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Abstract

To interpret uncertainty estimates from differentiable proba-
bilistic models, recent work has proposed generating a single
Counterfactual Latent Uncertainty Explanation (CLUE) for a
given data point where the model is uncertain, identifying a
single, on-manifold change to the input such that the model
becomes more certain in its prediction. We broaden the explo-
ration to examine δ-CLUE, the set of potential CLUEs within
a δ ball of the original input in latent space. We study the
diversity of such sets and find that many CLUEs are redun-
dant; as such, we propose DIVerse CLUE (∇-CLUE), a set of
CLUEs which each propose a distinct explanation as to how
one can decrease the uncertainty associated with an input.
We then further propose GLobal AMortised CLUE (GLAM-
CLUE), a distinct and novel method which learns amortised
mappings on specific groups of uncertain inputs, taking them
and efficiently transforming them in a single function call into
inputs for which a model will be certain. Our experiments
show that δ-CLUE, ∇-CLUE, and GLAM-CLUE all address
shortcomings of CLUE and provide beneficial explanations
of uncertainty estimates to practitioners.

Introduction
For models that provide uncertainty estimates alongside
their predictions, explaining the source of this uncertainty
reveals important information. For instance, determining the
features responsible for predictive uncertainty can help to
identify in which regions the training data is sparse, which
may in turn implicate under-represented sub-groups (by age,
gender, race etc). In sensitive settings, domain experts can
use uncertainty explanations to appropriately direct their at-
tention to the specific features the model finds anomalous.

In prior work, Adebayo et al. (2020) touch on the unre-
liability of saliency maps for uncertain inputs, and Tsirtsis,
De, and Gomez-Rodriguez (2021) observe that high uncer-
tainty can result in vast possibilities for counterfactuals. Ad-
ditionally, when models are uncertain, their predictions may
be incorrect. We thus consider uncertainty explanations an
important precedent for model explanations; only once un-
certainty has been explained can state-of-the-art methods be
deployed to explain the model’s prediction. However, there
has been little work in explaining predictive uncertainty.

Copyright © 2022, Association for the Advancement of Artificial
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Depeweg et al. (2017) introduce decomposition of uncer-
tainty estimates, though recent work (Antorán et al. 2021)
has demonstrated further leaps, proposing to find an expla-
nation of a model’s predictive uncertainty for a given input
by searching in the latent space of an auxiliary deep gener-
ative model (DGM): they identify a single possible change
to the input such that the model becomes more certain in
its prediction. Termed CLUE (Counterfactual Latent Uncer-
tainty Explanations), this method aims to generate counter-
factual explanations (CEs) on-manifold that reduce the un-
certainty of an uncertain input x0. These changes are distinct
from adversarial examples, which find nearby points that
change the label (Goodfellow, Shlens, and Szegedy 2015).

CLUE introduces a latent variable DGM with decoder
µθ(x|z) and encoder µϕ(z|x). H refers to any differen-
tiable uncertainty estimate of a prediction y. The pairwise
distance metric takes the form d(x,x0) = λxdx(x,x0) +
λydy(f(x), f(x0)), where f(x) = y is the model’s map-
ping from an input x to a label, thus encouraging similarity
in input space and/or prediction space. CLUE minimises:

L(z) = H (y|µθ(x|z)) + d (µθ(x|z),x0) (1)

to yield xCLUE = µθ(x|zCLUE) where zCLUE =
argminz L(z). There are however limitations to CLUE, in-
cluding the lack of a framework to deal with a diverse set
of possible explanations and the lack of computational ef-
ficiency. Although finding multiple explanations was sug-
gested, we find the proposed technique to be incomplete.

We start by discussing the multiplicity of CLUEs. Pro-
viding practitioners with many explanations for why their
input was uncertain can be helpful if, for instance, they are
not in control of the recourse suggestions proposed by the
algorithm; advising someone to change their age is less ac-
tionable than advising them to change a mutable characteris-
tic (Poyiadzi et al. 2020). Specifically, we develop a method
to generate a set of possible CLUEs within a δ ball of the
original point in the latent space of the DGM used: we term
this δ-CLUE. We then introduce metrics to measure the di-
versity in sets of generated CLUEs such that we can opti-
mise directly for it: we term this ∇-CLUE. After dealing
with CLUE’s multiplicity issue, we consider how to make
computational improvements. As such, we propose a distinct
method, GLAM-CLUE (GLobal AMortised CLUE), which
serves as a summary of CLUE for practitioners to audit their
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Figure 1: Conceptual colour map of L(z) with high cost z0. White circles indicate CLUEs found. Left: Gradient descent to low
cost region (original CLUE). Training data shown in colour. Left Centre: Gradient descent constrained to δ-ball. Diverse starting
points yield diverse local minima, albeit with redundant solutions (δ-CLUE). Right Centre: Direct optimisation for diversity (∇-
CLUE). Right: Efficient, unconstrained mappings without gradient descent (GLAM-CLUE), allowing computational speedups.

model’s behavior on uncertain inputs. It does so by finding
translations between certain and uncertain groups in a com-
putationally efficient manner. Such efficiency is, amongst
other factors, a function of the dataset, the model, and the
number of CEs required; there thus exist applications where
either∇-CLUE or GLAM-CLUE is most appropriate.

Multiplicity in Counterfactuals
Constraining CLUEs: δ-CLUE
We propose δ-CLUE (Ley, Bhatt, and Weller 2021), which
generates a set of solutions that are all within a specified
distance δ of z0 = µϕ(z|x0) in latent space: z0 is the latent
representation of the uncertain input x0 being explained. We
achieve multiplicity by initialising the search randomly in
different areas of latent space. While CLUE suggests this, its
random generation method and lack of constraint are prone
to a) finding minima in a limited region of the space or b)
straying far from this region without control over the prox-
imity of CEs (Appendix B). Figure 1 contrasts the original
and proposed objectives (left and left centre respectively).

The original CLUE objective uses VAEs (Kingma and
Welling 2013) and BNNs (MacKay 1992) as the DGMs
and classifiers respectively. The predictive uncertainty of
the BNN is given by the entropy of the posterior over
the class labels; we use the same measure. The hyperpa-
rameters (λx, λy) control the trade-off between producing
low uncertainty CLUEs and CLUEs which are close to the
original inputs. To encourage sparse explanations, we take
dx(x,x0) = ∥x − x0∥1. We find this to suffice for our
datasets, though other metrics such as FID scores (Heusel
et al. 2018) could be used in more complex vision tasks
for both evaluation (as in Singla et al. (2020)) and optimi-
sation of CEs (see Appendix B). In our proposed δ-CLUE
method, the loss function matches Eq 1, with the addi-
tional δ requirement as xδ−CLUE = µθ (x|zδ−CLUE) where
zδ−CLUE = argminz: ρ(z,z0)≤δ L(z) and z0 = µϕ(z|x0).
We choose ρ(z, z0) = ∥z−z0∥2 (the ℓ2 norm) in this paper,
as shown in Figure 1. We first set λx = λy = 0 to explore
solely the uncertainty landscape, given that the size of the
δ-ball removes the strict need for the distance component in
L(z) and grants control over the locality of solutions, before
trialling λx = 0.03. We apply the δ constraint at each stage

of the optimisation (Figure 1, left centre), as in Projected
Gradient Descent (Boyd, Boyd, and Vandenberghe 2004).

For each uncertain input, we exploit the non-convexity of
CLUE’s objective to generate diverse δ-CLUEs by initialis-
ing in different regions of latent space (Figure 1). While pre-
vious work has considered sampling the latent space around
an input (Pawelczyk, Broelemann, and Kasneci 2020a), we
find that subsequent gradient descent yields improvements.
Example results are in Figure 2. δ-CLUE is a special case of
Algorithm 1, or explicitly Algorithm 3 (Appendix B).

Diversity Metrics for Counterfactual Explanations

Once we have generated a set of viable CLUEs, we desire
to measure the diversity within the set; as such, we require
candidate convex similarity functions between points, which
could be applied either pairwise or over all counterfactu-
als. We consider these between counterfactual labels (pre-
diction space) or between counterfactuals themselves (in-
put or latent space). A given diversity function D can be
applied to a set of k > 0 counterfactuals in an appropri-
ate space i.e. D(x1, ...,xk), D(z1, ..., zk) or D(y1, ...,yk)

where xi ∈ Rd′
, zi ∈ Rm′

and yi ∈ Rc′ (we define the hard
prediction yi = max

j
(yi)j). Table 1 summarises the metrics.

Leveraging Determinantal Point Processes: We build
on Mothilal, Sharma, and Tan (2020) to leverage determi-
nantal point processes, referred to as DPPs (Kulesza 2012),

(a) Uncertain 2 → 9, 2, 4. (b) Uncertain Y → Y, V, X.

Figure 2: Visualisation of the trade-off between uncertainty
H and distance d. Left: MNIST. Right: Synbols.
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DIVERSITY
METRIC

FUNCTION (D)

DETERMINANTAL
POINT

PROCESSES
det(K) where Ki,j =

1

1 + d(xi,xj)

AVERAGE
PAIRWISE
DISTANCE

1(k
2

) k−1∑
i=1

k∑
j=i+1

d(xi,xj)

COVERAGE 1

d′

d′∑
i=1

(maxj(xj − x0)i + maxj(x0 − xj)i)

PREDICTION
COVERAGE

1

c′

c′∑
i=1

maxj [(yj)i]

DISTINCT
LABELS

1

c′

c′∑
j=1

1[∃i : yi=j]

ENTROPY OF
LABELS −

1

log c′

c′∑
j=1

pj(k) log pj(k)

Table 1: Diversity metrics, D. If necessary, we define D = 0
for k = 1 and take d to be some arbitrary distance metric.

as det(K) in Table 1. DPPs implicitly normalise to 0 ≤ D ≤
1. This metric is effective overall and achieves diversity by
diverting attention away from the most popular (or salient)
points to a diverse group of points instead. However, matrix
determinants are computationally expensive for large k.

Diversity as Average Pairwise Distance: We can calcu-
late diversity as the average distance between all distinct
pairs of counterfactuals (as in Bhatt et al. (2021)). While we
can adjust for the number of pairs (accomplishing invariance
to k), this metric does not satisfy 0 ≤ D ≤ 1, scaling instead
with the pairwise distances characterised by the dataset.

Coverage as a Diversity Metric: Previous work in inter-
pretability has leveraged the notion of coverage as a measure
of the quality of sets of CEs. Ribeiro, Singh, and Guestrin
(2016) define coverage to be the sum of distinct features con-
tained in a set, weighted by feature importance: this could
be applied to CEs to suggest a way of optimally choosing
a subset from a full set of CEs. Plumb et al. (2020) intro-
duce coverage as a measure of the quality of global CEs.
Herein, we interpret coverage as a measure of diversity, us-
ing it directly for optimisation and evaluation of CEs. The
metric, as given in Table 1, rewards changes in both positive
and negative directions separately (though penalises a lack
of changes in positive/negative directions). See Appendix C.

Prediction Coverage: Since rewarding negative changes
in y-space is redundant (maximising the prediction of one
label implicitly minimises the others), we adjust the cover-
age metric in y-space to be the maximum prediction for a
particular label found in a set of CEs, averaged over all pre-
dictions. This satisfies 1

c′ ≤ D ≤ 1, where we require at
least k = c′ CEs to achieve D = 1, equivalent to finding at
least one fully confident prediction for each label.

Targeting Diversity of Class Labels: While recent work
focuses on producing diverse explanations for binary classi-
fication problems (Russell 2019) and others summarise cur-
rent methods therein (Pawelczyk, Broelemann, and Kasneci
2020b), these metrics perform well in applications rich in
class labels, and conversely are likely ineffective in binary

Algorithm 1:∇-CLUE (simultaneous)
Inputs: δ, k, S , r, x0, d, ρ,H, µθ, µϕ, D, λD

1 Initialise ∅ of CLUEs: XCLUE = {};
2 Set δ-ball centre of z0 = µϕ(z|x0);
3 for 1 ≤ i ≤ k do
4 Set initial value of zi = S(z0, r, i, k);
5 end for
6 while loss L has not converged do
7 for 1 ≤ i ≤ k do
8 Decode: xi = µθ(x|zi);
9 Use predictor to obtainH(y|xi);

10 L(zi) = H(y|xi) + d(xi,x0);
11 end for

12 L(z1, ..., zk) = −λDD(z1, ..., zk) +
1
k

k∑
i=1

L(zi);

13 Update z1, ..., zk with ∇z1,...,zk
L(z1, ..., zk);

14 for 1 ≤ i ≤ k do
15 Constrain zi to δ ball using ρ(zi, z0);
16 end for
17 end while
18 for 1 ≤ i ≤ k do
19 Decode explanation: xi = µθ(x|zi);
20 ifH(y|xi) < Hthreshold then
21 XCLUE ← XCLUE ∪ xi;
22 end if
23 end for

Outputs: XCLUE, a set of n ≤ k diverse CLUEs

tasks. Posterior probabilities are defined as y ∈ Rc′ and
yi = argmaxi yi. We define the probability of class j as

pj(k) =
∑k

i=1 1[yi=j]

k = number of counterfactuals in class j
number of counterfactuals . Using

this, we suggest diversity through the Number of Distinct
Labels found, as well as the Entropy of the Label Dis-
tribution. The former metric loses its effect once all labels
are found, whereas the latter does not. The former satisfies
0 ≤ D ≤ 1, and given that the maximum entropy of a c′

dimensional distribution is log(c′), so too does the latter.

Optimizing for Diversity: ∇-CLUE
The diversity metrics defined in Table 1 find utility in the
optimisation of a set of k counterfactuals. We optimise for
diversity in the CLUEs we generate through an explicit di-
versity term in our objective for the CLUEs found. We call
this DIVerse CLUE or ∇-CLUE. We posit that whilst some
aforementioned metrics may perform poorly during optimi-
sation, we retain them for evaluation.

Once the diversity metric is selected, the optimisation of
k counterfactuals can be performed simultaneously (Algo-
rithm 1) in latent space (Mothilal, Sharma, and Tan 2020),
or sequentially (Appendix D), where the approach is anal-
ogous to a greedy algorithm of the former approach. The
notation XCLUE = {x1, ...,xk} is adopted to represent a set
of k counterfactuals (similarly ZCLUE and YCLUE).

We denote an initialisation scheme S of radius r to gen-
erate starting points for the gradient descent. Note that the
removal of the δ constraint or the initialisation may be
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Figure 3: We produce a diverse set of candidate explanations
that show how to reduce uncertainty while remaining close
to x0 in input/latent space (H is uncertainty, d is input dis-
tance, ρ is latent distance). We see that x0 might most easily
be resolved into a confident 7 or 9. Results are taken from a
larger∇-CLUE set and are not exemplary of setting k = 5.

achieved at δ = ∞ and r = 0 respectively (although the
latter yields the same counterfactual k times as a result of
symmetry). Thus, the ∇∇∇-CLUE algorithm is equivalent
to δδδ-CLUE when λD = 0λD = 0λD = 0, which is itself equivalent to the
original CLUE algorithm when δ = ∞, r = 0 and k = 1.
Example results are in Figure 3.

Simultaneous Diversity Optimisation (Algorithm 1):
By optimising simultaneously over k counterfactuals in la-
tent space, issues with how the diversity metric D might
scale with k can be avoided. We have the simultane-
ous optimisation problem of minimising L(z1, ..., zk) =

−λDD(z1, ..., zk) + 1
k

∑k
i=1 L(zi) where L(zi) =

H (y|µθ(x|zi)) + d (µθ(x|zi),x0), to yield XCLUE =
µθ (X|ZCLUE) where ZCLUE = argminz1,...,zk

=
L(z1, ..., zk). Note that we apply the diversity function in
latent space; it could equally be applied in input space.

Sequential Diversity Optimisation (Appendix D):
Given a set of counterfactuals ZCLUE (initially the empty
set ∅), we can apply ∇-CLUE sequentially, appending
each new counterfactual to the set. At each iteration, we
minimise L(z) = λDD(ZCLUE ∪ z) + H (y|µθ(x|z)) +
d (µθ(x|z),x0) to yield zCLUE which we append to the set.

Global and Amortised Counterfactuals
CLUE primarily focuses on local explanations of uncer-
tainty estimates, as Antorán et al. (2021) propose a method
for finding a single, small change to an uncertain input that
takes it from uncertain to certain with respect to a classifier.
Such local explanations can be computationally expensive to
apply to large sets of inputs. Large sets of counterfactuals are
also difficult to interpret. We thus face challenges when us-
ing them to summarise global uncertainty behaviour, which
is important in identifying areas in which the model does not
perform as expected or the training data is sparse.

We desire a computationally efficient method that re-
quires a finite portion of the dataset (or a finite set of CEs)
from which global properties of uncertainty can be learnt
and applied to unseen test data with high reliability. We
propose GLAM-CLUE (GLobal AMortised CLUE), which
achieves such reliability with considerable speedups.

Proposed Method: GLAM-CLUE
GLAM-CLUE takes groups of high/low certainty points and
learns mappings of arbitrary complexity between them in
latent space (training step). Mappers are then applied to

Algorithm 2: GLAM-CLUE (Training Step)
Inputs: Xuncertain, Xcertain, groups Yuncertain, Ycertain, DGM encoder
µϕ, loss L, trainable parameters θθθ

1 for all groups (i→ j) in (Yuncertain, Ycertain) do
2 Select Xi from Xuncertain given Yuncertain;
3 Select Xj from Xcertain given Ycertain;
4 Encode: Zi = µϕ(Z|Xi);
5 while loss L has not converged do
6 Update θθθi→j with ∇θθθi→j

L(θθθi→j |Zi, Xj);
7 end while
8 end for

Outputs: A collection of mapping parameters θθθi→j for
given mappers Gi→j that take uncertain inputs from group i
and produce nearby certain outputs in group j

generate CEs from uncertain inputs (inference step). It can
be seen as a global equivalent to CLUE. Initially, inputs are
taken from the training data to learn such mappings, but we
demonstrate that we can make improvements by instead us-
ing CLUEs generated from uncertain points in the training
data. Algorithm 2 defines a mapper of arbitrary complex-
ity from uncertain groups to certain groups in latent space:
zcertain = G(zuncertain). These mappers have parameters θθθ.

To strive for global explanations, we restrict each map-
per in our experiments to be a single latent translation from
an uncertain class i to a certain class j: zj = Gi→j(zi) =
zi + θθθi→j . When run on test data, mappers should reduce
the uncertainty of points while keeping them close to the
original. To train the parameters of the translation θθθ, we use
the loss function detailed in Equation 2, similar to Van Loov-
eren and Klaise (2021), who inspect the k nearest data points
(our min operation implies k = 1). We infer from Figure 7,
right, that regularisation in latent space implies regularisa-
tion in input space. We learn separate mappers for each pair
of groups defined by the practitioner (Figure 6); Algorithm 2
loops over these groups, partitioning the data accordingly,
and returning distinct parameters θθθi→j for each case.

L(θθθ|Zuncertain, Xcertain) =

λθ∥θθθ∥1 +
1

|Zuncertain|
∑

z∈Zuncertain

min
x∈Xcertain

∥µθ(z+ θθθ)− x∥22 (2)

Few works in the counterfactual literature address uncer-
tainty explanations; we avoid comparison with state-of-the-
art CE methods for the reasons discussed in the introduction,
but there do exist standard baselines we can test against. We
can perform Difference Between Means (DBM) of uncer-
tain data and certain data in either input or latent space. This
can be added to uncertain test data and reconstructed. An-
other baseline is the Nearest Neighbours (NN) in high cer-
tainty training data, in either input or latent space. Figure 5
visualises these baselines in latent space. Our experiments
demonstrate that GLAM-CLUE outperforms these baselines
significantly, and performs on par with CLUE. Pawelczyk
et al. (2021) create a benchmarking tool which shows that
CLUE performs on par with the current state-of-the-art. By
extension, so too does our scheme, but 200 times faster.

7393



Figure 4: Comparison of CLUEs generated for an uncertain input (left) by the baselines/GLAM-CLUE/CLUE.H is uncertainty,
d is input distance, c = H + λxd is cost. Low uncertainties in some baseline schemes are invalidated by unrealistic distances.
GLAM 1/2/3 are described in the Experiments section. CLUE 1/2 are generated from λx = 0 and λx = 0.03 respectively.

When the class of uncertain test data is unknown, mappings
could be applied over each combination of classes, picking
the best performing CEs. When the number of classes is
large, a scheme to select a limited number of these (e.g. the
top n predictions from the classifier) could be used. Generic
mappings from uncertainty to certainty would not require
this selection but on the whole would be harder to train (sim-
ple translations are likely invalid for the far right case of
Figure 6). We posit that more complex models such as neu-
ral networks could improve the performance of mappings at
the risk of losing the global sense of the explanation.

Grouping Uncertainty
Most counterfactual explanation techniques center around
determining ways to change the class label of a prediction;
for example, Transitive Global Translations (TGTs) consider
each possible combination of classes and the mappings be-
tween them (Plumb et al. 2020). We choose here to parti-
tion the data into classes, but also into certain and uncer-
tain groups according to the classifier used. By using these
partitions, we learn mappings from uncertain points to cer-
tain points, either within specific classes or in the general
case. While TGTs constrain a mapping G from group i to
j to be symmetric (Gi→j = G−1

j→i) and transitive (Gi→k =
Gj→k ◦Gi→j), we see no direct need for the symmetry con-
straint. There exists an infinitely large domain of uncertain
points, unlike the bounded domain for certain points, imply-
ing a ‘many-to-one’ mapping. We also forgo the transitivity

Figure 5: 2D latent space visualisation of DBM/NN base-
lines (MNIST digit 4). Left/Right: Uncertain points in the
test data with their respective latent DBM/latent NN map-
pings. High certainty test data shown in green throughout.

constraint: defining direct mappings from uncertain points
to specific certain points is sufficient.

Our method is general to all schemes (and more) in Fig-
ure 6. Our experiments consider the groups to be class labels,
testing against the far left scheme which considers mapping
from uncertain points to certain points within a given class.
Future work may consider modes within classes, as well as
the more general far right scheme of learning mappings from
arbitrary uncertain inputs to their certain analogues. The
original CLUE method is analogous to the far right scheme,
which is agnostic to the particular classes it maps to and
from (although struggles with diverse mappings).

Experiments
We perform experiments on 3 datasets to validate our meth-
ods: UCI Credit classification (Dua and Graff 2017), MNIST
image classification (LeCun 1998) and Synbols image clas-
sification (Lacoste et al. 2020). On Credit and MNIST, we
train VAEs as our DGMs (Kingma and Welling 2013) and
BNNs for classification (MacKay 1992). For Synbols, we
train Hierarchical VAEs (Zhao, Song, and Ermon 2017) and
a resnet deep ensemble, owing to higher dataset complexity
(rotations, sizes and obscurity of shapes). We demonstrate
that our constraints allow practitioners to better control the
uncertainty-distance trade-off of CEs (δ-CLUE) and the di-
versity of CEs (∇-CLUE). We then show that we can effi-
ciently generate explanations that apply globally to groups
of inputs with our amortised scheme (GLAM-CLUE).

δ-CLUE
We learn from the δ-CLUE experiments that the δ value con-
trols the trade-off between the uncertainty of the CLUEs
generated and their distance from the original point (Fig-
ure 2). Importantly, by tuning λx in the distance term d of
Equation 1, we achieve lower distances with only small un-
certainty increases (Figure 7, right). We observe further in

Figure 6: Example mappings from uncertainty to certainty
in groups A to X, without necessarily satisfying symmetry
or transitivity. Asterisks represent membership to any group.
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Figure 7: Left: MNIST diversity analysis. Entropy of the la-
bel distribution (solid) and modes (dashed) found as number
of CLUEs increases. There exist multiple modes within each
label of 0 to 9. Observe the entropy saturating as we con-
verge to all minima within the δ ball. Right: Performance of
δ-CLUEs (uncertainty, H, distance, d). Batch size: 8 most
uncertain MNIST digits. Learning rate: 0.1. Iterations: 30.

Figure 7, left that diversity increases with δ, although a large
number of CLUEs can be required before such levels be-
come saturated (left). Modes are defined as groups of points
within specific classes. Full analysis in Appendix B.

Takeaway: δ-CLUE produces a high performing set of
diverse explanations. However, we require many iterations
to achieve such diversity (∇-CLUE addresses this).

∇-CLUE
We perform an ablative study, increasing the diversity
weight λD and optimising the DPP diversity metric in z-
space, measuring the effect that this has on each other met-
ric. We use the simultaneous∇-CLUE scheme in Algorithm
1 for a fixed number of k = 10 CLUEs and parameters:
δ = r = 4 for MNIST; δ = r = 1 for UCI Credit. The op-
timal δ value(s) can be determined through experimentation
(Figure 7, right), although Appendix B discusses alternative
methods such as inspecting nearest neighbours in the data.

Takeaway: When optimising for one diversity metric, in-
creasing λD monotonically improves diversity by almost
every other metric. Uncertainty suffers minimally relative
to the gains we achieve in diversity and ∇-CLUE requires
fewer CLUEs to achieve the same diversity level as δ-CLUE.

GLAM-CLUE
Gradient descent at the inference step (generation of CEs) is
expensive. Uncertainty estimates, distance metrics, and di-
versity metrics (notably DPPs, which operate on k × k ma-
trices) all require evaluation over many iterations, to yield
only a single CE. While local CEs have utility in certain
settings, GLAM-CLUE returns CEs for all uncertain points
in a single, amortised function call, permitting considerable
speedups. We demonstrate that these counterfactuals outper-
form the baselines, achieving lower variance also.

We train 3 mappers: GLAM 1 learns from all certain and
uncertain 4s in the MNIST training data; GLAM 2/3 learn
from all uncertain 4s in the training data and their corre-
sponding certain CLUEs, for λx = 0 and λx = 0.03 respec-
tively. Figure 9 shows improvements when using GLAM 2
and 3, demonstrating that CLUEs capture properties of un-

Figure 8: Effect of λD on diversity. Row 1: MNIST. Row 2:
Credit. Columns 1 to 3: DPP, APD and Coverage metrics on
k = 10 ∇-CLUEs. λD = 0 is δ-CLUE. Batch size: 8 most
uncertain inputs. Learning rate: 0.1. Iterations: 30.

certainty more reliably than the training data, at the expense
of extra computation time to generate the CLUEs used.

We observe that while the baseline schemes achieve low
uncertainties, they do so at the expense of moving much
further away from the input (Figure 4), implying infeasi-
ble actionability. An advantage to GLAM-CLUE is that the
uncertainty-distance trade-off can be tuned with λθ in Equa-
tion 2: larger λθ restricts translations in latent space, thus
lowering distances in input space but raising uncertainties.
For a given λx, GLAM-CLUE’s fast learning rate allows for
the optimal λθ to be determined quickly. Furthermore, 98%
of uncertain 4 to certain 4 GLAM-CLUE mappings resulted
in a classification of 4 (87% for CLUE which simply min-
imises uncertainty and is not class specific).

Takeaway: Amortisation of counterfactuals works. A
simple global translation for class specific points is shown
to produce counterfactuals of comparable quality to CLUE.
Notably, performance of GLAM-CLUE is improved when
training on CLUEs rather than training data, optimal when
we generate CLUEs using λx = 0.03, as used in evaluation.

Computational Speedup
At the inference step, GLAM-CLUE performs significantly
faster than CLUE in terms of average CPU time, detailed
in Table 2. For uncertain 4s in the MNIST test set, CLUE re-
quired on average 220 seconds to converge; GLAM-CLUE
took around 1 second to compute. The bottleneck in these

Input DBM Latent DBM Input NN
0.0306 0.0262 0.0236

Latent NN GLAM-CLUE CLUE
0.0245 0.0238 4.68

Table 2: Avg. time in seconds for 1 MNIST CE (inference
step). Credit achieves similar speedups (186 times faster).
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Figure 9: GLAM-CLUE vs baselines when mapping uncertain 4s to certain 4s in MNIST. Left: Distributions of H (original
values exceed 1.5). Centre: Distributions of d. Right: Distributions of total costs,H+ λxd, with λx = 0.03 as used by Antorán
et al. (2021). Similar for all classes (Appendix E). CLUE 1/CLUE 2 are generated from λx = 0 and λx = 0.03 respectively.
Batch size: 6000 (all 4s in training set). Learning rate: 0.1. Iterations: 30. Multiple random seed runs yield negligible differences.

processes is the uncertainty evaluation of the BNN, and as
such these timings are not necessarily representative of all
models. A drawback to GLAM-CLUE is that the optimi-
sation required on average 17.6 seconds to train. Should
CLUEs be included during training (i.e. GLAM 2 and 3),
extra time is required to obtain these. Moving beyond basic
mappers to more advanced models, we expect performance
to improve at the cost of an increased training step time.

Takeaway: GLAM-CLUE produces explanations around
200 times faster than CLUE. This speedup, alongside the
baselines, means that we have the option to take the best per-
forming counterfactual out of GLAM-CLUE and the base-
lines, without requiring significant computation.

Related and Future Work
The majority of this paper is dedicated to increasing the
practical utility of the uncertainty explanations proposed as
CLUE in Antorán et al. (2021), and we mitigate CLUE’s
multiplicity and efficiency issues. Very few works address
explaining the uncertainty of probabilistic models. Booth
et al. (2020) take a user-specified level of uncertainty for
a sample in an auxiliary discriminative model and generate
the corresponding sampling using deep generative models
(DGM). Joshi et al. (2018) propose xGEMs that use a DGM
to find CEs (as we do) though not for uncertainty. Mothilal,
Sharma, and Tan (2020) and Russell (2019) use linear pro-
grams to find a diverse set of CEs, though also not for un-
certainty. Neither paper considers computational advances
nor ventures to consider global CEs, as we do. Plumb et al.
(2020) define a mapper that transforms points from one low-
dimensional group to another. Mahajan, Tan, and Sharma
(2020) and Yang et al. (2021) redesign DGMs to gener-
ate CEs quickly, similar to GLAM-CLUE. In spirit of such
works, we propose amortising CLUE to find a transforma-
tion that leads the model to treat the transformed uncertain
points from Group A as certain points from Group B. This
method could extend beyond CLUE to other classes of CEs.

Future explorations include higher dimensional datasets
such as CIFAR10 (Krizhevsky 2012) and CelebA (Liu et al.
2015) that would fully test CLUE and the extensions pro-

posed in this paper, potentially requiring the use of FID
scores (Heusel et al. 2018) to replace the simple distance
metric in both evaluation (Singla et al. 2020) and optimi-
sation. DGM alternatives such as GANs (Goodfellow et al.
2014) could be explored therein. Further, since Antorán et al.
(2021) demonstrate success on human subjects in the use of
DGMs for counterfactuals, our reasoning is that we can hope
to retain this efficacy with our extensions of CLUE, though
ideally additional human experiments would further validate
our methods. Multiple runs at various random seeds would
also shed light on the sensitivity of the∇-CLUE algorithm.

Conclusion
Explanations from machine learning systems are receiving
increasing attention from practitioners and industry (Bhatt
et al. 2020). As these systems are deployed in high stakes
settings, well-calibrated uncertainty estimates are in high
demand (Spiegelhalter 2017). For a method to interpret un-
certainty estimates from differentiable probabilistic models,
Antorán et al. (2021) propose generating a Counterfactual
Latent Uncertainty Explanation (CLUE) for a given data
point on which the model is uncertain. In this work, we ex-
amine how to make CLUEs more useful in practice. We de-
vise δ-CLUE, a method to generate a set of potential CLUEs
within a δ ball of the original input in latent space, before
proposing DIVerse CLUE (∇-CLUE), a method to find a
set of CLUEs in which each proposes a distinct explanation
for how to decrease the uncertainty associated with an input
(to tackle the redundancy within δ-CLUE). However, these
methods prove to be potentially computationally inefficient
for large amounts of data. To that end, we propose GLobal
AMortised CLUE (GLAM-CLUE), which learns an amor-
tised mapping that applies to specific groups of uncertain
inputs. GLAM-CLUE efficiently transforms an uncertain in-
put in a single function call into an input that a model will
be certain about. We validate our methods with experiments,
which show that δ-CLUE,∇-CLUE, and GLAM-CLUE ad-
dress shortcomings of CLUE. We hope our proposed meth-
ods prove beneficial to practitioners who seek to provide ex-
planations of uncertainty estimates to stakeholders.
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