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Abstract

We develop a new method of online inference for a vector of
parameters estimated by the Polyak-Ruppert averaging pro-
cedure of stochastic gradient descent (SGD) algorithms. We
leverage insights from time series regression in economet-
rics and construct asymptotically pivotal statistics via random
scaling. Our approach is fully operational with online data
and is rigorously underpinned by a functional central limit
theorem. Our proposed inference method has a couple of key
advantages over the existing methods. First, the test statistic is
computed in an online fashion with only SGD iterates and the
critical values can be obtained without any resampling meth-
ods, thereby allowing for efficient implementation suitable for
massive online data. Second, there is no need to estimate the
asymptotic variance and our inference method is shown to be
robust to changes in the tuning parameters for SGD algorithms
in simulation experiments with synthetic data.

Introduction

We consider an inference problem for a vector of parameters
defined by
*:= arg min ,
B g min @ (5)

where @ (8) := E[q(8,Y)] is a real-valued population ob-
jective function, Y is a random vector, and 8 — ¢ (8,Y)
is convex. For a given sample {Y;};_,, let 8; denote the
stochastic gradient descent (SGD) solution path, that is, for
eacht > 1,

Bt = Be—1 — % Vaq (Be-1,Yr), (1

where [y is the initial starting value, ~y; is a step size, and
Vq (B:-1,Y:) denotes the gradient of ¢ (3, Y;) with respect
to B8 at 8 = B¢—1. We study the classical Polyak (1990)-
Ruppert (1988) averaging estimator 3, := n='> 1" | f:.
Polyak and Juditsky (1992) established regularity conditions
under which the averaging estimator (,, is asymptotically
normal:

Vi (Bn — B%) 5 N(0,7),
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where the asymptotic variance T has a sandwich form
Y :=H 'SH™', H := V?Q (") is the Hessian matrix and
S:=E[Vq(8*,Y)Vq(B*,Y)] is the score variance. The
Polyak-Ruppert estimator /3,, can be computed recursively
by the updating rule 8; = Bt,l% + %, which implies that
it is well suited to the online setting.

Although the celebrated asymptotic normality result
(Polyak and Juditsky 1992) was established about three
decades ago, it is only past several years that online infer-
ence with (3, has gained increasing interest in the literature.
It is challenging to estimate the asymptotic variance Y in
an online fashion. This is because the naive implementation
of estimating it requires storing all data, thereby losing the
advantage of online learning. In the seminal work of Chen
et al. (2020), the authors addressed this issue by estimating H
and S using the online iterated estimator [3;, and recursively
updating them whenever a new observation is available. They
called this method a plug-in estimator and showed that it con-
sistently estimates the asymptotic variance and is ready for
inference. However, the plug-in estimator requires that the
Hessian matrix be computed to estimate H. In other words,
it is necessary to have strictly more inputs than the SGD solu-
tion paths 3; to carry out inference. In applications, it can be
demanding to compute the Hessian matrix. As an alternative,
Chen et al. (2020) proposed a batch-means estimator that
avoids separately estimating H ~! or S. This method directly
estimates the variance of the averaged online estimator /3,
by dividing {1, ..., 5, } into batches with increasing batch
size. The batch-means estimator is based on the idea that
correlations among batches that are far apart decay exponen-
tially fast; therefore, one can use nonparametric empirical
covariance to estimate Y. Along this line, Zhu, Chen, and
Wu (2021) extended the batch-means approach to allow for
real-time recursive updates, which is desirable in the online
setting.

The batch-means method produces batches of streaming
samples, so that data are weakly correlated when batches far
apart. The distance between batches is essential to control
dependence among batches so it should be chosen very care-
fully. In applications, we need to specify a sequence which
determines the batch size as well as the speed at which depen-
dence among batches diminish. While this is a new sequence



one needs to tune, it also affects the rate of convergence of
the estimated covariance matrix. As is shown by Zhu, Chen,
and Wu (2021), the optimal choice of this sequence and the
batch size is related to the learning rate and could be very
slow. Zhu, Chen, and Wu (2021) showed that the batch-mean
covariance estimator converges no faster than Op(n='/4).
Simulation results in both Zhu, Chen, and Wu (2021) and this
paper show that indeed the coverage probability converges
quite slowly.

Instead of estimating the asymptotic variance, Fang, Xu,
and Yang (2018) proposed a bootstrap procedure for online
inference. Specifically, they proposed to use a large number
(say, B) of randomly perturbed SGD solution paths: for all

b=1,..., B, starting with 6éb) = [y and then iterating

(b)

t = lgg)l - tht(b)Vq < t(i)lal/t) 9 (2)

where nib) > 0 is an independent and identically distributed
random variable that has mean one and variance one. The
bootstrap procedure needs strictly more inputs than comput-
ing (3, and can be time-consuming.

In this paper, we propose a novel method of online infer-
ence for §*. While the batch-means estimator aims to miti-
gate the effect of dependence among the averages of SGD
iterates, on the contrary, we embrace dependence among
them and propose to build a test statistic via random scaling.
We leverage insights from time series regression in econo-
metrics (e.g., Kiefer, Vogelsang, and Bunzel 2000) and use
a random transformation of 3;’s to construct asymptotically
pivotal statistics. Our approach does not attempt to estimate
the asymptotic variance T, but studentize v/n (3, — 8*) via

3

The resulting statistic is not asymptotically normal but asymp-
totically pivotal in the sense that its asymptotic distribution
is free of any unknown nuisance parameters; thus, its criti-
cal values can be easily tabulated. Furthermore, the random

scaling quantity V,, does not require any additional inputs
other than SGD paths 3; and can be updated recursively. As
a result, our proposed inference method has a couple of key
advantages over the existing methods. First, the test statistic
is computed in an online fashion with only SGD iterates and
the critical values can be obtained without any resampling
methods, thereby allowing for efficient implementation suit-
able for massive online data. Second, there is no need to
estimate the asymptotic variance and our inference method
is shown to be robust to changes in the tuning parameters
for SGD algorithms in simulation experiments with synthetic
data. Table 1 provides a summary comparison between our
proposed method and the existing methods. After the first
version of our paper appeared on arXiv, Li et al. (2021) and
Chen et al. (2021) applied the idea of random scaling to their
SGD inference problems: federated learning for the former
and Kiefer-Wofowitz methods for the latter.

The SGD methods pioneered by Robbins and Monro
(1951) are popular in the setting of online learning (e.g., Hoft-
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man, Blei, and Bach 2010; Mairal et al. 2010) and have been
studied extensively in the recent decade. Among other things,
probability bounds on statistical errors have been derived.
For instance, Bach and Moulines (2013) showed that for both
the square loss and the logistic loss, one may use the smooth-
ness of the loss function to obtain algorithms that have a fast
convergence rate without any strong convexity. See Rakhlin,
Shamir, and Sridharan (2012) and Hazan and Kale (2014)
for related results on convergence rates. Duchi, Hazan, and
Singer (2011) proposed AdaGrad, employing the square root
of the inverse diagonal Hessian matrix to adaptively con-
trol the gradient steps of SGD and derived regret bounds for
the loss function. Kingma and Ba (2015) introduced Adam,
computing adaptive learning rates for different parameters
from estimates of first and second moments of the gradients.
Liang and Su (2019) employed a similar idea as AdaGrad to
adjust the gradient direction and showed that the distribution
for inference can be simulated iteratively. Toulis and Airoldi
(2017) developed implicit SGD procedures and established
the resulting estimator’s asymptotic normality. Anastasiou,
Balasubramanian, and Erdogdu (2019) and Mou et al. (2020)
developed some results for non-asymptotic inference.

The SGD methods are much less popular in econometrics.
An early exception is Chen and White (2002), which stud-
ied SGD in a Hilbert Space. On the contrary, the random
scaling by means of the partial sum process has been ac-
tively employed to estimate the so-called long-run variance,
which is the sum of all the autocovariances, in the time series
econometrics since it was suggested by Kiefer, Vogelsang,
and Bunzel (2000). The literature has documented ample evi-
dence that the random scaling stabilizes the excessive finite
sample variation in the traditional consistent estimators of the
long-run variance; see, e.g., Velasco and Robinson (2001),
Sun, Phillips, and Jin (2008), and a recent review in Lazarus
et al. (2018). The insight has proved valid in broader contexts,
where the estimation of the asymptotic variance is challeng-
ing: e.g., spatially dependent data (Kim and Sun 2011), sieve
M estimation with time series data (Chen, Liao, and Sun
2014), and a high-dimensional inference problem (Gupta and
Seo 2021). We show in this paper that it is indeed useful in
online inference, which has not been explored to the best of
our knowledge. While our experiments focus on one of the
earlier proposals of the random scaling methods, there are
numerous alternatives, see e.g. Sun (2014), which warrants
future research on the optimal random scaling method.

We employ the following notation throughout the paper.
Let o’ and A’, respectively, denote the transpose of vector a
and matrix A. Let |a| denote the Euclidean norm of vector a
and || A|| the Frobenius norm of matrix A. Also, let £>° [0, 1]
denote the set of bounded continuous functions on [0, 1].

Online Inference

In this section, we first present asymptotic theory that under-
pins our inference method and describe our proposed online
inference algorithm. Then, we explain our method in com-
parison with the existing methods using the linear regression
model as an example.



FXY (18) CLTZ(20) CLTZ(20) ZCW (21) This paper
Method Bootstrap Plug-In Batch Batch Random
Means Means Scaling
Is it possible
to avoid resampling? v v v v
to avoid Hessian? v v v v
to avoid batches? v v v
to update recursively? v v v v

Table 1: Criteria for Online Inference Methods: FXY (18), CLTZ (20), and ZCW (21) refer to Fang, Xu, and Yang (2018), Chen

et al. (2020), and Zhu, Chen, and Wu (2021), respectively.

Functional Central Limit Theorem for Online SGD

We first extend Polyak and Juditsky (1992)’s central limit
theorem (CLT) to a functional CLT (FCLT), that is,

[n7]

% 2 Be—B°) = YV2W (r), rel0,1], @

where = stands for the weak convergence in £ [0, 1] and
W (r) stands for a vector of the independent standard Wiener
processes on [0,1]. That is, the partial sum of the online
updated estimates 3; converges weakly to a rescaled Wiener
process, with scaling equal to the square root asymptotic
variance of the Polyak-Ruppert average. The CLT proved in
Polyak and Juditsky (1992) is then a special case with » = 1.
Building on this extension, we propose an online inference

procedure. Specifically, using the random scaling matrix ‘7,1
defined in (3), we consider the following t-statistic

Vi (Buj = B;)

Vs

) &)

where the subscripts j and jj, respectively, denote the j-
th element of a vector and the (4, j) element of a matrix.
Then, the FCLT yields that the t-statistic is asymptotically
pivotal. Note that instead of using an estimate of T, we
use the random scaling V,, for the proposed t-statistic. As
a result, the limit is not conventional standard normal but
a mixed normal. It can be utilized to construct confidence
intervals for 37 for each j. A substantial advantage of this
random scaling is that it does not have to estimate an analytic
asymptotic variance formula and tends to be more robust in
finite samples. As mentioned in the introduction, this random
scaling idea has been widely used in the literature known as
the fixed bandwidth heteroskedasticity and autocorrelation
robust (HAR) inference (e.g., Kiefer, Vogelsang, and Bunzel
2000; Lazarus et al. 2018).
More generally, for any ¢ < d linear restrictions

H()Z.Rﬁ* =C,

where R is an (¢x d)-dimensional known matrix of rank ¢ and
cis an E-dime/psional known vector, the conventional Wald
test based on V,, becomes asymptotically pivotal. To establish
this result formally, we make the following assumptions a la
Polyak and Juditsky (1992).

(iii)

Assumption 1. (i) There exists a function ¥(3) : R? — R
such that for some A > 0, « >0, € >0, L > 0, and all
z,y € RL U(z) > alz|? [V (2) - V¥(y)| < Llz—y),
(%) =0, and V¥(B — %) VQ(B) > 0 for B # B*
hold true. Moreover, VY (B — )TV Q(B) > \U(3) for
all | — g*| < e

The Hessian matrix H is positive definite and there exist
Ky <00,6>0,0<A<1suchthat |VQ(B)— H(B —
B < Ki|B — B*[", for all |3 — 8| <.

The sequence {& = VQ (Bi—1) — Vq (Bi—1,Y1) }>q is
a martingale-difference sequence (mds), defined on a
probability space (0, F,F, P), ie, E(&|Fi—1)
0 almost surely, and for some Ko, E(|&]?|Fi_1) +
VQB 1) < Ks(1+ |Biaf?) as. forall ¢ > 1.
Then, the following decomposition takes place: & =
&(0) 4+ Ce(Bie1), where E(&(0)|Fi—1) 0 a.s.,
E(£:(0)&(0)|Fe1) L Sast— 00 8> 0(Sis sym-
metrical and positive definite), sup E(|€;(0)]21(|&:(0)] >

¢

(ii)

C|Fi-1) B 0as € = o, and for all t large enough,

E(|¢:(Bt—1)|?|Fi-1) < 6(Bi—1) a.s. with 5(B) — 0 as
B8 — 0.

(iv) It holds that ~; = ~ot~* for some 1/2 < a < 1.
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(v) Forp> (1—a)" ', E||&]|*" is bounded.

Assumptions 1 (i)—(iii) are identical to Assumptions 3.1—
3.3 of Polyak and Juditsky (1992) and Assumption 1 (iv) is
the standard learning rate. Assumption 1(v) adds the moment
condition to enhance the results for uniform convergence,
which is needed to prove the functional CLT.

Given these assumptions, The following theorem is a for-
mal statement under the conditions stated above. Note that
the proof of the FCLT requires bounding some processes,
indexed by r, uniformly over r. Our proof is new, as some
of these processes cannot be written as partial sums of mar-
tingale differences. Hence we cannot simply apply results
such as Doob’s inequalities. Recent works, as in Zhu and
Dong (2020), developed FCLT using bounded sequences.
Our proof extends theirs to possibly unbounded sequences
but with finite moments, and uses new technical arguments.

Theorem 1. Suppose rank(R) = {. Under Assumption I and
Ho,

n (RB, ) (RV.R) " (RB. )
-1
w(1),

4wy ( /O 1 W(T)V_V(r)'dr)



where W is an {-dimensional vector of the standard Wiener
processes and W (r) :== W (r) — rWW (1).

Proof of Theorem 1. Rewrite (1) as

B = Bi—1 — % VQ (Be—1) + & (6)

Let A, := 5, — f* and A, := B, — * to denote the errors
in the ¢-th iterate and that in the average estimate at ¢, re-
spectively. Then, subtracting 5* from both sides of (6) yields
that

Ay =D 1 —%VQ (Be—1) + 1

Furthermore, for r € [0, 1], introduce a partial sum process

[tr]
=¢! ZA“

whose weak convergence we shall establish.

Specifically, we extend Theorem 2 in Polyak and Juditsky
(1992, PJ hereafter) to an FCLT. The first step is a uniform
approximation of the partial sum process to another partial
sum process A} (r) of

Afi=Ap — v HAL +v& and  Aj = A.
That is, we need to show that vsup, |A; (r) — Al (r)] =
0p (1). According to Part 4 in the proof of PJ’s Theorem 2,
this is indeed the case. ~

Turning to the weak convergence of v/tA! (r), we extend
PJ’s Theorem 1. Following its decomposition in (A10), write

VAL (r) = 1D (r) + 1@ (r) +1®) (r)
where
1
AR (r) == ,Yoﬁa[tr]A07
( 1 [f:
I ()= —=Y H™ ¢,
Vi
3) 1 [i* [t
I® ()= —= ) wie,
Vi
where oy = (ty)”' < K and {wj[-”]} is a

bounded sequence such that ¢! 22:1 ||w§H — 0.

Then, sup, |[I™) ()| = o, (1). Suppose for now that

Esup,. ||[I®)||P = o(1) for some p > 1. The bound for (%)
requires sophisticated arguments, as w;§; is not mds, even
though &; is. So we develop new technical arguments to
bound this term, whose proof is left at the end of the proof.

Then the FCLT for mds, see e.g. Theorem 4.2 in Hall and
Heyde (1980), applies to I(?) (1), whose regularity conditions
are verified in the proof (specifically, Part 1) of the theorem
in PJ to apply the mds CLT for I(?) (1). This shows that 1(?)
converges weakly to a rescaled Wiener process Y/2TW (r).
This establishes the FCLT in (4).

Now let Cy,(r) := Rf Sl (B, — B7). Also let A =

(RYR')'/2, which exists and is invertible as long as [ < d.
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(4) then shows that for some vector of independent standard
Wiener process W*(r),

Cn(r) = AW*(r).

In addition, RV, R = £ 310, [Cy(2) = 2C, (1)][Cn(2) —
2(Cy(1)]’, where the sum is also an 1ntegral over r as Cp ()
is a partial sum process, and R(f3,, — 3*) ﬁCn( ). Hence

_ ~ -1
n (RB, — c)/ (RVHR’ ) (RB, — c) is a continuous func-
tional of C', (+). The desired result in the theorem then follows
from the continuous mapping theorem.
It remains to bound I®) (r) uniformly. Let S;
ZJ 1 wtﬁj Let p > (1 — a)” " and note that
t

m=1

E ||Smll*”

2
g5 (S
< "

2p
saap10 ] <513

and due to Burkholder’s inequality (e.g., Hall and Heyde
1980),

P
E||Sm|* < C,E Z w211
=1
-1
= IEHHw [RIA
Grendp=1 1=1

where the universal constant C, depends only on p. Note that

E .17 |€, H2 is bounded since I ||&;]|*” is bounded.
m m b m m

Also, > 750, ij |"=0 (ijl ||w] H) for any b due to

the boundedness of ||wm H According to Lemma 2 in Zhu

and Dong (2020), Z ). These facts yield
that

1wy = o(m

0

E ||Sm|** = o(m™), ()

m—1

m
> [yl
j=1

which holds uniformly for m, k. It in turn implies that

—0 (t1+(a—1>p) ’

O

2p
E sup HI(3) (r)H

which is o (1) as required.

As an important special case of Theorem 1, the t-statistic
defined in (5) converges in distribution to the following piv-

otal limiting distribution: foreach 5 = 1,...,d,
\/H(Bn,j *BJ*) i Wl (1)
= 1/2°
Vi [fol {Wy (r) —rW (1)}2 dr}

®)

where IV is a one-dimensional standard Wiener process.
There exist papers that have extended Polyak and Judit-

sky (1992) to more general forms (e.g., Kushner and Yang

1993; Godichon-Baggioni 2017; Su and Zhu 2018; Zhu and



Dong 2020). The stochastic process defined in Kushner and
Yang (1993, equation (2.2)) is different from the partial sum
process in (4). Godichon-Baggioni (2017) considers parame-
ters taking values in a separable Hilbert space and as such it
considers a generalization of Polyak-Juditsky to more of an
empirical process type while our FCLT concerns the partial
sum processes. Su and Zhu (2018)’s HiGrad tree divide up-
dates into levels, with the idea that correlations among distant
SGD iterates decay rapidly. Their Lemma 2.5 considers the
joint asymptotic normality of certain K partial sums for a fi-
nite K while our FCLT is for the partial sum process indexed
by real numbers on the [0, 1] interval. Zhu and Dong (2020)
appears closer than the others to our FCLT for the partial
sums, although the set of sufficient conditions is not the same
as ours. However, we emphasize that the more innovative
part of our work is the way how we utilize the FCLT than the
FCLT itself. Indeed, it appears that prior to this paper, there
is no other work in the literature that makes use of the FCLT
as this paper does in order to conduct online inference with
SGD.

An Algorithm for Online Inference
Just as the average SGD estimator can be updated recursively
via Bt = Bt_l% + % the statistic V; can also be updated

in an online fashion. To state the online updating rule for XA/t
note that

!

Bi—sBe | | DB — sb
1 =

t s

V=Y
s=1 j=

t s s t s
=2 D 8> Bi=B) s> B

s=1 j=1 j=1 s=1 j=1
t s t
*ZS 5j5£+5t5£252
s=1 j=1 s=1
and
t s s t—1 s s o
YD B B=D0 By B+ thA
s=1j=1 j=1 s=1j=1 j=1
t s t—1 s B
S 6 =353 4 2
s=1 j=1 s=1 j=1

Thus, at step ¢ — 1, we only need to keep the three quantities,

ﬁt—h

t—1 s s t—1 s
Aa =38 B, and b1=> s» B,
s=1j=1 j=1 s=1 j=1

to update ‘7#1 to ‘7t using the new observation /3;. The fol-
lowing algorithm summarizes the arguments above.

Once 3,, and ‘7” are obtained, it is straightforward to carry
out inference. For example, we can use the t-statistic in (5)
to construct the (1 — «) asymptotic confidence interval for
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Algorithm 1: Online Inference with SGD via Ran-
dom Scaling

Input: function ¢(-), parameters (v, a) for step size
Y=yt “fort > 1 ~
Initialize: set initial values for 5y, 8y, Ao, bg
1 fort=1,2,...do
Receive: new observation Y;

B = Bi—1 — % Vq(Bi—1,Yr)
B = Bt—l% + %
A=A + tfﬁtﬁ{

by = b1 + 25,

Obtain V; by

¢
2 (At — Bib — by Bt + Bii Z 52)
s=1

Output: 3, V,

A U B W N

V=

7 end

the j-th element 57 of 5* by

2 ‘7n i = ‘77L ..
P = V(1-a/2) \/?7 Bn.j +CV(1—a/2)\/? )

where the critical value cv(;_,/2) is tabulated in Abadir and
Paruolo (1997, Table I). The limiting distribution in (8) is
mixed normal and symmetric around zero. For easy reference,
we reproduce the critical values in Table 2. When oo = 0.05,
the critical value is 6.747. Critical values for testing linear
restrictions Hy : R8* = c are given in Kiefer, Vogelsang,
and Bunzel (2000, Table II).

Estimation of the Linear Regression Model

In this subsection, we consider the least squares estimation of
the linear regression model y; = x;3* + ;. In this example,
the stochastic gradient sequence (; is given by

B = Bi—1 — vwe (23 Bi—1 — W),

where v, = yot~* with 1/2 < a < 1 is the step size. This
linear regression model satisfies Assumption 1, as shown
by Polyak and Juditsky (1992, section 5). The asymptotic
variance of 3, is T = H-1SH ! where H = Ex;x} and
S = Ex,z)él.

Our proposed method would standardize using V,, accord-
ing to (3), which does not consistently estimate Y. We use

90%
3.875

95%
5.323

97.5%
6.747

99%
8.613

Probability
Critical Value

Table 2: Asymptotic one-sided critical values of the t-statistic
that satisfy Pr(f < ¢) = p asymptotically, where p €
{0.9,0.95,0.975,0.99}. Source: Abadir and Paruolo (1997,
Table I).



critical values as tabulated in Table 2, whereas the existing
methods (except for the bootstrap) would seek for consis-
tent estimation of Y. For instance, the plug-in method re-
spectively estimates H and S by H = 1 3" | a,2}, and
— 2} 8¢—1. Note that

H~" does not rely on the updated ; but may not be easy to
compute if dim(x;) is moderately large. Alternatively, the
batch-mean method first splits the iterates 5;’s into M + 1
batches, discarding the first batch as the burn-in stage, and
estimates T directly by

an

where [} is the mean of 3,’s for the k-th batch and ny is the
batch size. One may also discard the first batch when calcu-
lating (,, in Y. As noted by Zhu, Chen, and Wu (2021), a
serious drawback of this approach is that one needs to know
the total number of n as a priori, so one needs to recalcu-
late Y71 whenever a new observation arrives. Instead, Zhu,
Chen, and Wu (2021) proposed a “fully online-fashion” co

variance estimator, which splits the iterates 3; into n batches
B, ..., By, and estimates the covariance by

o _ 1y 122 =~
S = =%, x4wie;, where € = y;

Bn ﬁk _Bn) )

~

o= 1| |Z

where S, denotes the sum of all elements in By, and |By|
denotes the size of the k-th batch. The batches are overlapped.
For instance, fix a pre-determined sequence {1,3,5,7, ...},
we can set

— |Bk|Bn) (Sk — | Bk|Bn)’,

By = {p}, B2={p1, P},
Bz = {p3}, Bi={Bs,pba},
Bs = {pBs}, Bs=1{0Bs,086},

and subsequent By’s are defined analogously. Our proposed

scaling V is similar to Tg in the sense that it can be formu-
lated as:

~ 1 & . Y s
Vi = n2 Z(Sk — B |Bn) (Sk — |Bk|ﬁn)/
k=1

with a particular choice of batches being:

BT {61}735 = {51362}7B§ = {51752;63}7 ceey
BZ 3271 U{ﬂk},

However, there is a key difference between V,, and Y5: the
batches used by Tg, though they can be overlapped, are re-
quired to be weakly correlated as they become far apart. In
contrast, B; are strongly correlated and strictly nested. Thus,
we embrace dependences among Bj, and reach the scaling

V,, that does not consistently estimate Y. The important ad-
vantage of our approach is that there is no need to choose the
batch size.

In the next section, we provide results of experiments that
compare different methods in the linear regression model.
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Experiments

In this section we investigate the numerical performance of
the random scaling method via Monte Carlo experiments. We
consider two baseline models: linear regression and logistic
regression. We use the Compute Canada Graham cluster
composed of Intel CPUs (Broadwell, Skylake, and Cascade
Lake at 2.1GHz-2.5GHz) and they are assigned with 3GB
memory. The replication code is available at https://github.
com/SGDinference-Lab/AAAI-22.
The data for the linear regression are generated from

y=a;8  +e for t=1,...,n

where x; is a d-dimensional vector of covariates generated
from the multivariate normal distribution N (0, I), &; is from
N(0,1), and B* is equi-spaced on the interval [0, 1]. This
experimental design is the same as that of Zhu, Chen, and Wu
(2021). The dimension of x is set to d = 5, 20. We consider
different combination of the learning rate v = 7t~ * by
setting 7o = 0.5,1 and a = 0.505, 0.667. The sample size
set to be n = 100000. The initial value f3 is set to be zero.
In case of d = 20, we burn in around 1% of observations and
start to estimate 3; from ¢ = 1000. Finally, the simulation
results are based on 1000 replications.

We compare the performance of the proposed random
scaling method with the state-of-the-art methods in the lit-
erature, especially the plug-in method in Chen et al. (2020)
and the recursive batch-mean method in Zhu, Chen, and Wu
(2021).The performance is measured by three statistics: the
coverage rate, the average length of the 95% confidence inter-
val, and the average computation time. Note that the nominal
coverage probability is set at 0.95. For brevity, we focus on
the first coefficient 31 hereafter. The results are similar across
different coefficients.

Figures 1-2 summarize the simulation results. The com-
plete set of simulation results are reported in the Appendix.
In Figure 1, we adopt the same learning rate parameters as in
Zhu, Chen, and Wu (2021): 79 = 0.5 and @ = 0.505. Overall,
the performance of the random scaling method is satisfac-
tory. First, the random scaling and plug-in methods show
better coverage rates. The coverage rate of the batch-mean
method deviates more than 5% from the nominal rate even
at n = 100000. Second, the batch-mean method shows the
smallest average length of the confidence interval followed
by the plug-in and the random scaling methods. Third, the
plug-in method requires substantially more time for computa-
tion than the other two methods. The random scaling method
takes slightly more computation time than the batch-mean
method. Finally, we check the robustness of the performance
by changing the learning rates in Figure 2, focusing on the
case of d = 5. Both the random scaling method and the plug-
in method are robust to the changes in the learning rates in
terms of the coverage rate. However, the batch-mean method
converges slowly when ¢ = 0.667 and it deviates from the
nominal rates about 15% even at n = 100000.

We next turn our attention to the following logistic regres-
sion model:

yr = 1(z}B" —e, > 0) for t=1,...,n,
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d= 5 20 200

Random Scale

Coverage 0.930 0929 00919
Length 0.036 0.043 0.066
Time (sec.) 8.4 114 1703
Batch-mean

Coverage 0.824 0.772 0.644
Length 0.022 0.024 0.027
Time (sec.) 6.0 7.0 10.7
Plug-in

Coverage 0.953 0946 0.944
Length 0.029 0.035 0.053
Time (sec.) 55.2 66.8  955.0

Table 3: Logistic Regression, n = 10°, 79 = 0.5, a = 0.505
for ¢ = ot ™

where ¢, follows the standard logistic distribution and 1(-)
is the indicator function. We consider a large dimension of
2t (d = 200) as well as d = 5, 20. All other settings are the
same as the linear model.

Opverall, the simulation results are similar to those in linear
regression. Table 3 summarizes the simulation results of a
single design. The coverage rates of Random Scale and Plug-
in are satisfactory while that of Batch-mean is 30% lower
when d = 200. Random Scale requires more computation
time than Batch-mean but is still much faster than Plug-in.
The computation time of Random Scale can be substantially
reduced when we are interested in the inference of a single
parameter. In such a case, we need to update only a single
element of V rather than the whole d x d matrix. In Table
4, we show that Random Scale can be easily scaled up to
d = 800 with only 11.7 seconds computation time when we
are interested in the inference of a single parameter. Finally,
the results in the appendix reinforce our findings from the
linear regression design that the performance of Random-
scale is less sensitive to the choice of tuning parameters than
Batch-mean.
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