
Fast and Efficient MMD-Based Fair PCA via Optimization over Stiefel Manifold
Junghyun Lee1, Gwangsu Kim*2, Mahbod Olfat3,4, Mark Hasegawa-Johnson5, Chang D. Yoo*2

1 Kim Jaechul Graduate School of AI, KAIST, Seoul, Republic of Korea
2 School of Electrical Engineering, KAIST, Daejeon, Republic of Korea

3 UC Berkeley IEOR, Berkeley, CA, USA
4 Citadel, Chicago, IL, USA

5 Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, IL, USA
{jh lee00, s88012, cd yoo}@kaist.ac.kr, molfat@berkeley.edu, jhasegaw@illinois.edu

Abstract

This paper defines fair principal component analysis (PCA) as
minimizing the maximum mean discrepancy (MMD) between
dimensionality-reduced conditional distributions of different
protected classes. The incorporation of MMD naturally leads
to an exact and tractable mathematical formulation of fairness
with good statistical properties. We formulate the problem of
fair PCA subject to MMD constraints as a non-convex op-
timization over the Stiefel manifold and solve it using the
Riemannian Exact Penalty Method with Smoothing (REPMS).
Importantly, we provide local optimality guarantees and ex-
plicitly show the theoretical effect of each hyperparameter in
practical settings, extending previous results. Experimental
comparisons based on synthetic and UCI datasets show that
our approach outperforms prior work in explained variance,
fairness, and runtime.

Introduction
It has become increasingly evident that many widely-
deployed machine learning algorithms are biased, yielding
outcomes that can be discriminatory across key groupings
such as race, gender and ethnicity (Mehrabi et al. 2019). As
the applications of these algorithms proliferate in protected
areas like healthcare (Karan et al. 2012), hiring (Chien and
Chen 2008) and criminal justice (Kirchner et al. 2016), this
creates the potential for further exacerbating social biases.
To address this, there has recently been a surge of interest in
ensuring fairness in resulting machine learning algorithms.

Working in high-dimensional spaces can be undesirable as
the curse of dimensionality manifests in the form of data spar-
sity and computational intractability. Various dimensionality
reduction algorithms are deployed to resolve these issues,
and Principal Component Analysis (PCA), is one of the most
popular methods (Jolliffe and Cadima 2016). One particular
advantage of PCA is that there’s no need to train a complex
neural network.

In this work, fair PCA is defined as doing PCA while
minimizing the difference in the conditional distributions of
projections of different protected groups. Here, the projected
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data can be considered as a dimension-reduced fair represen-
tation of the input data (Zemel et al. 2013). We answer the
questions of 1) how fairness should be defined for PCA and
2) how to (algorithmically) incorporate fairness into PCA
in a fast and efficient manner. This work takes a different
approach from prior studies on PCA fairness (Samadi et al.
2018; Olfat and Aswani 2019), which is discussed in Section
and 15.

Our main contributions are as follows:

• We motivate a new mathematical definition of fairness
for PCA using the maximum-mean discrepancy (MMD),
which can be evaluated in a computationally efficient
manner from the samples while guaranteeing asymptotic
consistency. Such properties were not available in the
previous definition of fair PCA (Olfat and Aswani 2019).
This is discussed in detail in Section 3 and 4.

• We formulate the task of performing MMD-based fair
PCA as a constrained optimization over the Stiefel mani-
fold and propose using REPMS (Liu and Boumal 2019).
For the first time, we prove two general theoretical guar-
antees of REPMS regarding the local minimality and fea-
sibility. This is discussed in detail in Section 5 and 6.

• Using synthetic and UCI datasets, we verify the efficacy
of our approach in terms of explained variance, fairness,
and runtime. Furthermore, we verify that using fair PCA
does indeed result in a fair representation, as in (Zemel
et al. 2013). This is discussed in detail in Section 7.

Preliminaries
Notations
For b ≥ 1, let Pb be the set of all Borel probability measures
defined on Rb. For some measurable function Π : Rp → Rd
and a measure P ∈ Pp, the push-forward measure of P
via Π is the probability measure Π#P ∈ Pd, defined as
(Π#P )(S) = P (Π−1(S)) for any Borel set S. Let 0 and 1
denote matrices (or vectors) of zeros and ones of appropriate
size, respectively. In this work, we focus on binary cases, i.e.,
we assume that the protected attribute A and outcome Y are
binary (A, Y ∈ {0, 1}). We abbreviate demographic parity,
equalized opportunity, and equalized odds as DP, EOP, and
EOD, respectively.
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Maximum Mean Discrepancy (MMD)
Let k : Rd × Rd → R be a positive-definite kernel function,
and Hk be a unit-ball in the RKHS generated by k. We
impose some regularity assumptions on k:

Assumption 1. k is measurable, and bounded i.e. K :=
supx,y k(x, y) <∞.

Then one can pseudo-metrize Pd by the following dis-
tance:

Definition 1 (Gretton et al., 2007). Given µ, ν ∈ Pd,
their maximum mean discrepancy (MMD), denoted as
MMDk(µ, ν), is a pseudo-metric on Pd, defined as follows:

MMD
k

(µ, ν) := sup
f∈Hk

∣∣∣∣∫
Rd

f d(µ− ν)

∣∣∣∣ (1)

As our fairness constraint involves exactly matching the
considered distributions using MMD, we require the property
of MMDk(µ, ν) = 0 implying µ = ν. Any kernel k that
satisfies such property is said to be characteristic (Fukumizu
et al. 2008) to Pd. Furthermore, Sriperumbudur et al. (2008)
defined and characterized stationary characteristic kernels
and identified that well-known kernels such as RBF and
Laplace are characteristic. Based on this fact, we set k to be
the RBF kernel krbf (x, y) := exp

(
−‖x− y‖2/2σ2

)
.

For the choice of bandwidth σ, the median of the set of
pairwise distances of the samples after vanilla PCA is con-
sidered following the median heuristic of (Schölkopf, Smola,
and Müller 1998). For simplicity, we refer to MMDkrbf as
MMD.

Benefits of MMD There are several reasons for using
MMD as the distance on a space of probability measures.
First, it can act as a distance between distributions with dif-
ferent, or even disjoint, supports. This is especially crucial as
the empirical distributions are often discrete and completely
disjoint. Such a property is not generally true, one prominent
example being the KL-divergence. Second, since many prob-
lems in fairness involve comparing two distributions, MMD
has already been used in much of the fairness literature as a
metric (Madras et al. 2018; Adel et al. 2019) and as an ex-
plicit constraint/penalty (Prost et al. 2019; Oneto et al. 2020;
Jung et al. 2021), among other usages.

Fairness for Supervised Learning
The fair PCA discussed above should ultimately lead to fair-
ness in supervised learning tasks based on the dimension-
reduced data with minimal loss in performance. Let us now
review three of the most widely-used definitions of fairness
in supervised learning, as formulated in (Madras et al. 2018).
Let (Z, Y,A) ∈ Rd×{0, 1}×{0, 1} be the joint distribution
of the dimensionality-reduced data, (downstream task) label,
and protected attribute. Furthermore, let g : Rd → {0, 1} be
a classifier that outputs prediction Ŷ for Y from Z. We want
to determine the fairness of a well-performing classifier g
w.r.t. protected attribute A.

First, let Ds be the probability measure of Zs , Z|A = s
for s ∈ {0, 1}:

Definition 2 (Feldman et al., 2015). g is said to satisfy de-
mographic parity (DP) up to ∆DP w.r.t. A with ∆DP ,
|Ex∼D0 [g(x)]− Ex∼D1 [g(x)]|.

Now, let Ds,y be the probability measure of Zs , Z|A =
s, Y = y for s, y ∈ {0, 1}.
Definition 3 (Hardt, Price, and Srebro, 2016). g is said to
satisfy equalized opportunity (EOP) up to ∆EOP w.r.t. A
and Y with ∆EOP ,

∣∣Ex∼D0,1
[g(x)]− Ex∼D1,1

[g(x)]
∣∣.

Definition 4 (Hardt, Price, and Srebro, 2016). g is said to sat-
isfy equalized odds (EOD) up to ∆EOD w.r.t.A and Y with
∆EOD , maxy∈{0,1}

∣∣Ex∼D0,y
[g(x)]− Ex∼D1,y

[g(x)]
∣∣.

From hereon, we refer to such ∆f (g) as the fairness met-
ric of f ∈ {DP,EOP,EOD} w.r.t. g, respectively.

New Definition of Fairness for PCA
For p > d, let Rd be the space onto which data will be
projected. A dimensionality reduction is a map Π : Rp →
Rd, and PCA is defined as Π(x) = V ᵀx for some V ∈
Rp×d satisfying1 V ᵀV = Id i.e. PCA is a linear, orthogonal
dimensionality-reduction. From hereon, we denote a linear
PCA as the mapping Π. The definition for fairness that we
will be following throughout is given as follows.

Definition 5 (∆-fairness). Let Ps be the probability measure
of Xs , X|A = s for s ∈ {0, 1}, and let Qs := Π#Ps ∈
Pd. Then Π is said to be ∆-fair with ∆ := MMD(Q0, Q1),
and we refer to ∆ as the fairness metric.

In other words, for lower ∆-fairness, the discrepancy be-
tween the dimensionality-reduced conditional distributions
of different protected classes, measured in a non-parametric
manner using MMD, while retaining as much variance as
possible, should be minimized.

Furthermore, Definition 5 ensures that a downstream clas-
sification task using ∆-fair dimensionality-reduced data will
be fair, as formalized below2:

Proposition 1 (Oneto et al., 2020). Up to a constant fac-
tor, MMD(Q0, Q1) bounds the MMD of the push-forward
measures of Q0, Q1 via the weight vector of any given down-
stream task classifier g.

Remark 1. The above discussions easily generalize to equal
opportunity and equalized odds.

Relation with Other Definitions of Fair PCA
The notion of fairness proposed by Olfat and Aswani (2019)
is similar to ours in that it measures the predictability of
protected group membership in dimensonality-reduced data.
However, unlike ours, their definition is explicitly adversarial,
which can be a problem.

Definition 6 (∆A-fairness; Olfat and Aswani, 2019). Con-
sider a fixed classifier h(u, t) : Rd × R→ {0, 1} that inputs

1The benefits of pursuing orthogonality in the loading matrix,
and thus the resulting PCs, are already well-studied; for example,
see (Qi, Luo, and Zhao 2013; Benidis et al. 2016).

2See Lemma 3 of (Oneto et al. 2020) for the precise statement.
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features u ∈ Rd and a threshold t, and predicts the protected
class s ∈ {0, 1}. Then, Π is ∆A(h)-fair if

sup
t∈R

∣∣∣P[h(Π(x), t) = 1|s = 1
]

− P
[
h(Π(x), t) = 1|s = 0

]∣∣∣ ≤ ∆A(h)

(2)

Moreover, for a family of classifiers Fc, if Π is ∆A(h)-fair
for ∀h ∈ Fc, we say that Π is ∆A(Fc)-fair.

As ∆A can’t be computed exactly, an estimator of the
following form was used:

∆̂A(Fc) := sup
h∈Fc

sup
t

∣∣∣∣∣ 1

|P |
∑
i∈P

Ii(Π, ht)−
1

|N |
∑
i∈N

Ii(Π, ht)

∣∣∣∣∣
(3)

where {xi}ni=1 are the data points, (P,N) is a partition
of the index set {1, 2, . . . , n} into two protected groups,
Ii(Π, ht) = 1(h(Π(xi), t) = +1), and 1(·) is the indica-
tor function.
Remark 2. It can be argued that, for some choice of Fc,
Definition 5 and 6 are equivalent: in effect, that these are
dual notions. Recognizing this, we proceed with Definition 5,
as it has two main advantages in the context of our work:

• It ties more directly and intuitively into our optimization
formulation; see Section .
• It can be represented non-variationally which allows for

tighter statistical guarantees.

Statistical Properties of ∆
Consistent and Efficient Estimation of ∆

As defined in Definition 5, let Q0, Q1 ∈ Pd be the prob-
ability measures with respect to the samples of which we
want to estimate MMD(·, ·). Let {Xi}mi=1 and {Yj}nj=1 be
these samples, respectively. Accordingly, we consider the
following estimator:

∆̂ := MMD(Q̂0, Q̂1) (4)

where Q̂s is the usual empirical distribution, defined as the
mixture of Dirac measures on the samples.

Unlike other statistical distances (e.g. total variation dis-
tance), ∆̂k has several theoretical properties that have impor-
tant practical implications; see Sriperumbudur et al. (2010)
for more details.

First, it can be computed exactly and efficiently:

Lemma 1 (Gretton et al., 2007). ∆̂ is computed as follows:

∆̂ =

[
1

m2

m∑
i,j=1

k(Xi, Xj) +
1

n2

n∑
i,j=1

k(Yi, Yj)

− 2

mn

m,n∑
i,j=1

k(Xi, Yj)

]1/2

.

(5)
Moreover, it is asymptotically consistent with a conver-

gence rate, depending only on m and n:

Proposition 2 (Gretton et al., 2007). For any δ > 0, with
probability at least 1 − 2 exp

(
− δ2mn

2(m+n)

)
the following

holds: ∣∣∣∆− ∆̂
∣∣∣ ≤ 2

(
1√
m

+
1√
n

)
+ δ (6)

Advantages over ∆A

∆̂A is known to satisfy the following high probability bound:
Proposition 3 (Olfat and Aswani, 2019). Consider a fixed
family of classifiers Fc. Then for any δ > 0, with probability
at least 1− exp

(
− (n+m)δ2

2

)
the following holds:∣∣∣∆A(Fc)− ∆̂A(Fc)
∣∣∣ ≤ 8

√
V C(Fc)
m+ n

+ δ (7)

where V C(·) is the VC dimension.
Remark 3. If Fc is too expressive in terms of VC-dimension,
then the above bound may become void. This is the case, for
instance, when Fc is the set of RBF-kernel SVMs.

In addition, computing ∆̂A requires considering all possi-
ble classifiers in the designated family Fc. This is computa-
tionally infeasible, and it forces one to use another approx-
imation (e.g. discretization of Fc), which incurs additional
error that may further inhibit asymptotic consistency.

As exhibited in the previous subsection, our MMD-based
approach suffers from none of these issues.

Manifold Optimization for MBF-PCA
Improvements over FPCA
Olfat and Aswani (2019) proposed FPCA, an SDP formula-
tion of fair PCA3, in which matching the first and second mo-
ments of the protected groups after dimensionality-reduction
are approximated as convex constraints. However, this has
several shortcomings, which we discuss here and empirically
exhibit in a later section.

First, there are cases in which matching the mean and co-
variance alone is not enough. The simplest “counterexample”
would be when two protected groups have the same mean
and covariance, yet they have different distributions. This
is illustrated in Figure 1. While this previous point can be
countered by the application of the kernel trick to FPCA, this
raises a second issue: their formulation requires solving 4 a
p× p-dimensional SDP, motivated by the reparameterization
P = V V ᵀ (Arora, Cotter, and Srebro 2013). Since SDP is
known to become inefficient (or even computationally infea-
sible) in high dimensions, this quickly becomes intractable
for high-dimensional data (for linear or polynomial kernels)
or for any moderate to large size datasets (for the RBF ker-
nel). Finally, their approach involves a relaxation of a rank
constraint (rank(P ) ≤ d) to a trace constraint (tr(P ) ≤ d),
yielding sub-optimal outputs in presence of (fairness) con-
straints, even to substantial order in some cases. In Section C

3See Section B of the supplementary material for its precise
description.

4In their approach, the final solution V is obtained by taking the
first d eigenvectors of P .

7365



(a) Original data (b) PCA (c) FPCA (Olfat and Aswani
2019)

(d) MBF-PCA (ours)

Figure 1: Synthetic data #1: Comparison of PCA, FPCA, and MBF-PCA on data composed of two groups with same mean and
covariance, but different distributions. Blue and orange represent different protected groups.

of the SP, we discuss in detail why FPCA may lead to such
degraded explained variance.

Formulating MBF-PCA

Observing that the shortcomings of FPCA stem from the
reparametrization of P = V V ᵀ, we propose a new formula-
tion of fair PCA that solves directly for V . This allows for an
effective and efficient approach.

We start by noting that the set of all V with orthonormal
columns has the intrinsic geometric structure of a manifold:

Definition 7. For p > d, the Stiefel manifold, denoted as
St(p, d), is an embedded Riemannian sub-manifold of Rp×d
such that each element of St(p, d) has orthonormal columns
i.e. V ᵀV = Id for all V ∈ St(p, d).

St(p, d) has several desirable properties such as compact-
ness, completeness and smoothness, which we present in
Section D of the SP. As St(p, d) is prevalent in various fields
of machine learning (most notably PCA), much work has
been done that focuses on exploiting this geometric structure
for efficient optimization (Hu et al. 2020).

Based on our MMD-based formulation and letting Σ be
the sample covariance matrix of the full dataset, we formulate
our fair PCA as follows, which we refer to as MBF-PCA:

minimize
V ∈St(p,d)

f(V ) := −〈Σ, V V ᵀ〉

subject to h(V ) :=
2

MMD(Q0, Q1) = 0.

(8)

Here, Q0 and Q1 are defined as in definition 5. Observe how
our definition of fairness directly incorporates itself into the
optimization problem as a constraint.

Remark 4. Under an assumption of normality, our MMD-
based formulation amounts to the same constraints as FPCA
since MMD2(·, ·) is a metric and a Gaussian distribution is
completely characterized by its first and second moments.

REPMS for MBF-PCA, with New Theoretical
Guarantees

Description of Algorithm 1
One crucial observation is that the constraint function h is
always non-negative5 and smooth. This motivates the use
of the exact penalty method (Han and Mangasarian 1979),
recently extended to manifold optimization as the Rieman-
nian Exact Penalty Method via Smoothing (REPMS; Liu
and Boumal, 2019). Note that smoothing tricks (Liu and
Boumal 2019), which were required to smooth out possible
non-differentiable functions emerging from the `1-penalty,
are not necessary. Moreover, by leveraging the kernel trick,
there is a closed form for ∇V h(V ), thus alleviating the need
for computationally expensive numerical approximations; see
Section G of the SP for the derivation. The pseudo-code for
the algorithm is shown in Algorithm 1.

For practical concerns that will be addressed in the follow-
ing subsection, we’ve set the fairness tolerance level, τ , to be
a fixed and sufficiently small, non-negative value. Formally,
we consider the following definition:

Definition 8. For fixed τ ≥ 0, V ∈ St(p, d) is τ -
approximate fair if it satisfies h(V ) ≤ τ . If τ = 0, we
simply say that V is fair.

New Theoretical Guarantees for Algorithm 1
We start by observing that Eq. (9) in Algorithm 1 is smooth,
unconstrained manifold optimization problem, which can be
solved using conventional algorithms; these include first-
order methods like line-search methods (Absil, Mahony,
and Sepulchre 2007), or second-order methods like the Rie-
mannian Trust Region (RTR; Absil, Baker, and Gallivan,
2007) method. It is known that, pathological examples ex-
cluded, most conventional unconstrained manifold optimiza-
tion solvers produce iterates whose limit points are local
minima, and not other stationary points such as saddle point
or local maxima: see (Absil, Baker, and Gallivan 2007; Absil,
Mahony, and Sepulchre 2007) for more detailed discussions.

Motivated by this, we consider the following assumption:

5This is due to our choice of estimator for MMD inducing a
non-negative estimate of MMD2; see Section 2 of Gretton et al.
(2012) for more detailed discussions.
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Algorithm 1: REPMS for MbF-PCA
Input: X , K, εmin, ε0 > 0, θε ∈ (0, 1), ρ0 > 0,

θρ > 1, ρmax ∈ (0,∞), τ > 0, dmin > 0.
1 Initialize V0;
2 for k = 0, 1, . . . ,K do
3 Compute an approximate solution Vk+1 for the

following sub-problem, with a warm-start at Vk,
until ‖grad Q‖ ≤ εk:

min
V ∈St(p,d)

Q(V, ρk) (9)

where

Q(V, ρk) = f(V ) + ρkh(V )

4 if ‖Vk+1 − Vk‖F ≤ dmin and εk ≤ εmin then
5 if h(Vk+1) ≤ τ then
6 return Vk+1;
7 end
8 end
9 εk+1 = max{εmin, θεεk};

10 if h(Vk+1) > τ then
11 ρk+1 = min(θρρk, ρmax);
12 else
13 ρk+1 = ρk;
14 end
15 end

Assumption 2 (informal; locality assumption). Each Vk+1

is sufficiently close to a local minimum of Eq. (9).
Lastly, we consider the following auxiliary optimization

problem:
min

V ∈St(p,d)
h(V ) (10)

The following theorem, whose proof is deferred to Section
F of the SP, provides an exact theoretical convergence guar-
antee of MBF-PCA under the ideal hyperparameter setting:
Theorem 1. Let K =∞, ρmax =∞, εmin = τ = 0, {Vk}
be the sequence generated by Alg. 1 under Assumption 2, and
V be any limit point of {Vk}, whose existence is guaranteed.
Then the following holds:

(A) V is a local minimizer of Eq. (10), which is a necessary
condition for V to be fair.

(B) If V is fair, then V is a local minimizer of Eq. (8)
The assumption of V being fair, which is used in (B), is

at least partially justified in (A) in the following sense: the
ideal hyperparameter setting of ρmax =∞, τ = 0, εmin = 0
implies the exact local minimality of V for Eq. (10), which
is in turn a necessary condition for V to be fair.

The next theorem, whose proof is also deferred to Section
F of the SP, asserts that with small τ, εmin and large ρmax,
the above guarantee can be approximated in rigorous sense:
Theorem 2. Let K =∞, ρmax <∞, εmin, τ > 0, {Vk} be
the sequences generated by Alg. 1 under Assumption 2 and
V be any limit point of {Vk}, whose existence is guaranteed.
Then for any sufficiently small εmin and r̃ = r̃(εmin) > 0,
the following hold:

(A) V is an approximate local minimizer of Eq. (10) in the
sense that

h(V ) ≤ h(V ) + β‖V − V ‖+ (β + Lh)g(εmin) (11)

for all V ∈ Br̃(V ) ∩ St(p, d), where β = β(ρmax, τ) is
a function that satisfies the following:

• 0 < β ≤ 2‖Σ‖
ρ0

• β(ρmax, τ) is increasing in ρmax and decreasing in τ .
(B) If V is fair, then it is an approximate local minimizer of

Eq. (8) in the sense that it satisfies

f(V ) ≤ f(V ) + 2‖Σ‖g(εmin) (12)

for all fair V ∈ Br̃(V ) ∩ St(p, d).

In both (A) and (B), g is some continuous, decreasing
function that satisfies g(0) = 0, and r̃(εmin) = r − g(εmin)
for some fixed constant r > 0.

Existing optimality guarantee of REPMS (Proposition 4.2;
Liu and Boumal, 2019) states that when εmin = 0, ρ is not
updated (i.e. line 10-14 is ignored), and the resulting limit
point is feasible, then that limit point satisfies the KKT con-
dition (Yang, Zhang, and Song 2014). Comparing Theorem
1 and 2 to the previous result, we see that ours extend the
previous result in several ways:
• Our theoretical analyses are much closer to the actual

implementation, by incorporating the ρ-update step (line
11) and the practical hyperparameter setting.
• Our theoretical analyses are much more stronger in the

sense that 1) by introducing a reasonable, yet novel lo-
cality assumption, we go beyond the existing KKT con-
ditions and prove the local minimality of the limit point,
and 2) we provide a partial justification of the feasibility
assumption in (A) by proving a necessary condition for it.

Practical Implementation
In line 4 in Algorithm 1, we implemented the termination
criteria: sufficiently small distance between iterates and suffi-
ciently small tolerance for solving Eq. (9). However, such a
heuristic may return some point V that is not τ -approximate
fair for user-defined level τ in practical hyperparameter set-
ting. To overcome this issue, we’ve additionally implemented
line 5 that forces the algorithm to continue on with the loop
until the desired level of fairness is achieved.

Related Work
Fairness in ML
A large body of work regarding fairness in the context of
supervised learning (Feldman et al. 2015; Calders, Kamiran,
and Pechenizkiy 2009; Dwork et al. 2012; Hardt, Price, and
Srebro 2016; Zafar et al. 2017) has been published. This
includes key innovations in quantifying algorithmic bias,
notably the concepts of demographic parity and equalized
odds (opportunity) that have become ubiquitous in fairness
research (Barocas and Selbst 2016; Hardt, Price, and Srebro
2016). More recently, fair machine learning literatures have
branched out into a variety of fields, including deep learning
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(Beutel et al. 2017), regression (Calders et al. 2013), and even
hypothesis testing (Olfat et al. 2020).

Among these, one line of research has focused on learn-
ing fair representations (Kamiran and Calders 2011; Zemel
et al. 2013; Feldman et al. 2015; Calmon et al. 2017), which
aims to learn a representation of the given data on which
various fairness definitions are ensured for downstream mod-
eling. A growing number of inquiries have been made into
highly specialized algorithms for specific unsupervised learn-
ing problems like clustering (Chierichetti et al. 2017; Bera
et al. 2019), but these lack the general applicability of key
dimensionality reduction algorithms such as PCA.

To the best of our knowledge, Olfat & Aswani (2019) is
the only work on incorporating fair representation to PCA,
making it the sole comparable approach to ours. Another line
of work (Samadi et al. 2018; Tantipongpipat et al. 2019) con-
siders a completely orthogonal definition of fairness for PCA:
minimizing the discrepancy between reconstruction errors
over protected attributes. This doesn’t ensure the fairness of
downstream tasks, rendering it incomparable to our definition
of fairness; see Section A of the SP for more details.

Manifold Optimization
A constrained problem over Euclidean space can be trans-
formed to an unconstrained problem over a manifold (or at
least manifold optimization with less constraints). Many al-
gorithms for solving Euclidean optimization problems have
direct counterparts in manifold optimization problems that in-
cludes Riemannian gradient descent and Riemannian BFGS.
By making use of the geometry of lower dimensional man-
ifold structure, often embedded in potentially very high di-
mensional ambient space, such Riemannian counterparts are
much more computationally efficient than algorithms that do
not make use of manifold structure. This is shown in numer-
ous literatures (Liu and Boumal 2019; Alsharif et al. 2021),
including this work. We refer interested readers to the stan-
dard textbooks Absil, Mahony, and Sepulchre (2007) and
Boumal (2022) on this field, along with a survey by Hu et al.
(2020).

Experiments
MBF-PCA was implemented using ROPTLIB (Huang et al.
2018), a state-of-the-art manifold optimization framework
on MATLAB. For solving Eq. (9), we use the cautious Rie-
mannian BFGS method (RBFGS; Huang, Absil, and Gal-
livan, 2018), a quasi-Newton method that is much more
memory-efficient. We’ve set K = 100, εmin = 10−6, ε0 =
10−1, θε = (εmin/ε0)1/5, ρmax = 1010, θρ = 2, dmin =
10−6. For FPCA, we use the same Python MOSEK(ApS
2021) implementation as provided by (Olfat and Aswani
2019). (µ, δ) are the hyperparameters of FPCA; see Section
B of the SP. Codes are available in our Github repository6.

All data is pre-processed to be standardized such that each
covariate has zero mean and unit variance. For all experi-
ments, we considered 10 different 70− 30 train-test splits.

6https://github.com/nick-jhlee/fair-manifold-pca
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Figure 2: Synthetic data #2: Comparison of PCA, FPCA,
and MBF-PCA on the synthetic datasets of increasing di-
mensions.
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Figure 3: Synthetic data #2: Comparison of runtimes of
FPCA, and MbF-PCA.

Synthetic Data #1
We consider synthetic data composed of two groups, each
of size n = 150; one is sampled from N3(0, 0.1I3 + 1) and
one is sampled from a (balanced) mixture of N3(1, 0.1I3)
and N3(−1, 0.1I3). Note how the two groups follow differ-
ent distributions, yet have the same mean and covariance.
Thus, we expect FPCA to project in a similar way as vanilla
PCA, while MBF-PCA should find a fairer subspace such
that the projected distributions are exactly the same. Hyper-
parameters are set as follows: δ = 0, µ = 0.01 for FPCA
and τ = 10−5 for MBF-PCA. We’ve set d = 2 and Figure
1 displays the results of each algorithm using the top two
principal components. Indeed, only MBF-PCA successfully
obfuscates the protected group information by merging the
two orange clusters with the blue cluster.

Synthetic Data #2
We consider a series of synthetic datasets of dimension p.
For each p, the dataset is composed of two groups, each
of size n = 240 and sampled from two different p-variate
normal distributions. We vary p ∈ {20, 30, . . . , 100}; see
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COMPAS (11) GERMAN CREDIT (57) ADULT INCOME (97)
d ALG. %VAR %ACC MMD2 ∆DP %VAR %ACC MMD2 ∆DP %VAR %ACC MMD2 ∆DP

PCA 39.285.17 64.531.45 0.0920.010 0.290.09 11.420.47 76.871.39 0.1470.049 0.120.06 7.780.82 82.031.15 0.3490.027 0.200.05

FPCA (0.1, 0.01) 35.065.16 61.651.17 0.0120.007 0.100.07 7.430.59 72.171.09 0.0170.010 0.030.02 4.050.98 77.442.96 0.0160.011 0.040.04

2 FPCA (0, 0.01) 34.435.02 60.861.09 0.0110.006 0.100.06 7.330.57 71.771.60 0.0150.010 0.030.03 3.650.97 77.053.18 0.0050.004 0.010.01

MBF-PCA (10−3) 33.955.01 65.371.11 0.0050.002 0.120.07 10.170.57 74.531.92 0.0180.014 0.050.04 6.030.61 79.501.22 0.0050.004 0.030.02

MBF-PCA (10−6) 11.833.59 57.731.50 0.0020.002 0.060.08 9.360.33 74.101.56 0.0160.010 0.020.02 5.830.57 79.121.14 0.0050.004 0.010.01

PCA 100.000.00 73.141.22 0.2410.005 0.210.07 38.250.98 99.930.14 0.1300.019 0.120.08 21.772.06 93.640.92 0.1950.007 0.160.01

FPCA (0.1, 0.01) 87.791.27 72.250.93 0.0150.003 0.160.06 29.850.87 99.930.14 0.0200.005 0.120.08 15.751.20 91.940.88 0.0060.003 0.130.02

10 FPCA (0, 0.1) 87.441.35 72.320.93 0.0150.002 0.160.07 29.790.89 99.930.14 0.0200.006 0.120.08 15.521.18 91.660.97 0.0040.002 0.130.02

MBF-PCA (10−3) 87.75∗1.36 72.16∗0.90 0.014∗0.002 0.16∗0.07 34.101.00 99.930.14 0.0200.008 0.120.08 18.711.47 92.810.84 0.0050.002 0.140.01

MBF-PCA (10−6) 87.75∗1.36 72.16∗0.90 0.014∗0.002 0.16∗0.07 16.951.52 92.703.00 0.0130.007 0.060.05 15.49∗6.44 86.36∗3.77 0.003∗0.002 0.07∗0.03

Table 1: Comparison of PCA, FPCA, MBF-PCA for UCI datasets. Number in parenthesis for each dataset is its dimension. Also,
the parenthesis for each fair algorithm is its hyperparameter setting; (µ, δ) for FPCA and τ for MBF-PCA. Lastly, starred(∗)
results are those such that the maximum iteration is reached before passing the termination criteria in MBF-PCA.

Figure 4: Comparison of communality of “age” of German
credit dataset for PCA, FPCA, and MBF-PCA.

Section H of the SP for a full description of the setting. For
the hyperparameters, we’ve set δ = 0, µ = 0.01 for FPCA
and τ = 10−5 for MBF-PCA.

Figure 2 plots the explained variance and fairness metric
values. Observe how MBF-PCA achieves better explained
variance, while achieving similar level of fairness. In addi-
tion, Figure 3 shows a clear gap in runtime between FPCA
and MBF-PCA; the runtime of FPCA explodes for even
moderate problem sizes, while MBF-PCA scales well. For
higher dimensions, conventional computing machine will not
be able to handle such computational burden.

UCI Datasets
For target dimensions d ∈ {2, 10}, we compare the perfor-
mance of FPCA and MBF-PCA on 3 datasets from the UCI
Machine Learning Repository (Dua and Graff 2017); COM-
PAS dataset (Kirchner et al. 2016), Adult income dataset, and
German credit dataset. See Section I of the SP for complete
description of the pre-processing steps. For both algorithms,
we consider two different hyperparameter settings, such that
one simulates the relaxed fairness while the other simulates
a stricter fairness constraints. For computing ∆DP (g), we
trained a RBF SVM g to be the downstream task classifier

that best classifies the target attribute in the dimensionality-
reduced data. Table 1 displays the results, in which among
the fair algorithms considered, results with the best mean
values are bolded. Several observations can be made:

• Across all considered datasets, MBF-PCA is shown to
outperform FPCA in terms of fairness (both MMD2 and
∆DP ) with low enough τ .

• For GERMAN CREDIT and ADULT INCOME, MBF-PCA
shows a clear trade-off between explained variance and
fairness; by relaxing τ , we see that MBF-PCA outper-
forms FPCA in terms of explained variance and down-
stream task accuracy.

In addition, to see how correlated are the PCs with the
protected attribute, we examine the communalities. For clar-
ity of exposition, we consider the German credit dataset,
whose protected attribute is age, and d = 10. Here, we again
consider PCA, FPCA (0, 0.01), and MBF-PCA (10−3). For
PCA, communality of a feature is its variance contributed by
the PCs (Johnson and Wichern 2008), which is computed as
the sum of squares of the loadings of the considered feature.
Larger value of communality implies that the correlations be-
tween the considered feature and the PCs are strong. Figure 4
displays the boxplot of communality of considered 10 splits.
Indeed the amount of variance in age that is accounted for
from the loadings of MBF-PCA is much smaller than that of
PCA or FPCA i.e. the PCs resulting from MBF-PCA have
the least correlations with age, the protected attribute.

Conclusion and Future Works
We present a MMD-based definition of fair PCA, and for-
mulate it as a constrained optimization over the Stiefel mani-
fold. Through both theoretical and empirical discussions, we
show that our approach outperforms the previous approach
(Olfat and Aswani 2019) in terms of explained variance, fair-
ness, and runtime. Many avenues remain for future research:
statistical characterizations of our fair PCA in asymptotic
regime, as well as incorporation of sparsity (Johnstone et al.
2009); incorporating stochastic optimization-type modifica-
tions (Shamir 2015), as such modifications are expected to
result in better scalability and performance.
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