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Abstract

Invariant risk minimization (IRM) has recently emerged as
a promising alternative for domain generalization. Never-
theless, the loss function is difficult to optimize for nonlin-
ear classifiers and the original optimization objective could
fail when pseudo-invariant features and geometric skews ex-
ist. Inspired by IRM, in this paper we propose a novel for-
mulation for domain generalization, dubbed invariant infor-
mation bottleneck (IIB). IIB aims at minimizing invariant
risks for nonlinear classifiers and simultaneously mitigating
the impact of pseudo-invariant features and geometric skews.
Specifically, we first present a novel formulation for invariant
causal prediction via mutual information. Then we adopt the
variational formulation of the mutual information to develop
a tractable loss function for nonlinear classifiers. To overcome
the failure modes of IRM, we propose to minimize the mu-
tual information between the inputs and the corresponding
representations. IIB significantly outperforms IRM on syn-
thetic datasets, where the pseudo-invariant features and ge-
ometric skews occur, showing the effectiveness of proposed
formulation in overcoming failure modes of IRM. Further-
more, experiments on DomainBed show that IIB outperforms
13 baselines by 0.9% on average across 7 real datasets.

Introduction
In most statistical machine learning algorithms, a funda-
mental assumption is that the training data and test data
are independently and identically distributed (i.i.d.). How-
ever, the data we have in many real-world applications are
not i.i.d. Distributional shifts are ubiquitous. Under such
circumstances, classic statistical learning paradigms with
strong generalization guarantees, e.g., Empirical Risk Mini-
mization (ERM) (Vapnik 1999), often fail to generalize due
to the violation of the i.i.d. assumption. It has been widely
observed that the performance of a model often deteriorates
dramatically when it is faced with samples from a differ-
ent domain, even under a mild distributional shift (Arjovsky
et al. 2019). On the other hand, collecting training samples
from all possible future scenarios is essentially infeasible.
Hence, understanding and improving the generalization of
models on out-of-distribution data is crucial.
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Domain generalization (DG), which aims to learn a model
from several different domains so that it generalizes to un-
seen related domains, has recently received much atten-
tion. From the perspective of representation learning, there
are several paradigms towards this goal, including invariant
representation learning (Muandet, Balduzzi, and Schölkopf
2013; Zhao et al. 2018; Tachet des Combes et al. 2020), in-
variant causality prediction (Arjovsky et al. 2019; Krueger
et al. 2020b), meta-learning (Balaji, Sankaranarayanan, and
Chellappa 2018; Du et al. 2020), and feature disentangle-
ment (Du et al. 2020; Peng et al. 2019). Of particular in-
terest is the invariant learning methods. Some early works,
e.g., DANN (Ganin et al. 2017), CDANN (Long et al. 2018),
aim at finding representations that are invariant across do-
mains. Nevertheless, learning invariant representations fails
for domain adaptation or generalization when the marginal
label distributions change between source and target do-
mains (Zhao et al. 2019a). Recently, Invariant Causal Pre-
diction (ICP), and its follow-up Invariant Risk Minimiza-
tion (IRM), have attracted much interest. ICP assumes that
the data are generated according to a structural causal model
(SCM) (Pearl 2010). The causal mechanism for the data gen-
erating process is the same across domains, while the in-
terventions can vary among different domains. Under such
data generative assumptions, IRM (Arjovsky et al. 2019) at-
tempts to learn an optimal classifier that is invariant across
domains. ICP then argues that under the SCM assumption,
such a classifier can generalize across domains.

Despite the intuitive motivations, IRM falls short in sev-
eral aspects. First, the proposed loss function in (Arjovsky
et al. 2019) is difficult to optimize when the classifier is
nonlinear. Furthermore, it has been shown that IRM fails
when the pseudo-invariant features (Rosenfeld, Ravikumar,
and Risteski 2020) or geometric skews exist (Nagarajan, An-
dreassen, and Neyshabur 2021). Under such circumstances,
the classifier will utilize both the causal and spurious fea-
tures, leading to a violation of invariant causal prediction. To
address the first issue, we propose an information-theoretical
formulation of invariant causal prediction and adopt a vari-
ational approximation to ease the optimization procedure.
To tackle the second issue, we emphasize that the use of
pseudo-invariant features or geometric skews will inevitably
increase the mutual information between the inputs and the

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

7399



representations. Thus, to mitigate the impact of pseudo-
invariant features and geometric skews, we propose to con-
strain this mutual information, which naturally leads to a
formulation of information bottleneck. Our empirical results
show that the proposed approach can effectively improve the
accuracy when the pseudo-invariant features and geometric
skews exist.

Contributions: We propose a novel information-theoretic
formulation for domain generalization, termed as invariant
information bottleneck (IIB). IIB aims at minimizing invari-
ant risks while at the same time mitigating the impact of
pseudo-invariant features and geometric skews. Specifically,
our contributions can be summarized as follows:

(1) We propose a novel formulation for invariant causal
prediction via mutual information. We further adopt varia-
tional approximation to develop tractable loss functions for
nonlinear classifiers.

(2) To mitigate the impact of pseudo-invariant features
and geometric skews, inspired by the information bottleneck
principle, we propose to constrain the mutual information
between the inputs and the representations. The effective-
ness is verified by the synthetic experiments of failure modes
(Ahuja et al. 2021; Nagarajan, Andreassen, and Neyshabur
2021), where IIB significantly improves the performance of
IRM.

(3) Empirically, we analyze IIB’s performance with exten-
sive experiments on both synthetic and large-scale bench-
marks. We show that IIB is able to eliminate the spuri-
ous information better than other existing DG methods, and
achieves consistent improvements on 7 datasets by 0.7% on
DomainBed (Gulrajani and Lopez-Paz 2020).

Related Work
Domain Generalization
Existing methods of DG can be divided into three categories:
(1) Data Manipulation: Machine learning models typically
rely on diverse training data to enhance the generalization
ability. Data manipulation/augmentation methods (Nazari
and Kovashka 2020; Riemer et al. 2019) aim to increase
the diversity of existing training data with operations includ-
ing flipping, rotation, etc. Domain randomization (Borrego
et al. 2018; Yue et al. 2019; Zakharov, Kehl, and Ilic 2019)
provides more complex operations for image data, such as
altering the location/texture of objects, replicating and re-
sizing objects. In addition, there are some methods (Riemer
et al. 2019; Qiao, Zhao, and Peng 2020; Liu et al. 2018;
Truong et al. 2019; Zhao et al. 2019b) that exploits gener-
ated data samples to enhance the model generalization abil-
ity. (2) Ensemble Learning methods (Mancini et al. 2018;
Segù, Tonioni, and Tombari 2020) assume that any sample
in the test domain can be regarded as an integrated sam-
ple of the multiple-source domains, so the overall prediction
should be inferred by a combination of the models trained
on different domains. (3) Meta-Learning aims at learning
a general model from multiple domains. In terms of domain
generalization, MLDG (Li et al. 2018a) divides data from
the multiple domains into meta-train and meta-test to simu-
late the domain shift situation to learn the general represen-

tations. In particular, Meta-Reg (Balaji, Sankaranarayanan,
and Chellappa 2018) learns a meta-regularizer for the clas-
sifier, and Meta-VIB (Du et al. 2020) learns to generate the
weights in the meta-learning paradigm by regularizing the
KL divergence between marginal distributions of represen-
tations of the same category but from different domains.

Mutual Information-based Domain Adaptation
Domain Adaptation is an important topic in the direction of
transfer learning (Long et al. 2015; Ganin et al. 2016; Tzeng
et al. 2017; Long et al. 2018; Zhao et al. 2021, 2020c,b;
Li et al. 2020a). The mutual information-based approaches
have been widely applied in this area. The key idea is to
learn a domain-invariant representation that are informative
to the label, which can be formulated as (Zhao et al. 2020a;
Li et al. 2020b)

max
Z

I(Z,Y ) − λI(Z,A) (1)

where A is the identity of domains, Z denotes the repre-
sentation, and Y denotes the labels. Commonly adopted im-
plementations of (1) are DANN (Ganin et al. 2017) and
CDANN (Long et al. 2018). These implementations are also
often adopted in domain generalization as baselines (Gulra-
jani and Lopez-Paz 2020).

Invariant Risk Minimization
The above approaches enforces the invariance of the
learned representations. On the other hand, Invariant Risk
Minimization (IRM) suggests the invariance of feature-
conditioned label distribution. Specifically, IRM seeks for
an invariant causal prediction such that E[Y e∣Φ(Xe)] =

E[Y e
′

∣Φ(Xe′)], for all e, e′ ∈ E . The objective of IRM is
given by

min
w,Φ

∑
e∈Etrain

Re(w ○Φ),

s.t. w ∈ argmin
ŵ

Re(ŵ ○Φ),

where Re is the cross-entropy loss for environment e, Φ is
the feature extractor and w is a linear classifier. Note that
the above objective is a bilevel optimization and difficult to
optimize. Thus, in (Arjovsky et al. 2019), first-order approx-
imation is adopted and the loss function is given by

min
Φ

∑
e∈Etrain

Re(Φ) + λ ⋅ ∥∇w∣w=1.0R
e
(w ○Φ)∥, (2)

where w ∈ R is a dummy classifier.

Preliminaries
Failure modes of learning invariant representations are well-
known in the literature (Zhao et al. 2019a, 2020a). Re-
cently, some works have focused on characterizing the fail-
ure modes of IRM as well (Rosenfeld, Ravikumar, and Ris-
teski 2020; Nagarajan, Andreassen, and Neyshabur 2021).
As a motivation, we first briefly summarize these negative
findings about IRM below.
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Figure 1: Illustrations of features in OOD generalization. For all the bears in training domains, the predictions P (Y ∣ Z)
conditioning on the invariant features (e.g. outline) will be correct and invariant, while the predictions conditioning on pseudo-
invariant features (possibly fur color in this example) are misleading and may affect the generalization ability on test domains.
Geometric skews (Nagarajan, Andreassen, and Neyshabur 2021) are the spurious features used as a short-cut for max-margin
classifiers. In this example, ERM will use all 5 features as they are informative to labels. IRM, with the invariance constraint,
will utilize the first 3 features. IIB, by selecting the minimal sufficient features, only includes the shape or outline.

Pseudo-invariant Features Even in the linear setting, it
has been shown that the original IRM formulation (2) cannot
truly recover the features that induce invariant causal predic-
tions (Rosenfeld, Ravikumar, and Risteski 2020). Roughly
speaking, in the linear case, one additional environment
could be used to identify one spurious feature, and if
the number of environments is smaller than the number
of spurious features, some spurious features will leak to
the algorithm-recovered causal features, which we call the
pseudo-invariant features. Specifically, we denote the causal
features and spurious features as zc and zs respectively.
According to the analysis in (Rosenfeld, Ravikumar, and
Risteski 2020), there exists a transformation Φ such that
[zc,Φzs] are invariant features across the training dataset.
Furthermore, the classifier will utilize [zc,Φzs] instead of
zc to achieve a lower training error. The OOD generalization
may fail due to the inclusion of zs, which can be arbitrary in
the test dataset. An illustration of pseudo-invarinat features
is shown in Fig. 1.

Geometric Skews The OOD generalization can fail even
if we assume the invariant features in the training dataset
are also invariant in the test dataset due to the geometric
skews (Nagarajan, Andreassen, and Neyshabur 2021). It is
observed that as the number of training points increase, the
`2-norm of the max-margin classifier grows. Specifically, we
consider the case where an invariant feature zinv is concate-
nated with a spurious feature zsp such that P[zsp⋅y > 0] > 0.5.
The dataset consists of a majority group Smaj where zsp ⋅y > 0
(e.g., cows/camels with green/yellow backgrounds) and a
minority group Smin where zsp ⋅ y < 0 (e.g., cows/camels
with yellow/green backgrounds). Let wall denote the least-
norm classifier using invariant features to classify all sam-
ples and wmin denote the least-norm classifier using invari-
ant features to classify the samples in Smin, and we have
∥wmin∥ ≪ ∥wall∥. Hence, the algorithm can use the spu-
rious feature as a short-cut to classify Smaj and Smin, and
then adopt wmin to classify the remaining Smin. This clas-

sifier using spurious feature will have a smaller norm than
the invariant classifier, which leads to the failure of OOD
generalization.

Y

X

D 		𝑍!

		𝑍"

Figure 2: A structural causal model explaining that different
parts of an input X have different causal relationships with
the model output Y . Observed variables are shaded, while
others are with dotted outlines.

Our Proposed Method
In this section, we propose a novel information-theoretic ob-
jective of finding invariant causal relationship to overcome
the two existing issues in the design of IRM objective.

Invariant Causal Prediction via Mutual
Information
Like other casual related works (Chang et al. 2020; Maha-
jan, Tople, and Sharma 2020), we begin with a structural
causal model, shown in Figure 2. For simplicity, we leave
out all the unnecessary elements. In general, we can see that
an inputX can be divided into two variables, the causal fea-
ture Zc and environmental feature Za. In Figure 2, we can
readout that both features are correlated with Y , but only
Zc is regarded as a causal feature. Through the concept of d-
separation (Pearl 2010), we can readout the conditional inde-
pendence conditions that all data distributions P(D,X,Y )
should satisfy:
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1. Y /⊥⊥ D means the marginal distribution of class label Y
can change across domains.

2. Y ⊥⊥ D ∣ Zc means the class label Y is independent of
domain D conditioned on the causal feature Zc. The un-
derlying causal mechanism determines that the value of
Y comes from its unique causal parent Zc, which does
not change across domains.

3. Y /⊥⊥ D ∣ Zc, Za means that the conditional independence
will not hold true if conditioned on both the causal fea-
ture Zc and the environmental features Za since Za is a
collider between D and Y .

The conditional independence tells us that only the real
causal relation is stable and remains invariant across do-
mains. In other words, we should eliminate the spurious en-
vironmental feature Za by seeking the causal feature Zc that
is independent of D from Φ(X). Particularly, the represen-
tation Z = Φ(X) should have the following two merits: (1)
Z does not change among different domains for the same
class label Y , hence achieving the conditional invariance of
Y ⊥⊥ D ∣ Z; (2) Z should be informative of the class la-
bel Y (otherwise even a constant Φ(⋅) would meet the first
goal). The above two conditions coincide with the objective
of IRM, and also suggest the following learning objective:

max
Φ

I(Φ(X), Y ) − λI(Y,D ∣ Φ(X)), (3)

where Φ is the feature extractor.
Proposition 1. Assume I(Y,D∣Z) = 0, then we achieve
invariant causal prediction in the sense that E[Y ∣Φ(X) =
x,D] = E[Y ∣Φ(X) = x].

Proof. Note that I(Y,D∣Z) = 0 implies Y and D are in-
dependent conditioned on Φ(X). The conditional indepen-
dence indicates that P(Y ∣Φ(X) = x,D) = P(Y ∣Φ(X) = x),
thus E[Y ∣Φ(X) = x] is fixed and we can achieve invariant
causal prediction. ∎

On the Failure Modes of IRM
In this subsection, we first scrutinize the failure conditions
of IRM, i.e., pseudo-invariant features and geometric skews.
Based on our analysis, among all the features that satisfy
the invariant causal prediction constraint, we propose to use
the one with the least capacity, i.e., the one that minimizes
I(X,Z). Alternatively, among all the feasible solutions, we
are seeking the one that has the largest compression.

With pseudo-invariant features and geometric skews, the
failure of existing approaches towards IRM is due to the in-
clusion of (transformations of) spurious features. We first
give an example when the features are one-dimensional
and the classifier is linear (Nagarajan, Andreassen, and
Neyshabur 2021). Denote the invariant feature, pseudo-
invariant feature, feature causing geometric skews, spurious
feature as Zi, Zp, Zsk, and Zsp. The overall features are
Z = [Zi, Zp, Zsk, Zsp]. In the ERM model, all the features
will be adopted and OOD generalization fails. We consider
the following optimization problem

min
w
∑
e∈Etrain

Re(w ⋅Z),

s.t. ∥w∥0 ≤ 1,w ∈ argmin
ŵ

Re(ŵ ⋅Z), (4)

where ∥w∥0 ≤ 1 is the sparsity constraint, and w ∈

argminŵ Re(ŵ ⋅Z) is the invariant risk constraint of IRM.
Due to the sparsity constraint, there are only four choices.
Choosing Zsp cannot satisfy the invariant constraint while
choosing Zp or Zsk cannot minimize the empirical risk.
Thus, the only optimal solution isw = [w∗1 ,0,0,0]. Without
the sparisty constraint, the optimization problem becomes
IRM and Zi, Zp, Zsk will be used for classification. Without
invariance constraint, Zsp might be chosen as the inclusion
of spurious feature can lead to a lower empirical risk.

We then extend this intuition into the loss function de-
sign of deep neural networks in the view of mutual informa-
tion. Suppose Z1, Z2 are features extracted fromX , we have
I(X, [Z1, Z2]) ≥ I(X,Z1) as Z1 is a subset of [Z1, Z2].
Thus, in order to select the one with the least capacity, we
penalize a large I(X,Z) by adding it to the original IRM
formulation. To this end, we formulate our objective as

max
Φ

I(Φ(X), Y ) − λI(Y,D ∣ Φ(X)) − βI(X,Φ(X)).

(5)
The term I(Z,Y ) − βI(X,Z) corresponds to the informa-
tion bottleneck and I(Y,D ∣ Z) implements the IRM prin-
ciple. As a result, we refer (5) as the invariant information
bottleneck (IIB) principle.

Loss Function Design
The objective in (5) is still not a tractable loss function as
the mutual information of high dimensional vectors is hard
to estimate. Similar to VIB (Alemi et al. 2017), we leverage
variational approximation to solve this issue. Let r(z) be the
approximation to true marginal p(z), and q(y∣z) to p(y∣z).
Meanwhile let p(z∣x) be the stochastic encoder. Now the
loss function of information bottleneck can be written as

I(Z,Y ) − βI(Z,X)

≥ Epx,y,z[ log q(y ∣ z)] − βEpx,z[ log
p(z ∣ x)

r(z)
]. (6)

Optimizing (6) is still a difficult task. Then we transform it
with reparametrization operation: We use an encoder of the
form p(z∣x; g) =N (z∣gµ(x), gΣ(x)), where g outputs a K-
dimensional mean µ of z and a K ×K covariance matrix Σ.
Then by the change of variable formula we have q(z∣x)dz =
q(ε)dε, where z = g(x, ε), ε ∼ N (0,1), so we can optimize
(6) by optimizing

Li(g, fi) + βLz(g), (7)

where Li = ming,fi Ex,y[L(y, fi(g(x)))] and Lz =

ming Ex[KL[q(z∣x; g)∥r(z)]], where g(x) is the feature
extractor, fi is the classifier, and L is the cross-entropy loss.

We next proceed to deal with I(Y,D ∣ Z). Following the
rules of variational approximation (Farnia and Tse 2016), we
have

I(Y,D ∣ Z) =H(Y ∣ Z) −H(Y ∣D,Z), (8)

where H(Y ∣ Z) = − supq Epy,z[ log q(y∣z)] and H(Y ∣

D,Z) = − suphEpy,z,d
[ logh(y ∣ z, d)]. Thanks to the uni-

versal approximation ability of neural networks, (8) can be
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Figure 3: IIB optimizes a model consisting of three parts: (1) an invariant predictor fi(Z); (2) a domain-dependent predictor
fd(Z,D); (3) an encoder g(X). The three loss terms on the right hand side respectively correspond to the optimization of the
three mutual information terms.

Methods Validation Acc. (%) ↑ Test Acc.(%) ↑

ERM (Vapnik 1999) 95.38 ± 0.03 11.16 ± 0.31

IRM (Arjovsky et al. 2019) 97.59 ± 1.39 57.98 ± 0.86

IB-ERM (Ahuja et al. 2021) 97.64 ± 0.04 58.47 ± 0.86

IB-IRM (Ahuja et al. 2021) 97.51 ± 1.09 71.79 ± 0.70

IIB (λ = 0) 92.95 ± 0.50 69.52 ± 0.80

IIB (β = 0) 92.39 ± 0.50 66.93 ± 0.33

IIB 98.11 ± 0.84 74.23 ± 4.80

Table 1: Accuracy on CS-CMNIST experiment. We split
20% from train set as validation set.

written as the subtraction of two classification loss (Farnia
and Tse 2016):

I(Y,D ∣ Z) =min
fi,g

Ex,y[L(y, fi(g(x)))]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Li

−min
fd,g

Ex,y,d[L(y, fd(g(x), d))]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ld

, (9)

where fi takes feature z as the input, and fd, d = 1,⋯,D
takes both feature z and domain index d as the input. Over-
all, we can maximize our IIB objective function by optimiz-
ing its tractable lower bound:

min
g,fi

max
fd
Li(g, fi) + βLz(g) + λ (Li(g, fi) −Ld(g, fd)) .

Guided by the above objective function, as illustrated in Fig-
ure 3, IIB optimizes a model consisting of three parts: (1) an
invariant predictor fi(Z); (2) an domain-dependent predic-
tor fd(Z,D); (3) an encoder g(X). The code implementa-
tion of IIB is released at Github.1

1https://github.com/Luodian/IIB/tree/IIB

Synthetic Experiments
Experimental Setup
To validate IIB’s efficacy of mitigating the impact of pseudo-
invariant features and geometric skews, we adopt two types
of synthetic experiments. Both pseudo-invariant features and
geometric skews exist in the two experiments.

CS-CMNIST (Ahuja et al. 2021) CS-CMNIST is a ten-
way classification task. The images are all drawn from
MNIST. There are three environments, two training envi-
ronments contain each 20,000 images, one test environment
contains 20,000 images. There are ten colors associated with
ten digit class correspondingly. The probability pe denotes
that the image is colored with associated color. In two train-
ing environments, pe is set to 1 and 0.9, which means the
images with certain class are colored with associated color
with probability pe and are colored with random color with
probability 1 − pe. In test environment, pe is set to 0, which
means all images are colored at random. Overall, the color
of images in training domains can be fully predictive to la-
bel with spurious features, i.e. using the associated color, but
the information disappear at test domain. In CS-CMNIST, if
the accuracy drops more at test time, it reflects that relying
more on spurious features during training. We will give re-
sults of IIB on AC-CMNIST (in DomainBed it’s known as
CMNIST) in next section.

Geometric Skew CIFAR10 (Nagarajan, Andreassen, and
Neyshabur 2021) There are two types of tasks (as shown
in Figure 4 (a)). For the first type, we name it Cross Lines
experiment, we create ten-valued spurious feature and add
a vertical line passing through the middle of each channel,
and also a horizontal line through the first channel. For these
four lines added, we take the value of (0.5 ± 0.5B) where
B ∈ [−1,1]. Four lines, each with 2 choices, then we have a
total of 24 = 16 configurations. Among them, we choose the
first 10 and denote the 10 configurations to each class in CI-
FAR10. For i-th configuration, corresponding to i-th class,
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Figure 4: (a) The above figure represents the image examples in majority/minority group in train set in Cross Lines experiment,
while colored lines are not included in the test data. The below figure represents the image examples in train/test sets with
different spurious feature scales in Vertical Line experiment. (b) Accuracy at test domains with different spurious feature scales
B. The upward-pointing red triangle denotes different B at training domains (we set them to -4 and 0 respectively).

Methods Validation Acc. (%) ↑ Test Acc.(%) ↑

ERM (Vapnik 1999) 90.12 ± 0.12 65.60 ± 0.27

IRM (Arjovsky et al. 2019) 63.82 ± 0.25 42.68 ± 0.32

IB-ERM (Ahuja et al. 2021) 83.93 ± 0.10 69.70 ± 0.42

IB-IRM (Ahuja et al. 2021) 81.61 ± 0.69 65.82 ± 0.77

IIB (λ = 0) 79.97 ± 0.50 69.52 ± 0.80

IIB (β = 0) 78.47 ± 0.50 66.93 ± 0.33

IIB 92.86 ± 0.29 71.04 ± 0.37

Table 2: Accuracy on Cross-Lines experiment. We split 20%
from train set as validation set.

we add this line with a probability of pii = 0.5; for other
j-th class, we set pij = (1−pii)/10 = 0.05. Taking the prob-
ability means 50% data (the majority group) are correlated
with spurious features (the specific colored line correspond-
ing to each class), while other 5% data (the minority group)
are correlated with other 9 configurations at random. For the
second type, we name it Vertical Line, we add a colored line
to the last channel of CIFAR10, regardless of the label dur-
ing training, and vary its brightness during testing. In detail,
we add a line with value choose from B ∈ [−4,4]. To avoid
negative values, all pixels in last channel are added by 4,
and then added by B, and then divided by 9 to make sure the
values lie in the range of [0,1]. Such an experiment would
artificially create non-orthogonal components, where each
data-point is represented on the plane of (xinv, xinv + xenv),
rather than a more easy-to-disentangle representation under
(xinv, xenv). As discussed in (Nagarajan, Andreassen, and
Neyshabur 2021), the model would be more susceptible to
spurious features that may shift during testing.

Observation for Results on Synthetic Experiments
In CS-CMNIST, we compare IIB with several methods, in-
cluding ERM (Vapnik 1999), IRM, IB-IRM (Ahuja et al.
2021). In particular, IB-IRM (Ahuja et al. 2021) is from
a concurrent work, which proposes to combine informa-
tion bottleneck and IRM to eliminate geometric skews.

Among them (see Table 1), IIB has observable improve-
ments over two synthetic datasets compared with other algo-
rithms. Compare to IB-IRM, which is a direct combination
of IB and IRM, our approach took a different approach to op-
timize the learning objective, which led to further enhance-
ments. In the Cross Lines experiment (see Table 2), we train
the network on images with colored cross lines (each color
corresponds to a specific class in CIFAR10), and test on nor-
mal images. From the improvements of IB over IRM, we ob-
serve that the information bottleneck structure can help mit-
igate the failure of IRM in geometric skews. In the Vertical
Line experiment (see Figure 4 (b)), we train the network on
B = -4 or 0, and test on domains with different spurious fea-
ture scale B. The results show that as the offset of spurious
feature scale increases, the accuracy of training and testing
environments decreases a lot. However, IIB still keeps good
results even with large offset, indicating that it’s effective-
ness in alleviating the dependence on spurious feature. We
have similar observations that information bottleneck (IB)
could overcome the geometric skews which fails IRM.

DomainBed Experiments
To empirically corroborate the effectiveness of IIB, we con-
duct experiments on DomainBed (Gulrajani and Lopez-Paz
2020) with 7 different datasets of different sizes.

Model Selection Strategy We choose two types of model
selection strategies out of three in DomainBed. We do not
test on the test-domain validation set, since it allows access
to test domain while training. During training, the valida-
tion set is a subset of training set, we choose the model that
performs best on the overall validation set for each domain.
This strategy characterizes the in-distribution generalization
capability of the model. In leave-one-domain-out cross vali-
dation, the training domains are separated from the test do-
main. This strategy characterizes the out-of-domain distribu-
tion generalization capacity of the model. Due to the space
limit, we present results on leave-one-domain-out cross val-
idation in Table 3, and put the results on training-domain
validation set in supplementary materials.
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Methods Colored- Rotated- VLCS PACS Office- Terra- DomainNet Average
MNIST MNIST Home Incognita

ERM (Vapnik 1999) 36.7 ± 0.1 97.7 ± 0.0 77.2 ± 0.4 83.0 ± 0.7 65.7 ± 0.5 41.4 ± 1.4 40.6 ± 0.2 63.2
DANN (Ganin et al. 2017) 40.7 ± 2.3 97.6 ± 0.2 76.9 ± 0.4 81.0 ± 1.1 64.9 ± 1.2 44.4 ± 1.1 38.2 ± 0.2 63.4
CDANN (Li et al. 2018b) 39.1 ± 4.4 97.5 ± 0.2 77.5 ± 0.2 78.8 ± 2.2 64.3 ± 1.7 39.9 ± 3.2 38.0 ± 0.1 62.2
MLDG (Li et al. 2018a) 36.7 ± 0.2 97.6 ± 0.0 77.2 ± 0.9 82.9 ± 1.7 66.1 ± 0.5 46.2 ± 0.9 41.0 ± 0.2 64.0

IRM (Arjovsky et al. 2019) 40.3 ± 4.2 97.0 ± 0.2 76.3 ± 0.6 81.5 ± 0.8 64.3 ± 1.5 41.2 ± 3.6 33.5 ± 3.0 62.0
GroupDRO (Sagawa et al. 2019) 36.8 ± 0.1 97.6 ± 0.1 77.9 ± 0.5 83.5 ± 0.2 65.2 ± 0.2 44.9 ± 1.4 33.0 ± 0.3 62.7

MMD (Akuzawa, Iwasawa, and Matsuo 2019) 36.8 ± 0.1 97.8 ± 0.1 77.3 ± 0.5 83.2 ± 0.2 60.2 ± 5.2 46.5 ± 1.5 23.4 ± 9.5 60.7
VREx (Krueger et al. 2020a) 36.9 ± 0.3 93.6 ± 3.4 76.7 ± 1.0 81.3 ± 0.9 64.9 ± 1.3 37.3 ± 3.0 33.4 ± 3.1 60.6

ARM (Zhang et al. 2020) 36.8 ± 0.0 98.1 ± 0.1 76.6 ± 0.5 81.7 ± 0.2 64.4 ± 0.2 42.6 ± 2.7 35.2 ± 0.1 62.2
Mixup (Yan et al. 2020) 33.4 ± 4.7 97.8 ± 0.0 77.7 ± 0.6 83.2 ± 0.4 67.0 ± 0.2 48.7 ± 0.4 38.5 ± 0.3 63.8
RSC (Huang et al. 2020) 36.5 ± 0.2 97.6 ± 0.1 77.5 ± 0.5 82.6 ± 0.7 65.8 ± 0.7 40.0 ± 0.8 38.9 ± 0.5 62.7

MTL (Blanchard et al. 2021) 35.0 ± 1.7 97.8 ± 0.1 76.6 ± 0.5 83.7 ± 0.4 65.7 ± 0.5 44.9 ± 1.2 40.6 ± 0.1 63.5
SagNet (Nam et al. 2021) 36.5 ± 0.1 94.0 ± 3.0 77.5 ± 0.3 82.3 ± 0.1 67.6 ± 0.3 47.2 ± 0.9 40.2 ± 0.2 63.6

IIB(Ours) 39.9 ± 1.2 97.2 ± 0.2 77.2 ± 1.6 83.9 ± 0.2 68.6 ± 0.1 45.8 ± 1.4 41.5 ± 2.3 64.9

Table 3: Performance comparison (Acc. %) between the proposed IIB method and the state-of-the-art domain generalization
methods with leave one domain out model selection strategy. The best accuracy in each dataset is presented in boldface. The
average accuracy over all the datasets is also reported.

Hyper-parameters and Implementation Details In both
selection strategies, for default hyper-parameters (e.g. learn-
ing rate, weight decay), we use default settings in Do-
mainBed (e.g. learning rate is set to 1e − 3 for small im-
ages and with a selection range of lr ∈ [10−4.5,10−2.5]).
For IIB specific hyper-parameters, we set λ ∈ [1,102],
and β ∈ [10−3,10−4]. For backbone feature extractor, in
Rotated/Colored-MNIST, we use 4-layers 3x3 ConvNet. For
VLCS and PACS, we use ResNet-18 (He et al. 2016). For
larger datasets, we opt to ResNet-50. For classifier, we both
test linear and non-linear invariant (environment) classifiers.
Specifically, in linear classifier, it has only one layer, oth-
erwise it has three MLP layers with two RELU activation
layers. For the increased number of parameters in the non-
linear classifier, we correspondingly reduce the number of
conv-layers in the backbone network to achieve a balance.
We test the hyper-paramters and different model implemen-
tations on RotatedMNIST, the network is trained for 5000
iterations with batch size set to 128. We report the results in
Table 4. We observe that the overall parameters under non-
linear classifier setting are not increased too much.

Observation for Results on DomainBed
From Table 3, we can see that IIB achieves the best average
performance on 7 datasets. On the other hand, the results in
Table 3 also show that there is no significant advantage of
any domain generalization method that can dominate others
in small datasets (Colored-MNSIT, Rotated-MNIST), which
is consistent with the observations in Gulrajani and Lopez-
Paz (2020). IIB performs better than others in larger datasets
(PACS, Office-Home, DomainNet), hence leading to a better
average performance. We opine that the Information Bottle-
neck is able to better eliminate the noise from the spurious
features in large datasets, while when the data set is small,
this noise may still be useful as the short-cut in test domain
for prediction, thus achieving better results.

Classifier Type MACs Params β λ Acc. (%) ↑

linear 5.83G 370.95K

1e-3 100 61.1

1e-4
1 94.7

10 95.3
100 95.1

non-linear 5.83G 375.33K

1e-3 100 63.2

1e-4
1 96.8

10 97.2
100 97.3

Table 4: Different hyper-parameters’ impact to the proposed
IIB method on RotatedMNIST with leave-one-domain-out
strategy. The results of multiply-add cumulation (MAC) op-
erations and network parameters (Params) are reported.

Conclusion
Motivated by the existing limitations of the IRM methods
for domain generalization, in this paper we developed a
novel information-theoretic approach to overcome these is-
sues. We term our new objective as the invariant informa-
tion bottleneck (IIB). Our key insight in designing IIB lies
in that when the number of training domains is not suffi-
cient to identify all the potential spurious features, we should
seek the ones that have the minimum capacity, among all
the potential features that satisfy the original IRM objec-
tive. To implement IIB, we propose a variational approach
to optimize the objective function that goes beyond the pre-
vious gradient penalty formulation, which only works for
linear classifiers. The superior performance is demonstrated
on both synthetic and real datasets through extensive exper-
iments. As a future work, it is interesting to investigate the
theoretical foundations of incorporating the information bot-
tleneck principle in nonlinear invariant causal prediction and
the effectiveness of IIB on regression tasks.
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