments are conducted on a desktop computer with In-
tel(R) Core(TM)-i7-7820X CPU and 64G RAM.

Comparison with State-of-the-art Algorithms
To evaluate the clustering performance of the proposed
method, RG-MVC is further compared with following state-
of-the-art multi-view clustering algorithms.

1www.robots.ox.ac.uk/∼vgg/data/flowers/17/
2www.robots.ox.ac.uk/∼vgg/data/flowers/102/
3http://ss.sysu.edu.cn/py/
4https://archive.ics.uci.edu/ml/datasets/Multiple+Features
5www.vision.caltech.edu/Image Datasets/Caltech101/
6mkl.ucsd.edu/dataset/protein-fold-prediction
7http://vision.ucsd.edu/content/yale-face-database
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datasets Avg-SC SB-SC MKKM MKKM-MR RMKKM MLAN AMGL MCGC SMKKM RG-MVC
ACC(%)

Flo17 56.25 42.57 42.35 58.24 49.19 51.03 56.32 58.31 61.03 67.86
Flo102 34.63 36.02 21.87 40.02 29.39 23.53 33.35 39.05 41.96 44.02
DIGIT 90.30 72.45 47.00 90.75 40.75 96.20 92.85 92.75 90.60 96.45
Mfeat 93.55 85.85 54.80 94.60 63.45 97.35 84.35 95.60 94.15 96.95

Cal102 34.51 33.01 33.01 36.86 30.65 25.88 37.65 28.76 34.77 38.03
YALE 60.61 56.97 55.15 60.61 57.58 58.18 60.00 63.03 60.61 63.63
PFold 31.84 36.02 26.80 35.45 33.86 29.39 36.89 36.17 34.87 39.76

Average 57.38 51.84 40.14 59.50 43.55 54.51 57.34 59.10 59.71 63.81
NMI(%)

Flo17 55.73 45.39 44.06 56.80 50.93 56.39 56.98 59.60 58.93 67.52
Flo102 52.03 48.49 42.23 56.97 48.84 34.78 51.63 50.72 58.26 60.69
DIGIT 83.56 64.73 49.02 83.75 47.65 91.88 86.65 85.65 83.57 92.20
Mfeat 87.73 75.62 52.05 89.12 66.02 94.23 81.58 90.71 88.70 93.42

Cal102 60.10 58.99 58.94 60.99 54.29 42.43 61.79 62.50 60.22 62.65
YALE 60.43 58.42 55.84 60.09 59.95 58.61 61.20 63.46 60.28 62.23
PFold 41.62 41.61 38.51 44.26 41.35 28.33 44.19 36.72 44.45 48.88

Average 63.03 56.18 48.66 64.57 52.72 58.09 63.43 64.19 64.92 69.66
Purity(%)

Flo17 57.79 45.44 43.53 59.41 50.96 55.44 58.16 61.91 61.62 70.07
Flo102 39.88 40.78 27.52 46.17 33.56 30.61 39.71 46.84 48.66 50.87
DIGIT 90.30 72.45 50.20 90.75 45.95 96.20 92.85 92.75 90.60 96.45
Mfeat 93.55 85.85 56.40 94.60 67.20 97.35 84.35 95.60 94.15 96.95

Cal102 36.67 35.42 35.62 39.35 32.35 28.17 39.28 40.11 37.19 40.58
YALE 60.61 58.79 56.36 60.61 58.18 58.79 60.61 63.64 60.61 64.24
PFold 38.62 40.78 35.73 41.64 38.62 33.00 42.07 39.48 43.23 48.12

Average 59.63 54.22 43.62 61.79 46.69 57.08 59.58 62.90 62.29 66.75

Table 2: Empirical evaluation and comparison of RG-MVC with nine baseline methods on 7 benchmark datasets in terms of
clustering accuracy (ACC), normulaized mutual information (NMI) and Purity.

• Average spectral clustering (Avg-SC): It takes the aver-
age graph as the input for the standard spectral clustering
algorithm.

• Single best spectral clustering (SB-SC): Standard spec-
tral clustering algorithm is performed on each single
graph and the best result is reported.

• Multiple kernel k-means (MKKM) (Huang, Chuang,
and Chen 2012): The algorithm performs kernel k-
means and combination coefficients optimization simul-
taneously within a unified framework.

• Multiple kernel k-means with matrix-induced regu-
larization (MKKM-MR) (Liu et al. 2016): This algo-
rithm introduces a matrix-induced regularization to re-
duce the redundancy and enhance the diversity of the
combined kernels.

• Robust multiple kernel k-means (RMKKM) (Du et al.
2015): RMKKM learns a robust low-rank kernel for clus-
tering by filtering the noise structures in multiple kernels.

• Multi-view learning with adaptive neighbors (MLAN)
(Nie, Cai, and Li 2017): MLAN constructs a consensus
graph by an adaptive neighbor approach, while perform-
ing clustering by a unified framework.

• Auto-weighted multiple graph learning (AMGL) (Nie,
Li, and Li 2016): AMGL learns the combination coeffi-
cients of each graph automatically via the reformulation
of standard spectral clustering.

• Multiview consensus graph clustering (MCGC) (Zhan
et al. 2019): By learning the graph and the embed-
ding matrices simultaneously, MCGC obtains a consen-
sus graph with desirable clustering structure.

• Simple multiple Kernel k-means (SMKKM) (Liu,
Zhu, and Liu 2020): SMKKM re-formulates MKKM as a
min-max problem in the kernel coefficients and the con-
sensus clustering indicator matrix.

To achieve the best performance of the compared algo-
rithms, to those algorithms with hyper-parameters, we per-
form grid search on the parameters suggested by the authors
and report their best results.

Experimental Results
Table 2 reports the total clustering results on seven bench-
mark datasets. The best value is marked in bold. From Table
2, we observe that:
• The proposed algorithm is superior to all comparison

methods. Including all benchmark datasets, RG-MVC
averagely exceeds the second best algorithms by 4.10%,
4.74% and 3.85% in terms of ACC, NMI and purity.

• As a strong baseline, SMKKM (Liu, Zhu, and Liu 2020)
achieves high performance in comparison with most
MVC algorithms as shown in Table 2. However, the
proposed RG-MVC consistently outperforms SMKKM
by 6.83%, 2.06%, 5.85%, 2.80%, 3.26%, 3.03% and
4.89% in terms of ACC on the benchmark datasets.
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Figure 1: ACC, NMI and purity comparison with variation of sample numbers on Flo102. These datasets are constructed by the
first 5,10,...,40 samples of each class from Flo102.
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Figure 2: Illustration of performance variation and algorithm convergence. The upper row illustrates the performance variation
on Flo17, Flo102 and PFold as the iteration increases. The bottom row illustrates the corresponding objective value.
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Figure 3: ACC, NMI and purity comparison on Flo17 with different noise level. The noise level ranges in {0.05,0.1,...,1}.
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Figure 4: ACC, NMI and purity comparison on PFold with different noise level. The noise level ranges in {0.05,0.1,...,1}.

• As a strong baseline of graph-based MVC, MCGC also
achieves high clustering performance. However, MCGC
needs to select a hyper-parameter and this will limit its
real-world application due to the lack of ground truth
in clustering tasks. By contrast, the proposed RG-MVC
is parameter-free and outperforms MCGC by 9.55%,
4.97%, 3.70%, 1.35%, 9.27%, 0.60% and 3.59% in
terms of ACC on the benchmark datasets.

Moreover, eight sub-datasets constructed by the first
5, 10, ..., 40 samples of each class from Flo102, are also used
in our experiments. To visualize the effectiveness of RG-
MVC, we illustrate the clustering results in Figure 1. The red
curve represents the proposed RG-MVC. As seen, the pro-
posed RG-MVC consistently achieves the best performance
at all sample numbers.

Algorithm Convergence
To evaluate the learning effectiveness, we record the vari-
ation objective value and corresponding clustering perfor-
mance along with iterations. Due to space limited, we only
show the results on three datasets, i.e., Flo17, Flo102 and
PFold, in Figure 2. It can be observed that the objective
function monotonically decreases and reaches convergence
within 10 iterations. In addition, the clustering performance
increases in the several forward iterations, then slightly fluc-
tuates and keeps steady until the objective value converges.
In general, Figure 2 clearly demonstrates the convergence
of the optimization algorithm and the effectiveness of the
learned consensus graph.

Robustness to Noise
We conduct experiments on Flo17 and PFold with noises to
verify the robustness of the proposed algorithm. Specifically,
we add different levels of Gaussian noise to partial views. In
even-valued views, we add standard Gaussian noises (i.e.,
expectation µ = 0 and standard deviation δ = 1) with a
multiplying factor α to 80 % items. The rest views keep un-
changed. We document the variations of clustering results
when α ranges in {0.05, 0.1, ..., 1}. To reduce the influences
of randomness, we run all experiments 30 times and adopt
the average values. Figure 3 and 4 illustrate the results on
Flo17 and PFold, respectively, and the red curve denotes the
proposed algorithm. It can be observed that the proposed

method outperforms all the comparison methods. As illus-
trated in Figure 3, the performance of MKKM, RMKKM,
and MCGC rapidly decreases with the increase of noises,
while the others vary slightly. In terms of ACC, NMI, and
purity, the proposed RG-MVC averagely exceeds SMKKM,
which is the second-best on Flo17 by 6.14%, 4.11% and
5.82% with different noise level. In Figure 4, the curves
of AMGL, MKKM and RMKKM fluctuate dramatically. At
the same time, we can see that MKKM-MR, AMGL and
SMKKM have similar performances, but they are all infe-
rior to our algorithm. Moreover, the weight variation of RG-
MVC on Flo17 without noise, α = 0.5 and α = 1. As
observed in Figure 5, the weights of noisy even-numbered
views reduce, while the weights of noise-free odd-numbered
views increase. Thus, the robustness w.r.t. views of RG-
MVC can be guaranteed.
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Figure 5: Weight variation of RG-MVC on Flo17 with dif-
ferent noise level.

Conclusion
In this paper, we propose an effective, robust and parameter-
free method, which is termed graph-based multi-view clus-
tering (RG-MVC). In particular, we define a min-max for-
mulation for robust learning and then rewrite it as a con-
vex and differentiable objective function whose convexity
and differentiability are carefully proved. A reduced gradi-
ent descent algorithm is adopted to solve the relevant min-
imization question. Finally, we conduct extensive experi-
ments on seven benchmark datasets to verify the effective-
ness and robustness of the proposed RG-MVC. In the future,
we plan to reduce the computational complexity of the pro-
posed method for the application on large-scale datasets.
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