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Abstract

It has been crucial to leverage the rich information of mul-
tiple modalities in many tasks. Existing works have tried to
design multi-modal networks with descent multi-modal fu-
sion modules. Instead, we focus on improving generalization
capability of multi-modal networks, especially the fusion mod-
ule. Viewing the multi-modal data as different projections of
information, we first observe that bad projection can cause
poor generalization behaviors of multi-modal networks. Then,
motivated by well-generalized network’s low sensitivity to
perturbation, we propose a novel multi-modal training method,
multi-head modularization (MHM). We modularize a multi-
modal network as a series of uni-modal embedding, multi-
modal embedding, and task-specific head modules. Also, for
training, we exploit multiple head modules learned with dif-
ferent datasets, swapping each other. From this, we can make
the multi-modal embedding module robust to all the heads
with different generalization behaviors. In testing phase, we
select one of the head modules not to increase the computa-
tional cost. Owing to the perturbation of head modules, though
including one selected head, the deployed network is more
well-generalized compared to the simply end-to-end learned.
We verify the effectiveness of MHM on various multi-modal
tasks. We use the state-of-the-art methods as baselines, and
show notable performance gain for all the baselines.

1 Introduction
Human beings perceive the world through comprehensive
information from multiple sensory systems. From this point,
it has been a crucial problem to leverage multi-modal data
obtained from different sources/structures (modalities) in ma-
chine learning (Baltrušaitis, Ahuja, and Morency 2018; Wang,
Tran, and Feiszli 2020). Most of existing methods (Joze et al.
2020; Liu and Yuan 2018; Abavisani, Joze, and Patel 2019;
Ngiam et al. 2011) have tried to obtain collaborative multi-
modal representation where both cross- and uni-modal infor-
mation are conveyed. To this end, diverse multi-modal fusion
schemes have been designed, such as averaging (Hazirbas
et al. 2016), concatenation (Ngiam et al. 2011; Lee, Uh, and
Byun 2020), or attentional alignment (Lee et al. 2021; Tsai
et al. 2019).

*Qualcomm AI Research is an initiative of Qualcomm Technolo-
gies, Inc.
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Although these fusion schemes have made fruitful
progress, they have made less effort to understand the re-
lationship between the generalization behaviors of the multi-
modal networks and input modalities. To delve into the re-
lationship, we first note that modality is a way to transmit
information (Turk 2014; Caschera, Ferri, and Grifoni 2007).
If so, the information can be corrupted in some unreliable
modalities, and then multi-modal networks may fail to mine
discriminative features (Christoudias, Urtasun, and Darrell
2008; Hori et al. 2017).

To verify this, viewing multi-modal data as multiple pro-
jections of information, we design a toy multi-modal problem.
We show that the generalization behavior of a multi-modal
network is affected by the configuration of projections (i.e.
input modalities). Namely, in some projections, the multi-
modal network suffers from the over-fitting problem. How-
ever, in real-world problems, it is hard to find the optimal
configuration of input modalities, or re-calibrate them. Hence,
it is crucial to learn multi-modal networks to have strong gen-
eralization capability.

Generalization capability of deep networks mostly depends
on both learning algorithms and network architectures (Good-
fellow et al. 2016). Therefore, while the existing works have
attempted to design multi-modal fusion architecture, we ded-
icate to the second point, generally applicable learning algo-
rithm to leverage the generalization capability of deep multi-
modal networks. To this end, we focus on the small sensitivity
of well-generalized networks to perturbations (e.g. weight ini-
tialization, hyper-parameters, or noise on final weights) (No-
vak et al. 2018; Jiang et al. 2020; Morcos, Raghu, and Bengio
2018). Inspired by this, we aim to develop a simple but effec-
tive training technique making multi-modal representation
robust to multiple classification heads with different general-
ization behaviors. Then, the deployed network can converge
to a more general solution with small sensitivity.

More specifically, we propose the multi-head modulariza-
tion (MHM) algorithm to promote the generalization capa-
bility of multi-modal networks. We consider a multi-modal
network as a series of uni-modal embedding, multi-modal em-
bedding, and (task-specific) head modules. Also, we exploit
multiple head modules instead of a single head during train-
ing. The objective of our modularization is to leverage the
generalization capability of the multi-modal embedding mod-
ule. To this end, we split the entire training data and assign
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Toy dataset Two moons Swiss roll

Projection lines
p1: 〈1,0〉, v1: 〈-1,1〉 p1: 〈1,0〉, v1: 〈-1,1〉 p1: 〈1,0,0〉, v1: 〈0,-1,0〉 p1: 〈0,0,0〉, v1: 〈1,1,1〉
p2: 〈0,0〉, v2: 〈1,0〉 p2: 〈0,0〉, v2: 〈2,1〉 p2: 〈1,0,0〉, v2: 〈1,0,-1〉 p2: 〈0,0,0〉, v2: 〈1,2,1〉

p3: 〈0,1,0〉, v3: 〈0,1,-1〉 p3: 〈0,0,0〉, v3: 〈1,4,1〉
Testing error (%) 17.5 / 17.5 / 27.5 27.5 / 32.5 / 18.0 22.5 / 23.7 / 23.6 33.7 / 26.5 / 27.5
Training error (%) 11.9 / 13.5 / 17.5 10.0 / 14.8 / 16.2 18.7 / 19.1 / 17.2 / 20.0 / 18.8 / 19.4

Generalization gap (%) 5.6 / 4.0 / 10.0 17.5 / 17.7 / 1.8 3.8 / 4.6 / 6.4 13.7 / 6.7 / 8.1

Table 1: Testing and training errors, and generalization gap of a toy network depending on modality configuration on the two
moons and swiss roll datasets, where results for early, intermediate, and late fusions are separated by ‘/’. Each modality is a
projection line which is represented by p + tv where p and v are a point and a directional vectors, respectively.

the different subsets to each of the multiple head modules.
By training alternately these head modules and multi-modal
embedding modules, we make the multi-modal embedding
module robust to multiple heads which are learned to have
different generalization behavior.

For the deployed network, we select one of the head mod-
ules. Hence, although using the multiple heads in training,
the proposed MHM improves the generalization capability of
the multi-modal network without additional computational
cost in the testing phase.

In summary, we make following contributions:
• Based on a novel point of view for the multi-modal data,

we explore the generalization behavior of multi-modal
networks depending on input modalities.

• To promote the generalization sensitivity of multi-modal
networks to unseen data, we propose a MHM algorithm to
leverage the generalization capability of the multi-modal
networks.

• The proposed MHM is generally applicable to various
multi-modal networks without additional computational
cost in testing phase.

• We conduct extensive experiment to analyze the efficacy
of MHM in terms of generalization capability.

• For three multi-modal tasks (audio-visual event detection,
action localization, sentiment analysis), we successfully
boost the performance of the state-of-the-art methods on
benchmark datsets (AVE, THUMOS14, CMU-MOSEI).

2 Related Works
Deep multi-modal learning Many deep multi-modal learn-
ing methods can be categorized into early, intermediate, and
late fusion. In the early fusion, low-level features of different
modalities are simply concatenated as a single input to the
following deep architectures. In the intermediate fusion, each
modality learns uni-modal representation, and then the uni-
modal features are combined to a joint representation in the
middle of the network. In the late fusion, modality-specific

classifiers make individual predictions, then the final decision
is obtained by combining those predictions.

In multi-modal networks, reducing the heterogeneity gap
between different modalities is crucial to leverage the com-
plementary relationship of multiple modalities (Guo, Wang,
and Wang 2019). Hence, recent deep multi-modal learning
methods mostly adopt the intermediate fusion framework.
To bridge the different modalities, (Zadeh et al. 2017) for-
mulated the intermediate fusion with the outer product of
uni-modal features. In (Fukui et al. 2016), the outer product
is streamlined by the count sketch projection function. How-
ever, still many methods exploit the hidden layers to design
the intermediate fusion modules to more robustly combine
different modalities using cross-correlation (Lee et al. 2021),
directional transformer (Tsai et al. 2019), and embracement
layer (Choi and Lee 2019). These methods show the impor-
tance of the fusion modules between modalities in multi-
modal tasks. We also focuses on the fusion modules. But
rather than addressing where/how to fuse different modali-
ties, we improve the generalization behavior of the fusion
modules, and thus it can attain better fusion.
Generalization in neural networks There are two lines of
approaches for improving the generalization capability of
networks. The first focuses on regularization. In the ear-
lier works, data augmentation, noise injection and weight
decay (Nowlan and Hinton 1992), and dropout (Srivastava
et al. 2014) were proposed and still widely used. In recent,
for multi-branch networks, (Gastaldi 2017) applied a prob-
abilistic affine combination to typical summation of par-
allel branches. In (Neyshabur, Tomioka, and Srebro 2015;
Neyshabur et al. 2017), the implicit regularization effect of
SGD has been studied. However, these techniques are not
tailored for multi-modal tasks.

As the second line of works, ensemble has long been a
typical solution to improve generalization ability of a sin-
gle networks (Hansen and Salamon 1990; Dietterich 2000).
The ensembled network is more generalized when individ-
ual networks have diverse generalization behaviors (Good-
fellow et al. 2016). Based on this, diverse basic strate-
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Figure 1: The proposed MHM framework exemplifying that K-th head is used. (a) K different splits of the entire training dataset.
(b) K multiple head modules. (c) The multi-modal network is trained iteratively freezing the head or multi-modal embedding
modules (Red and blue denote different training pathways where the frozen modules are dashed on each.)

gies showed promising results, such as training with ran-
domly initialized weights (Krizhevsky, Sutskever, and Hinton
2012; Simonyan and Zisserman 2015), training with different
datasets (Szegedy et al. 2015), capturing multiple snapshots
in a training schedule (Huang et al. 2017). However, these
ensemble methods inevitably require manifold inferences,
which drops the computational efficiency in testing. Con-
current to ensemble, our algorithm exploits multiple clas-
sification heads on training. But, we make each head well-
generalized on its own when deployed, and hence don’t re-
quire additional computation costs in testing.

3 Toy Analysis: Generalization Behavior of
Multi-Modal Network

Multi-modal data is acquired by observing (or describing) a
moment that occurred in real-world with different modalities.
Here, to analyze multi-modal learning on a simple, inter-
pretable system, we construct a scenario for the multi-modal
data acquisition process as a projection of high-dimensional
data to multiple low-dimensional spaces. Hence, each low-
dimensional space corresponds to a modality.

Specifically, we consider two well-known toy datasets:
two moons and Swiss roll. As shown in Table 1, in the two
moons dataset, data points are categorized into one of two
moon classes in 2D space. In the Swiss roll dataset, each
data point is labeled by one of four roll classes in 3D space.
For both datasets, we generate 100 data points per class.
Following our scenario of multi-modal data acquisition, we
project the original data points onto multiple lines (two for
two moons, three for Swiss roll). In this case, each projection
point, represented by a 1D coordinate on a projection line,
means an observed data in a modality. Then, the multi-modal
representation of a data point is a set of the 1D coordinates
obtained from the multiple projection lines.

We design three toy networks for early, intermediate, and
late fusions, respectively (See the supplementary materials
for their details). Taking as an input the set of projection
points, each toy network is learned to classify the input to its
ground-truth class. For each class, we randomly select 90%
of data points for training and use the remaining for testing.

To analyze the influence of modality configuration on the

generalization behavior of multi-modal networks, we project
the datasets to diverse sets of projection lines, i.e. modality
sets. For each dataset, we use three different modality sets.
Table 1 shows testing error, training error, and generalization
gap (gap of the training and testing errors) on the three net-
works. In the early fusion network, for the two moon dataset,
the generalization gap is increased up to 16.9% in compari-
son with the original 2D cartesian coordinate system. Even
though two sets of projection lines show similar training er-
rors, the generalization gaps are significantly different (5.6%
vs. 17.5%). Similarly, in the Swiss roll dataset, compared
to 3D cartesian coordinate system, the generalization gap is
increased by 3.5% or 13.4%. We see a similar tendency in
intermediate and late fusion networks as well.

Thus, we can empirically infer that, in various multi-modal
fusion schemes, bad generalization behaviors can be caused
by input modalities. However, in real-world scenarios, it is
difficult to re-calibrate the modalities of input data. In this
paper, we develop an algorithm to leverage the generalization
capability of multi-modal networks for given modalities.

4 Multi-Head Modularization (MHM)
In this section, we propose the multi-head modularization
(MHM) algorithm to increase the generalization capability of
multi-modal networks. Fig. 1 depicts the MHM framework.

Multi-modal problem setting: We suppose two different
modalities. They generate the training datasets X1 and X2,
respectively. Xi contains data instance xni where n indicates
the instance index. In our setting, xn1 and xn2 take place at the
same time, and share the same label yn. For convenience, we
omit the instance index n. Then, the goal is to learn the multi-
modal network f : (x1, x2)→ y where y is the shared label
for the multi-modal inputs x1 and x2. Then, the objective
function is represented by

argmin
f

E(x1,x2)∼X1,X2
[ l(y, f(x1, x2) ] (1)

where l is a loss function for a target problem.
Modularization of multi-modal network: We consider

the multi-modal network as a series of several modules:
uni-modal embedding module θ, multi-modal embedding
module φ, and (classification) head module ψ, such that
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f(x1, x2) = ψ(φ(θ1(x1), θ2(x2))). For each modality i, the
uni-modal embedding module θi takes xi as an input, and
propagates the uni-modal feature to the multi-modal em-
bedding module. Next, the multi-modal embedding module
combines the uni-modal features of different modalities to a
multi-modal feature. From the multi-modal feature, the head
module yields outputs for the target problem.

Module-wise learning with multiple heads: Motivated
by the low sensitivity of well-generalized networks to pertur-
bation, we induce the individual modules are less sensitive
to unseen data. As depicted in Fig. 1(b), we use multiple
head modules ψk where k = 1, . . . ,K . Then, the embedding
modules are enforced to be robust to the multiple head mod-
ules conveying different generalization behaviors. Note that,
rather than learning the multiple head modules together, we
repeatedly change the head modules during training.

In specific, we first randomly split the entire training
dataset toK same-sized folds, and then assign a head-specific
training setHki , composed of K − 1 folds except kth fold, to
each head module ψk. Each head-specific training set is par-
tially overlapped with others, but unique. Therefore, we can
learn the head modules to show the different generalization
behaviors. Then, to make the embedding modules to produce
multi-modal features robust to all the head modules, we learn
the multi-modal network while changing the head-module.

To further increase the generalization capability of the
multi-modal embedding and head modules, for each head
module ψk, we iteratively learn ψk and φ with different train-
ing data. In other words, the multi-modal embedding module
is enforced to be optimized to the head module without ob-
serving the training data of the head module, and vice versa.

More specifically, we first freeze the multi-modal embed-
ding module (φ), and optimize the uni-modal embedding
modules (θ1, θ2) and the head (ψk) modules with the head-
specific setsHk1 andHk2 as

arg min
θ1,θ2,ψk

E(xh
1,x

h
2)∼Hk

1 ,Hk
2
[ l(y, ψk(φ(θ1(xh

1), θ2(x
h
2))) ].

(2)
Next, we set the embedding specific-set Eki = Xi − Hki ,

where Eki andHki are mutually exclusive. Freezing the head
module (ψk), we learn the uni- and multi-modal embedding
modules (θ1, θ2, φ) by

arg min
θ1,θ2,φ

E(xe
1,x

e
2)∼Ek1 ,Ek2 [ l(y, ψk(φ(θ1(xe

1), θ2(x
e
2))) ].

(3)
After the iterative module-wise learning of (θ1, θ2, φ, ψk), we
replaceψk withψk+1. To avoid overfitting in the multi-modal
embedding and head modules to their own training sets, we
consistently learn the uni-modal embedding modules.

As the union of K embedding-specific sets is equal to the
entire training set, the multi-modal embedding module can be
exposed to the whole training data after the iterative module-
wise learning for all k. Thus, the multi-modal embedding
module is learned to generate versatile multi-modal features
which can maximize the performance of the network for
all the head modules. Note that, we select one of the head
modules for the deployed network. Hence, in our MHM,
the generalization capability is increased without additional
computational cost in testing phase.

To identify the efficacy of the proposed MHM, we examine
it for the toy problem. As demonstrated in Table 2, for most
cases, MHM lowers testing errors and generalization gaps.

5 Experiments
We provide experimental analysis and comparative evaluation
to show the effectiveness of MHM. To this end, we address
three multi-modal tasks: audio-visual event detection, RGB-
flow action localization, multi-modal sentiment analysis. For
each, we employ or design a baseline, and apply MHM.

5.1 Experimental Details
More details are in the supplementary materials.

Audio-visual event detection: Audio-visual event detec-
tion is to classify each time step (snippet) into one of the
event classes or background. Here, we consider the chal-
lenging weakly-supervised setting where only video-level
labels are available for training, and snippet-level predic-
tions are output in testing. We perform experiments on AVE
dataset (Tian et al. 2018). It consists of 3,339 training and
804 testing videos There are 28 audio-visual event categories.

For this task, we take (Lee et al. 2021) as a baseline to show
the effectiveness of the proposed MHM. In (Lee et al. 2021),
the multi-modal network extracts the uni-modal feature with
a fully-connected (fc) layer for each modality, generates the
joint representation of audio and vision by applying the cross
correlation-based attention repeatedly, and then classifies it
using an open-max classifier. We set the fc layers as the uni-
modal embedding module, the attention mechanism as the
multi-modal embedding module, and the final open-max clas-
sifier as the head module. Here, we use four head modules.

RGB-flow action localization: In this task, the start, the
end, and the class of each action instance are determined
given an input video. We consider the extensively studied
weakly-supervised setting where only video-level labels are
available during the training phase. It has been known that
complementary sensory information, RGB and flow, im-
proves the performance. Though, most existing methods sim-
ply concatenate RGB and flow inputs. Hence, there are no
uni-modal embedding modules. We use THUMOS14 (Jiang
et al. 2014) dataset containing 200 training and 212 testing
videos for 20 action classes. In a video, each action instance
is labeled by start and end time with an action class.

We employ BAS-Net (Lee, Uh, and Byun 2020) which
is one of the state-of-the-art methods as the baseline. In
brief, BAS-Net consists of two parallel branches (base
and background-suppression branches). Both branches take
the concatenated uni-modal features as inputs. While the
base branch is composed of three convolution layers, the
background-suppression branch contains the filtering module
and three convolution layers shared with the base branch.
The filtering module computes the foreground weights to sup-
press background information in inputs. We empirically find
that better results are obtained when the pre-trained filtering
layers are consistently frozen on this network. Hence, we
set the first convolution layer as the multi-modal embedding
module, and the other layers as the head module. The number
of head modules is set to 2 in training by MHM.
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Toy dataset Two moons Swiss roll

Projection lines
p1: 〈1,0〉, v1: 〈-1,1〉 p1: 〈1,0〉, v1: 〈-1,1〉 p1: 〈1,0,0〉, v1: 〈0,-1,0〉 p1: 〈0,0,0〉, v1: 〈1,1,1〉
p2: 〈0,0〉, v2: 〈1,0〉 p2: 〈0,0〉, v2: 〈2,1〉 p2: 〈1,0,0〉, v2: 〈1,0,-1〉 p2: 〈0,0,0〉, v2: 〈1,2,1〉

p3: 〈0,1,0〉, v3: 〈0,1,-1〉 p3: 〈0,0,0〉, v3: 〈1,4,1〉

ETE
Testing error (%) 17.5 / 17.5 / 17.5 27.5 / 32.5 / 18.0 22.5 / 23.7 / 23.6 33.7 / 26.5 / 27.5
Generalization gap (%) 5.6 / 4.0 / 10.0 17.5 / 17.7 / 1.8 3.8 / 4.6 / 6.4 13.7 / 6.7 / 8.1

MHM
Testing error (%) 15.0 / 15.0 / 14.5 17.5 / 16.4 / 18.2 18.7 / 14.6 / 18.3 20.0 / 24.3 / 23.4
Generalization gap (%) 5.6 / 4.0 / 8.5 4.4 / 5.2 / 1.7 1.7 / 1.8 / 2.3 0.3 / 0.2 / 0.3

Table 2: Comparison of MHM and end-to-end learning (ETE) on toy multi-modal examples.

(a) Testing error (b) Generalization gap (c) Generalization sensitivity (GS) (d) GS-harnessed

Figure 2: Analysis on generalization capability of the proposed MHM and compared methods.

Multi-modal sentiment analysis: Multi-modal sentiment
analysis extends the language-based sentiment analysis to
a multi-modal task, where acoustic, visual, and language
modalities are addressed. We evaluate our method for the
multi-modal sentiment analysis on CMU-MOSEI (Zadeh
et al. 2018) dataset which includes 23,454 movie review
video clips. Each clip is labeled by a sentiment strength score
ranging from -3 (strong negative) to +3 (strong positive). It
is a challenging dataset due to the diverse speakers, a large
variance in subjects, and low resource settings.

We use MulT (Tsai et al. 2019) as the baseline. In MulT,
the multi-modal network first processes each modality in
parallel using a modality-specified block which consists of a
convolution layer, two directional cross-modal transformers,
and a self-attention transformer. The cross-modal transformer
calibrates the feature of the corresponding modality using an-
other modality. Self-attention transformer collects temporal
information from the outputs of the cross-modal transformers.
Then, the concatenation of the features of three modalities is
fed into three fc layers where the last one makes prediction.
We set each block as the uni-modal embedding module, the
first fc layer as the multi-modal embedding module of three
modalities, and the last two fc layers as the head module.
Here, K is empirically set as 3.

5.2 Analysis on Generalization Capability

We analyze the generalization capability of MHM for the
audio-visual event detection task. Here, we compare our
MHM against to the end-to-end learned baseline (ETE),
MHM-no-freeze, Ensemble, and Dropout (Srivastava et al.
2014) and Shake-shake (Gastaldi 2017) regularizations.

Model Acc (%) (↑) GS (↓) GS-harnessed

ETE (baseline) 75.6 0.17 -

Ensemble 77.2 0.04 0.27
MHM-no-freeze 77.2 0.19 0.09
MHM (proposed) 78.5 0.04 0.08

Table 3: Accuracy, GS, and GS-harness for MHM and com-
pared methods using harnessed multiple baselines.

1) MHM-no-freeze: We just perform the iterative learning
using four heads and split training sets, without the freezing.

2) Ensemble: We use four baselines with different training
datasets, and the averaged output is the final prediction.

3) Dropout and Shake-shake: Both exploit randomly se-
lected pathways to promote the generalization capability. For
fair comparison with our multi-head modularization, on the
baseline, we apply Dropout before the classification head
with p = 0.5, or Shake-shake on the head.

Generalization gap: Supposing training and testing
datasets share a common data generating process (Good-
fellow et al. 2016), a well-generalized network yields a small
performance gap between those two datasets. Thus, we first
compare testing error and generalization gap varying epochs.
As shown in Fig. 2(b), Ensemble and MHM-no-freeze show
similar gaps to ETE, and Dropout and Shake-shake regular-
ization are worse than ETE. Whereas, the proposed MHM
yields the smallest generalization gap in most epochs. Also,
for testing errors in Fig. 2(a), MHM is notably superior to
others. Hence, the outstanding performance of the proposed
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Method ETE (baseline) MHM (proposed)

Missing ratio (↓) 0.11 0.06
Hitting ratio (↑) 0.03 0.08

Table 4: Analysis on missing and hitting ratios.

MHM comes from its strong ability to mine the multi-modal
data generating process underlain in the training dataset.

Generalization sensitivity: To see if MHM has effect
on reducing the network’s sensitivity to perturbation, we
quantify the sensitivity of a multi-modal network to unseen
data. For a network, we train it multiple times, and measure
Kullback-Leibler divergence (KLD) from output distributions
of the multiple deployed networks for each testing input. We
set the averaged KLD as generalization sensitivity (GS).

In Fig. 2(c), MHM-no-freeze shows better GS than Shake-
shake. Hence, iterative changing of the head module has
more beneficial than randomly shaking (weighting) parallel
pathways. Dropout yields lower GS than MHM-no-freeze,
but our freezing strategy is not applied to MHM-no-freeze.
Our final approach (MHM) shows significantly lower GS than
Dropout. Also, although Ensemble shows consistently low
GS, the harnessed four baselines make prediction as a team.
Contrarily, in MHM, GS of a single baseline is comparable to
Ensemble. Hence, as in Table 3, the proposed MHM shows
highest accuracy (78.5%) as well as the best GS (0.04).

To study how the iterative freezing and multi-head mod-
ularization promote generalization sensitivity, we measure
GS among harnessed baselines (GS-harness). Namely, in
MHM-no-Freeze and MHM, GS is computed among individ-
ual baselines corresponding to each head after at every epoch.
Similarily, in Ensemble, we compute GS for the ensembled
baselines. As in Fig. 2(d), GS-harness of MHM decreases
during training, and is mostly lower than that of MHM-no-
freeze. In Ensemble, GS-harness gets increasing. From these,
we can infer: 1) the multi-head modularization can simulate
network perturbation, and helps reducing GS. 2) the freezing
strategy makes multi-modal networks more robust. 3) For
better GS, whereas Ensemble increases the diversity of the
harnessed baselines, MHM encourages a single baseline to
be less sensitive. And, MHM shows smaller testing error.

Improvement against uni-modal network: A robust
multi-modal network is expected to correctly detect (hit) the
testing data even missed in individual uni-modal networks,
without failing to detect the ones correctly detected by uni-
modal networks. In terms of this aspect, we verify the benefit
of the proposed MHM. To this end, for each of two modali-
ties, we construct the uni-modal network which consists of
the uni-modal embedding and head of the baseline.

Then, for the proposed MHM and ETE (baseline), we
measure missing and hitting ratios for testing data. Missing
ratio is the ratio of data which are detected incorrectly in
multi-modal network but correctly in any uni-modal networks.
Hitting ratio is the ratio of data detected correctly in multi-
modal network but incorrectly in both uni-modal ones. As in
Table 4, our MHM yields higher hitting and lower missing
ratios than ETE by 0.03 for both. Thus, the proposed MHM

No. fold (K) 2 3 4 5

Acc (%) 76.0 77.8 78.5 78.0
GS 0.11 0.05 0.04 0.04

Table 5: Adequacy of the number of folds, K.

exploits the richer information of multi-modal data, faithfully.

5.3 Ablation Studies
Hyper-parameter K: Varying the number of folds from 2
to 5, we report accuracy and GS in Table 5. Even 2-fold im-
proves the ETE (baseline) (75.6% to 76.0%) with lower GS
(0.11 vs. 0.17). Reducing GS further (0.11 to 0.05), 3-fold
gives further improvement as the multi-modal embedding
module can observe more diverse statistics. Then, the perfor-
mance is the highest at K = 4 with a bit better GS (0.04).
Hence, the relationship between accuracy and GS means
that MHM has effect on promoting generalization sensitiv-
ity. When K = 5, the performance is slightly lower than
K = 4. As K gets bigger, the multi-modal embedding mod-
ule is trained with a smaller embedding specific set at each
iteration. This causes saturated performance.

Multiple head modules: To see the effect of the multiple
head modules, we compare MHM with four variants: 1 head
module with 1 or 4 head-specific sets, 4 head modules with
1 head-specific set, and ensemble of 4 head modules. In 1
head module with 1 head-specific set, the head module is
not changed during the module-wise iterative learning. In 1
head module with 4 head-specific sets, the head module is
not changed, but the head-specific set does after an epoch. In
4 head modules with 1 head-specific set, only a single head-
specific set is used for all of the head modules. In 4 head
ensemble, whereas head modules are learned independently
with different head-specific sets similarly to MHM, the multi-
modal embedding module is learned using the ensemble of
the heads (the objective loss is computed using average of
head outputs). In testing, all head outputs are averaged.

Table 6 reports accuracy of our MHM and its variants.
As in Table 6, all four variants degrade the performance of
the MHM by 3.0%, 2.9%, and 2.5%, respectively. Hence,
using multiple head modules with different head-specific sets
induces more different generalization behaviors among the
head modules. Though the head ensemble is comparable to
our MHM, it requires larger computational cost in testing.

Multi-modal embedding module: Proposed MHM ex-
ploits the combination of multiple head modules and one
multi-modal embedding module. To see the adequacy of this
topology, we compare the proposed MHM with a different
modularization with multiple multi-modal embedding mod-
ules (MMM). In MMM, unlike the proposed MHM, the multi-
modal embedding modules are changed during the module-
wise iterative learning. For fair comparison with MHM, we
set the number of multi-modal embedding modules as 4 in
MMM. The proposed MHM shows a higher accuracy score
than MMM by 5.1%. Moreover, MMM is even inferior to
ETE. Hence, a single multi-modal embedding and multiple
head modules helps to get robust multi-modal features.
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Method
1 head module 4 head modules Ensemble of 4 head modules

1 head specific-set 4 head specific-sets 1 head specific-set 4 head specific-sets (MHM) 4 head specific-sets

Acc (%) 75.5 75.6 76.0 78.5 78.4

Table 6: Ablation for the numbers of head modules and head-specific sets.

Method Acc (%) Gain to baseline (%)

(Tian et al. 2018) 73.1 -
(Lin, Li, and Wang 2019) 74.2 -
(Xuan et al. 2020) 75.7 -
(Lee et al. 2021) 77.1 -

baseline + ETE 75.6 -
baseline + MHM 78.5 2.9

Table 7: Comparison in weakly-supervised audio-visual event
detection methods on AVE.

Method Avg. mAP (%) Gain (%)

(Liu, Jiang, and Wang 2019) 32.4 -
(Narayan et al. 2019) 31.9 -
(PX Nguyen 2019) 36.3 -
(Shi et al. 2020) 37.0 -

Bas-Net (ETE)† 34.6 -
Bas-Net + MHM (Ours) 36.4 1.8

Table 8: Comparison in the weakly-supervised action local-
ization on THUMOS14. † denotes the reproduced scores

5.4 Comparative Evaluation
Audio-visual event detection: In Table 7, we compare our
‘baseline + MHM’ with the recent methods. As in the com-
pared, we report snippet-wise accuracy on the AVE dataset.

Note that our baseline is a light version of (Lee et al. 2021)
(see supplementary). Nevertheless, contrary to the ‘baseline
+ ETE’, the proposed ‘baseline + MHM’ outperforms over
all the existing methods. In the view of boosting the general-
ization capability, the most important point is that ‘baseline +
MHM’ shows significantly higher accuracy than ‘baseline +
ETE’ by 2.9%. Hence, MHM is very useful to increase the
generalization capability of the multi-modal network.

RGB-flow action localization: For quantitative evalua-
tion, we compute the mean average precision (mAP) for
action segments varying intersection over union (IoU) thresh-
olds [0.1:0.1:0.7]. Table 8 compares the recent methods with
the proposed method for the averaged mAP.

Although the baseline ‘Bas-Net’ shows a decent perfor-
mance (34.6% avg. mAP), it is lower than (Shi et al. 2020)
and (PX Nguyen 2019) with large gaps by 2.4% and 1.7%,
respectively. Contrarily, the proposed ‘Bas-Net + MHM’
notably boosts the baseline by 1.8% for avg. mAP. The
boosted performance (36.4% avg. mAP) achieves the sec-
ond best score, and is comparable to the highest performing
method (Shi et al. 2020). From this, we successfully show that

Model Acc7 (%) Acc2 (%) F1 (%)

(Wang et al. 2019) 45.5 75.4 75.7
(Pham et al. 2019) 48.2 79.3 79.7

MulT (Tsai et al. 2019) † 49.1 80.6 81.0
MulT+MHM (Ours) 50.4 80.9 81.4

Table 9: Comparison in multi-modal sentiment analysis task
on CMU-MOSEI.

the proposed MHM algorithm is simple, but highly effective
to increase the generalization capability of the multi-modal
networks in this task, as well.

Multi-modal sentiment analysis: As in the existing
works, we use 7-class accuracy (Acc7), binary accuracy
(Acc2), and F1-score as the evaluation metrics. In Acc7, the
predicted sentiment score is mapped to 7 integer scores in
[-3:1:3]. In Acc2, the sentiment score is categorized into the
binary classes (positive or negative sentiments). The F1-score
is computed for the binary classification. Table 9 reports
the results of the proposed ‘MulT + MHM,’ the baseline
‘MulT,’ and the existing methods, ‘CTC + RAVEN’ (Wang
et al. 2019) and ‘CTC + MCTN’ (Pham et al. 2019). For all
metrics, the proposed ‘MulT + MHM’ achieves the highest
performance. Also, even with the same model structure and
computation, ‘MulT + MHM’ improves the baseline which
is the existing state-of-the-art method, for all of the metrics.
Especially, ‘MulT + MHM’ exceeds the baseline for the most
challenging metric, Acc7, by a large gap 1.3%.

6 Conclusions
We first observed the relationship between generalization
behavior and input modalities in a toy problem. Then, in-
spired by the low sensitivity of well-generalized network to
perturbation, we proposed a novel algorithm (MHM) to boost
the generalization capability of the multi-modal networks.
Exploiting multiple classification head modules, we itera-
tively learn the multi-modal embedding module and the head
module. Varying the head module, we use different head-
and embedding-specific training sets in iterative learning.
From this, the multi-modal embedding module can produce
multi-modal features robust to all the head modules with
different generalization behaviors. By selecting one of the
multiple head modules, we do not increase the computational
cost in the deployed network. We extensively studied the
generalization capability of the proposed MHM according
to generalization gap and sensitivity, and showed notable
performance gain in three multi-modal tasks.
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