
Differentially Private Normalizing Flows for Synthetic Tabular Data Generation

Jaewoo Lee1, Minjung Kim2, Yonghyun Jeong2, Youngmin Ro2

1University of Georgia
2Samsung SDS

jwlee@cs.uga.edu, {mj100.kim, yhyun.jeong, youngmin.ro}@samsung.com

Abstract
Normalizing flows have shown to be a promising approach to
deep generative modeling due to their ability to exactly eval-
uate density — other alternatives either implicitly model the
density or use approximate surrogate density. In this work,
we present a differentially private normalizing flow model for
heterogeneous tabular data. Normalizing flows are in general
not amenable to differentially private training because they
require complex neural networks with larger depth (compared
to other generative models) and use specialized architectures
for which per-example gradient computation is difficult (or
unknown). To reduce the parameter complexity, the proposed
model introduces a conditional spline flow which simulates
transformations at different stages depending on additional
input and is shared among sub-flows. For privacy, we intro-
duce two fine-grained gradient clipping strategies that pro-
vide a better signal-to-noise ratio and derive fast gradient clip-
ping methods for layers with custom parameterization. Our
empirical evaluations show that the proposed model preserves
statistical properties of original dataset better than other base-
lines.

Introduction
Differentially private generative modeling of data has re-
ceived much attention due to the ability to generate sam-
ples from the learned distributions while protecting privacy.
However, majority of existing approaches focused on two
popular deep generative models: generative adversarial net-
works (GANs) and variational autoencoders (VAEs), and
other types of generative models remain unexplored. In this
paper, we develop a differentially private normalizing flow
model, called DP-HFlow, to synthesize realistic tabular data.

Normalizing flows (NFs) (Tabak and Turner 2013;
Rezende and Mohamed 2015) allow exact evaluation of like-
lihood via change of variables and hence can be directly
trained with maximum likelihood estimation (MLE). De-
spite these advantages, modeling tabular data using a flow-
based model under differential privacy poses several chal-
lenges. First, many real-world tabular datasets contain both
continuous and discrete variables. Unfortunately, NFs are
not immediately applicable to datasets with mixed types.
When training a continuous density model, such as normal-
izing flows, on discrete data using MLE, the model may

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

end up learning a degenerate distribution in which arbitrarily
high likelihoods are assigned to few particular values (Uria,
Murray, and Larochelle 2013). To avoid this, DP-HFlow first
converts discrete values into continuous ones using varia-
tional dequantization (Ho et al. 2019) and applies the same
density estimator to both continuous and discrete variables
to capture the interactions between them.

Second, compared to other generative models, NF mod-
els have a higher parameter complexity. To improve the ex-
pressiveness, flow-based models are normally constructed
by composing multiple sub-flows. In practice, this is im-
plemented by repeating the same blocks of transformations.
For example, GLOW (Kingma and Dhariwal 2018) model
contains 32 blocks of actnorm, 1×1 convolution, and affine
coupling transformations. This increased complexity poses a
significant challenge to the differentially private training of
NF models. To reduce the parameter complexity, we propose
a conditional spline flow whose transformation is condition-
ally defined by an additional input. The conditional spline
flow is shared among multiple layers of sub-flows and hence
helps mitigate the parameter complexity.

Third, the neural networks in DP-HFlow used to gen-
erate the parameters of each sub-flow are heterogeneous
in terms of both architecture and parameter complexity.
As a result, the scales of their gradients vary significantly
not only among different networks but also among layers.
We observed that a naı̈ve application of gradient clipping
technique (Abadi et al. 2016) results in a poor signal-to-
noise ratio for some layers, making the training difficult.
In DP-HFlow, we introduce two advanced strategies for
fine-grained gradient clipping (namely, per-unit clipping and
stochastic sparsification) and show that they can accelerate
private training by improving the signal-to-noise ratio.

Lastly, the gradient clipping technique requires modifying
per-example gradients. For easy Jacobian determinant com-
putation, NF models use neural network layers with custom
factorized parameters. While per-example gradients for such
layers can be computed using auto-differentiation library
with gradient accumulation trick, it forces the model to pro-
cess one example at a time instead of as a batch, which un-
acceptably slows down the training of differentially private
models (Bagdasaryan, Poursaeed, and Shmatikov 2019). To
improve the scalability of private training, we analyze the
back-propagation equations for these custom layers and de-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

7345

rive efficient clipping methods using the fast gradient clip-
ping framework due to (Lee and Kifer 2021).

This paper makes the following contributions: (i) to the
best of our knowledge, DP-HFlow is the first differentially
private normalizing flow model that can handle datasets
with mixed types of attributes; (ii) we examine the feasi-
bility of training parameter-heavy models (such as normal-
izing flows) under differential privacy, identify issues, and
propose conditional spline flow and two fine-grained gra-
dient clipping methods; (iii) we introduce fast per-example
gradient clipping methods for linear transformations popu-
larly used in NFs. (iv) our extensive empirical evaluations
show that DP-HFlow outperforms existing private genera-
tive models in terms of capturing statistical properties of in-
put datasets.

Related Work
DP-SGD Many existing approaches rely on the DP-SGD
framework introduced in (Abadi et al. 2016) to train deep
neural networks under differential privacy. DP-SGD treats
weight vectors of all layers as a single vector in Rn (i.e.,
layer agnostic) and clips the per-example gradient w.r.t.
the concatenated weight vector using a clipping threshold
C. (McMahan et al. 2018) introduced an advanced clip-
ping strategy, called per-layer clipping, in which the global
threshold C is first split between layers. The gradient vec-
tors for different layers are clipped separately using local
threshold values. Our work extends the idea of per-layer
clipping and introduces more fine-grained clipping strate-
gies. We found that this fine-grained clipping is essential
for achieving good performance and for training heteroge-
neous networks in normalizing flows. The work closest to
ours is (Waites and Cummings 2021) in which a masked
autoregressive flow (MAF) model is trained for simple den-
sity estimation task by directly applying the DP-SGD frame-
work. However, their model was trained only using continu-
ous variables and discrete variables were ignored.
Differentially Private GANs (Xie et al. 2018) proposed a
differentially private Wasserstein GAN and showed that the
sensitivity of gradient can be bounded by clipping weights
instead of gradients. (Chen, Orekondy, and Fritz 2020) also
introduced a private version of Wasserstein GAN, called GS-
WGAN. Based on the observation that only the generator
needs to be released for sample synthesis, they proposed
to sanitizes the gradient passed from the discriminator to
the generator. In contrast, PATE-GAN (Jordon, Yoon, and
van der Schaar 2019) aims to train a differentially private
(student) discriminator using the PATE framework (Paper-
not et al. 2017). Although GAN-based models can generate
high quality samples, their training process is known to be
notoriously unstable (Chu, Minami, and Fukumizu 2020),
and the models are susceptible to mode collapse issue.

Differentially Private VAEs VAEs (Kingma and Welling
2014) are latent variable models in which the encoder net-
work approximates the posterior distribution of latent vari-
able and the decoder learns to reconstruct the data from pos-
terior samples. Compared to GANs, the training of VAEs
is stable but they are trained by maximizing a surrogate

loss, called evidence lower bound (ELBO), rather than ac-
tual likelihood. (Chen et al. 2018) trained a differentially
private VAE model using the DP-SGD framework. In (Tan-
tipongpipat et al. 2020), a variant of VAE that incorporates
a discriminator and a generator network was introduced.
Kernel-based methods (Balog, Tolstikhin, and Schölkopf
2018; Harder, Adamczewski, and Park 2021) use kernel
functions to represent a probability distribution as a point in
a reproducing kernel Hilbert space (RKHS). (Harder, Adam-
czewski, and Park 2021) proposed DP-MERF which ex-
ploits the fact that computing the maximum mean discrep-
ancy (MMD) between true dataset and synthetic dataset only
requires the kernel matrix computed from the true dataset.
Thus, DP-MERF releases the perturbed kernel matrix under
differential privacy. Given the noisy kernel matrix, a gener-
ator is trained to minimize the MMD between the true and
synthetic datasets.

Preliminaries
Differential Privacy
Two datasets D1 and D2 are said to be neighboring if D1 can
be obtained by adding or removing one record from D2, and
we write D1∼D2 to denote this relationship. Differential
privacy hides the influence of one individual by constraining
the outputs of an algorithm over two neighboring datasets to
be probabilistically indistinguishable.

Definition 1 ((ϵ, δ)-DP (Dwork et al. 2006b,a)). Let ϵ ≥ 0
and δ ≥ 0. A randomized mechanism (algorithm) M satis-
fies (ϵ, δ)-differential privacy if for all S ⊆ range(M) and
for all pairs of neighboring datasets D1∼D2,

Pr[M(D1) ∈ S] ≤ exp(ϵ) Pr[M(D2) ∈ S] + δ .

The probability is with respect to the randomness in M.

When training a neural network under differential privacy,
a privacy mechanism is applied to the set of gradients com-
puted from a minibatch to ensure privacy of all parameter
updates. To accurately track the total privacy loss incurred
during the processing of all minibatches, we use Rényi Dif-
ferential Privacy (RDP) (Mironov 2017). After training fin-
ishes, the RDP guarantee can be converted to that of (ϵ, δ)-
DP using the conversion result in (Mironov 2017, Proposi-
tion 3). RDP relies on the concept of Rényi divergence:

Definition 2 (Rényi Divergence). Let P1 and P2 be proba-
bility distributions over a set Ω and let α ∈ (1,∞). Rényi
α-divergence Dα is defined as:

Dα(P1 ∥ P2) =
1

α− 1
log(Ex∼P2

[
P1(x)

αP2(x)
−α]) .

Rényi differential privacy requires two parameters: a mo-
ment α and a parameter ϵ that bounds the moment.

Definition 3 ((α, ϵ)-RDP (Mironov 2017)). Given a privacy
parameter ϵ ≥ 0 and an α ∈ (1,∞), a randomized mech-
anism M satisfies (α, ϵ)-Rényi differential privacy (RDP) if
for all D1 and D2 that differ on the value of one record,
Dα(M(D1) ∥ M(D2)) ≤ ϵ .

7346

Given a deterministic function f and its sensitivity, we can
achieve (α, ϵ)-RDP by applying the Gaussian mechanism to
f . The mechanism adds Gaussian noise scaled according to
the sensitivity of f .

Definition 4 (L2 sensitivity). Let L2 sensitivity of f , de-
noted by ∆f is equal to supD1∼D2

||f(D1) − f(D2)||2,
where the supremum is taken over all pairs of neighboring
datasets.

Lemma 1 (Gaussian Mechanism (Mironov 2017)). Let f be
a function. Let α > 1 and ϵ > 0. Let M be the mechanism
that, on input D, returns f(D) + N(0, σ2I), where σ2 =
α∆2

f

2ϵ . Then M satisfies (α, ϵ)-RDP.

Normalizing Flows
Let z ∈ Rd be a noise vector drawn from a simple probabil-
ity distribution (called a base distribution) with a tractable
density function π(z) such as standard Gaussian N (0, Id),
where Id denotes d×d identity matrix. A normalizing flow is
an invertible, differentiable transformation gθ : Rd → Rd,
parameterized by θ, that models the mapping between noise
z and data x, i.e., z = gθ(x) (or equivalently x = g−1(z)).
Using the change of variables formula, the probability den-
sity function of x can be expressed by

p(x; θ) = π(gθ(x))
∣∣det Jgθ

(x)
∣∣ ,

where Jgθ
(x) = ∂gθ(x)

∂x denotes the Jacobian of gθ at x.
Given invertible transformations gi : Rd → Rd with param-
eter θi, i ∈ [K], they can be composed together to construct
a more expressive transformation gθ = g1 ◦ · · · ◦gK , where
θ = {θ1, . . . , θK}. As gθ is the composition of invertible
mappings gi, it is invertible and its log density is given by
log p(x; θ) = log π(gθ(x)) +

∑K
i=1 log

∣∣det Jgi
(hi;θi)

∣∣,
where hi = gi(hi−1;θi) and h0 = x.

Let D = {x1, . . . ,xn} be a dataset consisting of i.i.d. ob-
servations, where xi ∈ Rd. The parameters θ of normalizing
flows are typically learned via MLE, which requires comput-
ing the Jacobian determinant sub-transformations gj .

argmax
θ

1

n

n∑
i=1

log π(gθ(xi)) +
K∑
j=1

log
∣∣∣det Jgj

(xi;θj)
∣∣∣

DP-HFlow (Heterogeneous Flow)
There are three main components in DP-HFlow: (i) a de-
quantization layer gdeq : Rdc → Rdc to convert discrete
categorical variables into continuous ones, (ii) a linear flow
layer glin : Rd → Rd to learn the correlation between
variables, and (iii) an elementwise spline transformation
gspl : Rd → Rd to model complex, multimodal densities.

Heterogeneous Data We start by defining heterogeneous
data and fixing notations. Let X ∈ Rn×d be a dataset
consisting of n observations. Each observation x =
(x[1], x[2], . . . , x[d]) is a vector corresponding to d differ-
ent measurements, where x[j] denotes the jth element of x.
We use x[k : ℓ] to denote the entries with indices from k
to ℓ. Each attribute value x[j] can be either numerical or

x[1 : dn] x[dn + 1 : d]

x

LMCDF

ε

⊕
Logit

Autoregressive Spline Flow

Linear Flow

Permutation

× num blocks(L)

Linear Flow

z

u

Figure 1: Architecture of DP-HFlow

categorical. Specifically, without loss of generality, we as-
sume that the first dn attributes x[1], . . . , x[dn] are numeri-
cal and the remaining dc = d − dn attributes x[dn+1 : d]
are categorical. A numerical variable can takes values from
a continuous domain (e.g., R) or discrete integer values rep-
resenting counts. A categorical variable x[j] takes a value
from a discrete set Xj and can either be nominal or ordinal.
The number of categories, denoted by |Xj |, varies between
different variables.

Architecture
Variational Dequantization DP-HFlow dequantizes the
discrete variables into continuous ones. Specifically, let
x(c) = x[dn+1 : d] denote the subset of x containing only
categorical variables and u ∈ Rdc be a noise variable drawn
from some probability distribution P . The dequantized (con-
tinuous) data is obtained by adding real-valued noise to the
discrete data: y(c) = x(c) + u. We consider two ways to set
the distribution P: uniform dequantization (Theis, van den
Oord, and Bethge 2016) and variational dequantization (Ho
et al. 2019). In uniform dequantization, P is set to be a uni-
form distribution over [0, 1]dc independently of data. On the
other hand, the variational dequantization defines P to be a
variational posterior distribution q(u|x(c)). To build a flex-
ible posterior, we choose q(u|x(c)) to be a conditional nor-
malizing flow with coupling transformation as in (Ho et al.
2019). Specifically, a coupling transformation is constructed
using the cumulative density function (CDF) of mixture of
M logistic distributions:

FLMCDF(x;π,µ, s) =
M∑
i=1

πiσ((x− µi) · exp(−si)) ,

where π,µ, s ∈ RM are the parameters of logistic mixture
distribution corresponding to mixture weight, component
means, and component scales, respectively, and σ(·) denotes
the sigmoid function. Let ε be a noise vector drawn from a
base distribution N (0, Idc) and ε = (ε1, ε2) be a partition
of ε such that ε1 ∈ Rr, ε2 ∈ Rdc−r, and 0 < r < dc. The
dequantization transformation gdeq first draws a sample u

7347

from the posterior q(u|x(c)) using the following conditional
normalizing flow.

r = NNϕ(x
(c)) , π,µ, s = NNψ([ε1, r]) ,

u1 = ε1 , u2 = FLMCDF(ε2;π,µ, s) , u = σ([u1,u2]) ,

where NNψ and NNϕ are the neural networks with param-
eters ψ and ϕ, respectively, that output the parameters of
logistic mixture distribution.

Linear Flows DP-HFlow uses elementwise transforma-
tions to deal with complex distributions. While being highly
expressive, elementwise transformations are limited in their
ability to capture all the interactions between variables as the
transformation is applied dimensionwise rather than across
dimensions. To help DP-HFlow capture the interactions be-
tween variables, we add linear transformations of the form

z = glin(x) = Wx+ b ,

where W ∈ Rd×d and b ∈ Rd are weight and bias, respec-
tively. However, the computation of Jacobian determinant
of glin (i.e., det(W)) takes O(d3) time, and hence existing
approaches decompose W into a form that allows easy com-
putation of Jacobian determinant, trading-off expressiveness
and computational cost. We decompose W as the sum of
diagonal matrix and low rank matrix (Lu and Huang 2020):

glin(x) = (diag(s) +AB)x+ b , (1)

where A ∈ Rd×r, B ∈ Rr×d, r > 0 is the rank of A
and B. Using the matrix determinant lemma, we see that
| det(W)| = | det(diag(s)) ·det(Ir+B diag(s)−1A)|. The
second determinant needs to be numerically computed but
we set r to a small number. 1 Another transformation used
in DP-HFlow is based on LU-decomposition (Kingma and
Dhariwal 2018):

glin(x) = PLUx+ b , (2)

where P is a permutation matrix, L is a lower triangular
matrix with ones on the diagonal and U is upper triangu-
lar matrix with non-zero diagonal entries. Notice that the
above decomposition yields a simple Jacobian determinant
| detW| = |∏d

i=1 U [i, i]|. The permutation matrix P is ran-
domly initialized and then fixed throughout the training (and
hence it doesn’t have any learnable parameters).

Autoregressive Spline Transformation To learn the
complex joint distribution of x, we construct an autoregres-
sive elementwise transformation using a monotonic rational
quadratic spline (Durkan et al. 2019). Let {(x(k), y(k))}Kk=0
be a set of monotonically increasing points, called knots, that
satisfies x(k−1) < x(k), y(k−1) < y(k), for k = 1, . . . ,K ,
x(0) = y(0) = −B, and x(K) = y(K) = B, where B > 0
is a constant corresponding to the boundary of spline. Fur-
ther, define ∆(k) = (y(k+1) − y(k))/(x(k+1) − x(k)) and
ξ(x) = (x − x(k))/(x(k+1) − x(k)). A rational quadratic

1In our experiments, we fix r = 1, which yields a closed form
solution: |(

∏d
i=1 s[i])(1+BA⊘s)|, where ⊘ denotes elementwise

division.

spline is a piecewise polynomial function in which points
x in the interval [x(k), x(k+1)], called a bin, are mapped to
points in [y(k), y(k+1)] by the function

Sk(x) = y(k) +
(y(k+1) − y(k))[∆(k)ξ2 + δ(k)ξ(1− ξ)]

∆(k) + [δ(k+1) + δ(k) − 2∆(k)]ξ(1− ξ)
,

where δ(k) is the derivatives at the kth knot. Notice that the
spline for dimension j is fully specified by parameter vec-
tor θj = [θwj ,θ

h
j ,θ

d
j], where θwj [k] = x(k) − x(k−1) and

θhj [k] = y(k) − y(k−1) correspond to the width and height
of the kth bin, respectively, and θd ∈ RK−1 represents the
derivatives at K − 1 internal knots.

We parameterize the spline using a masked multi-
layer perceptron (MLP) following the approach used in
MADE (Germain et al. 2015). Given an input vector x ∈
Rd, MADE assumes an ordering between variables x[1] ≺
x[2] ≺ . . . ≺ x[d] and efficiently imposes autoregressive de-
pendency using a binary mask. Let NNν denote the MADE
network with parameter ν. Then the parameters that define
the spline transformation are given by θ = [θ1, . . . , θd] =
NNν(x[1 : d]). The binary masks in MADE ensure that θi
is only dependent on the input x[1 : i − 1]. Combining all
together, the autoregressive transform gspl is defined by

gspl(x) = [S1(x[1]; θ1), . . . , Sd(x[d];θd)] ,

where θk = NNνk(x) is the parameters of the kth element-
wise spline function Sk, generated by the MADE network.

Differentially Private Training
We now describe the innovative techniques proposed to im-
prove the private training of normalizing flow model.

Conditional Spline Flow To reduce the parameter com-
plexity, we modify the MADE network NNν to take an ad-
ditional input q and to generate the output conditioned on q.
Let θj denote the parameters of the spline transformation in
the jth block of DP-HFlow. We have

θj = (θj1, . . . , θ
j
d) = NNν(x,q(j)) ,

where q is the transformation of one-hot encoding of block
index j, i.e., q(j) is an embedding of block index. This en-
ables the sharing of parameter network NNν across blocks
and greatly reduces the number of parameters to train while
allowing to improve the expressiveness of model.

Per-layer Clipping Let Mθ be a normalizing flow model
consisting of multiple neural networks f i, i = 1, . . . , J , and
θiℓ ∈ RH be the parameters of ℓth layer in f i, ℓ = 1, . . . , L.
For ease of illustration, we assume each network has L lay-
ers. All the parameters of Mθ can be written as a vector
θ = (θ11, . . . , θ

J
L) ∈ RJLH by concatenating flattened pa-

rameters of each layer in networks f i (either row-wise or
column-wise). Let g = ∇θL(Mθ(x)) = (∂L

∂θ1
1
, . . . , ∂L

∂θJ
L

)

be the gradient of loss function L w.r.t. θ for an example
x in minibatch. The sensitivity of g can be bounded using
the gradient clipping technique (Abadi et al. 2016). Given a
threshold C > 0, the clipped gradient g is obtained by

g = clipC(g) = min(1, C/∥g∥2) · g .

7348

1000 2000 3000 4000

Iterations

10−3

10−2

10−1

100

101

‖g
‖ 2

Spline transform parameter network

Embedding
Layer 1
Layer 2

Layer 3
Layer 4
Layer 5

0 1000 2000 3000 4000
Iterations

Dequantization parameter network

Layer 1 (coupling)
Layer 2 (coupling)
Layer 1 (conditioning)
Layer 2 (conditioning)
Layer 3 (conditioning)

Figure 2: The scales of per-example gradients for 3 differ-
ent neural networks used in DP-HFlow. The y-axis is in
logscale.

In essence, it modifies g by multiplying the same constant
C/∥g∥2 to all entries if its L2 norm is greater than C. This
is known as flat clipping. Figure 2 shows that the magnitude
of per-example gradient varies across different networks, as
well as across different layers within a network. When the
networks f i are heterogeneous (in terms of gradient scales),
clipping g with the same threshold can have adverse impact,
as it can introduce significantly larger bias into some layers.
Alternatively, we can clip the gradient for each layer sepa-
rately, called per-layer clipping (McMahan et al. 2018). DP-
HFlow splits the global clipping threshold C between layers
in such a way as to ensure that ∥g∥2 < C. This is done by

setting local thresholds to satisfy C =
√∑J

i=1

∑L
ℓ=1(C

i
ℓ)

2

and clipping ∂L
∂θi

ℓ

using a local threshold Ci
ℓ. In our imple-

mentation, the global clipping threshold is first split between
networks and then between layers within a network propor-
tional to their parameter complexity.

Fine-grained Gradient Clipping Prior work has shown
that deep neural networks can be trained with sparsified gra-
dients (Sun et al. 2017; Frankle and Carbin 2019; Raihan
and Aamodt 2020). This implies that, in over-parameterized
models, not all parameters equally contribute to the model
accuracy and some units are more important for the accu-
racy than others. Inspired by this observation, we propose
two advanced clipping methods that aim to further fine-tune
the clipping threshold assignment within a layer. The goal is
to reduce the extent to which the gradients that are impor-
tant for good performance are clipped. Specifically, the pro-
posed clipping methods identify the important units using
the magnitude of gradients as a criterion, and assign larger
clipping threshold values to them. This has an effect of in-
creasing the magnitude of gradients for the units, and hence
they are likely to become more noise resistant. Consider a
linear layer ℓ with m units. Let W ∈ Rm×n be its weight
matrix and G denote the (per-example) gradient w.r.t. W,
i.e., G = ∇WL.
• Per-unit clipping Given a clipping threshold Cℓ for the

layer, the threshold for the ith unit Cℓ[i] is set as

Cℓ[i] = Cℓ

√√√√∥G[i, :]∥1/
m∑
j=1

∥G[j, :]∥1, for i = 1, . . . ,m ,

where G[i, :] denotes the ith row of G. This allows the en-
tries with larger magnitude to get clipped less than they

would in a naive clipping. Given Cℓ, the clipping is ap-
plied to each unit:

gℓ =
(
clipCℓ[1]

(G[1, :]), . . . , clipCℓ[m](G[m, :])
)
.

• Stochastic sparsification Let gℓ = vec(G) ∈ Rmn be
the vectorized gradient for layer ℓ and τ be the kth largest
entry of gℓ in absolute value. The stochastic sparsifica-
tion randomly sets the entries of gℓ whose magnitude is
smaller than τ to zero using the following operator (Ye
et al. 2020):

Tτ,γ(x) =

x if |x| > τ ,
sign(x) · τ if τ · γ ≤ |x| ≤ τ ,
0 if |x| < τ · γ,

where γ ∼ U [0, 1] is a uniform random variable. It is easy
to see that Tτ,γ is unbiased, i.e., E[Tτ,γ(X)] = E[X]. The
clipping is applied to the sparsified gradient, i.e., gℓ =
clipCℓ

(Tτ,γ(gℓ)).

Both strategies share the same goal of assigning larger clip-
ping threshold to gradients with larger absolute value so that
important learning signals can get less clipped.

Fast Per-example Gradient Computation To efficiently
compute the per-example gradients, we extend the fast gra-
dient clipping framework of (Lee and Kifer 2021) to those
layers with non-standard parameterizations, for example, the
linear transformation in (1) and (2). Here we only report
the final equation for per-example gradients of these linear
transformations, and the full derivation is presented in the
supplementary document. The gradients w.r.t. the parame-
ters of LU decomposition are given by

∂L
∂L

=
∂L
∂z

· (Ux)⊺ ,
∂L
∂U

= L⊺ ∂L
∂z

x⊺ , (3)

and those for the low-rank decomposition are

∂L
∂A

=
∂L
∂z

(Bx)⊺ ,
∂L
∂B

= A⊺ ∂L
∂z

x⊺ ,
∂L
∂s

=
∂L
∂z

⊙ x ,

(4)
where L denotes the objective function of DP-HFlow and
⊙ denotes elementwise product. For both transformations,
the computation of per-example gradients involve two quan-
tities, the ∂L

∂z (the gradient of loss function w.r.t. the out-
put of transformation) and intermediate computation results
(e.g., Ux in (3) and Bx in (4)). During the backward phase,
the backpropagation algorithm computes ∂L

∂z and passes
it through layers. Our implementation stores intermediate
computation results during the feed-forward phase and com-
putes the per-example gradients in the backward phase ac-
cording to Equation (3) and (4).

Experimental Results
To evaluate the performance of DP-HFlow, we perform ex-
periments on four real datasets: Adult, Census, Covertype,
Intrusion. Adult and Census are extracted from the US Cen-
sus and contain demographic and employment-related infor-
mation. Covertype is a dataset for predicting forest cover

7349

Figure 3: The marginal distribution of data generated by DP-HFlow (upper panels) and DP-MERF (lower panels) for Covertype
(left panels) and Adult (right pannels) under (1, 10−5)-DP

0 10 20 30 40 50
Epoch

5

0

5

10

15

20

25

Lo
g-
lik
el
ih
oo
d

Flat
Per-layer

Stochastic
Per-unit

Macro…F1 AUROC APC
0.2

0.3

0.4

0.5

0.6

0.7

Flat
Per-layer
Stochastic
Per-unit

0 10 20 30 40 50
Epoch

18

20

22

24

26

Lo
g-
lik
el
ih
oo
d

s=0.1
s=0.3
s=0.5

s=0.7
s=0.9

Macro…F1 AUROC APC
0.2

0.3

0.4

0.5

0.6

0.7

s=0.1
s=0.3
s=0.5
s=0.7
s=0.9

Figure 4: Log-likelihood and classification performance by varying clipping methods (left) and by varying sparsity level (right)

types using cartographic variables such as elevation, as-
pect, and slope. Intrusion dataset contains attributes col-
lected from network traffic simulations. The quality of gen-
erated samples is assessed using three criteria: (i) the ability
to match the marginal distribution of original dataset, (ii) the
ability to preserve dependency structure in the original
dataset and (iii) the test performance of classifiers trained on
the synthetic dataset. The performance of DP-HFlow is com-
pared with those of two state-of-the-art methods, DP-MERF
and GS-WGAN and that of DP-CGAN (Torkzadehmahani,
Kairouz, and Paten 2019). We also use CTGAN (Xu et al.
2019) as our baseline for non-private setting. All experi-
ments were performed on a server with an NVIDIA RTX
8000 GPU. In all experiments, DP-HFlow is instantiated
by stacking 3 blocks of autoregressive spline transformation
and low rank-based linear transformation on top of dequan-
tization layer. A reverse ordering permutations is inserted
in between blocks. We used AdaBelief optimizer (Zhuang
et al. 2020) with learning rate 0.001 and default smoothing
parameter of β1 = 0.9 and β2 = 0.999.
Marginal Distribution Comparison We investigate the
ability of each generative model to learn the marginal dis-
tribution of an attribute. Figure 3 shows the marginal dis-
tribution of samples. The histograms in blue represent the
distribution of original dataset. The distribution of generated
samples in orange color is overlaid on top of the original dis-
tribution. The left three columns in Figure 3 correspond to
3 continuous variables selected from Covertype dataset (the
full set of graphs is provided in the supplementary material).
The marginal distribution of Aspect attribute shows that DP-
HFlow can learn the distribution with two modes while DP-
MERF fails to capture them and collapses onto their average.
We also observed that DP-MERF tends to generate symmet-

DPCGAN GSWGAN DPMERF DPHFlow

RMSE 0.4434 0.2058 0.1863 0.0717
MAE 0.3549 0.1396 0.1342 0.0482

Table 1: RMSE (Root Mean Squared Error) and MAE
(Mean Absolute Error) between Kendall’s τ matrices for the
Covertype dataset under (1, 10−5)-DP setting.

rically distributed samples even when the original data is
highly skewed and that it often underestimates the variance
of attribute. This is shown in the graph in the third column of
Figure 3. The right three columns shows the marginal distri-
butions of 3 discrete variables selected from Adult dataset.
As it was the case for continuous variables, there is no diver-
sity at all in the sample generated by DP-MERF as it wasn’t
specifically designed to handle discrete variables. The re-
sults show that DP-HFlow can capture the complex marginal
distribution. In contrast, both baselines largely fail to match
the distribution and suffer from the mode collapse issue, ren-
dering their outputs inappropriate for exploratory data anal-
ysis (EDA) purpose.
Dependency Structure Comparison We now evaluate DP-
HFlow’s ability to capture the dependency between vari-
ables. We compute pairwise Kendall’s τ on the Covertype
dataset to see if dependencies between continuous variables
in the original data are preserved in the synthetic data. Ta-
ble 1 presents the distance between Kendall’s τ matrices of
original and synthetic datasets. As shown, DP-HFlow pre-
serves the dependency structure better than other methods.
We obtained similar results on other datasets (the detailed
results are provided in the supplementary material).

7350

Private Non-Private
Real DP-CGAN GS-WGAN DP-MERF DP-HFlow CTGAN DP-MERF DP-HFlow

Macro-F1

Adult 0.79±0.02 0.46±0.07 0.42±0.09 0.37±0.15 0.56±0.07 0.74±0.02 0.41±0.16 0.75±0.01
Census 0.75±0.01 0.45±0.09 0.44±0.13 0.48±0.14 0.52±0.03 0.67±0.04 0.50±0.14 0.70±0.04
Covertype 0.77±0.16 0.15±0.03 0.11±0.03 0.31±0.05 0.22±0.03 0.22±0.04 0.29±0.05 0.49±0.04
Intrusion 0.86±0.07 0.19±0.09 0.13±0.08 0.36±0.05 0.40±0.03 0.54±0.05 0.38±0.06 0.46±0.06

Table 2: Performance comparison of different methods using macro F1-score metric under the private and non-private setting.

Private Non-Private
Real DP-CGAN GS-WGAN DP-MERF DP-HFlow CTGAN DP-MERF DP-HFlow

AUROC Adult 0.90±0.02 0.53±0.14 0.48±0.11 0.63±0.09 0.75±0.05 0.86 ±0.02 0.65±0.10 0.87±0.02
Census 0.93±0.02 0.50±0.16 0.56±0.20 0.68±0.13 0.78±0.06 0.89±0.04 0.69±0.11 0.91±0.04

APC Adult 0.77±0.04 0.28±0.09 0.25±0.05 0.34±0.08 0.50±0.07 0.66±0.04 0.39±0.10 0.70±0.05
Census 0.59±0.06 0.07±0.03 0.10±0.06 0.15±0.07 0.17±0.05 0.43±0.07 0.15±0.06 0.49±0.08

Table 3: Performance comparison of different methods using AUROC and APC metric under the private and non-private setting.

Figure 5: The effect of different dequantization methods on
the classification performance by varying privacy budget for
the Adult dataset.

Classification Performance We assess the quality of gen-
erated samples in the context of predictive modeling. For
this experiment, we train 9 classifiers including logistic re-
gression, decision tree, and gradient boosting (the full de-
tails can be found in the supplementary material) on the
synthetic dataset generated by the models. The performance
of these classifiers are evaluated on the original dataset
spared for testing. In other words, we test whether the pre-
dictive models trained on synthetic datasets can generalize
to the real datasets. We repeat each experiment 10 times
and report averaged values. Table 2 and 3 report macro F1-
score, AUROC (area under the receiver operating character-
istics curve), and APC (average precision score) averaged
over all classifiers. The performance metrics for individual
classifier are provided in the supplementary material. DP-
HFlow outperforms other baselines on Adult, Census and
Intrusion datasets. Interestingly, we found that DP-MERF
outperforms other methods on Covertype dataset although
the marginal distribution of synthetic data generated by the
method largely deviates from that of original dataset.
Effect of Parameters The left two graphs in Figure 4
demonstrate the performance of DP-HFlow under 4 different
clipping methods. These set of experiments were performed

using the Adult dataset. The result shows that there exists
a large gap in the log-likelihood between flat clipping and
other three methods. Yet, their classification performance
yields little difference. The result implies that find-grained
clipping methods help avoid excessively cutting important
learning signals in the gradients. The right two graphs shows
the impact of varying sparsity level on the performance of
DP-HFlow trained with stochastically sparsified gradients.
Let g ∈ Rm be the gradient. Given the the sparsity level s,
the threshold value τ in stochastic sparsification is chosen as
the kth largest entry in absolute value where k = m(1 − s).
Notice that it reduces to per-layer clipping when s = 0. As
shown in the figure, the performance of DP-HFlow is not
sensitive to the choice of the sparsity level and the moder-
ate levels of sparsity lead to similar performance. Figure 5
describes the impact of different dequantization methods,
uniform and variational, on the classification performance.
We observed that, in low privacy regime (i.e., large ϵ), sam-
ples generated with variational dequantization led to better
classification performance. When ϵ is small, the uniform de-
quantization showed better performance. This is because the
model can allocate larger privacy budget to the density esti-
mator (i.e., spline flow) as the uniform dequantization does
not require training an extra neural network.

Conclusion
We presented a Rényi differentially private normalizing flow
model for synthesizing tabular datasets. The fine-grained
gradient clipping methods proposed to train parameter-
heavy NF models are simple but shown to be highly effec-
tive in accelerating private training. In this work, we used the
magnitude of gradients as a criterion to determine the impor-
tance of parameters. Finding other criteria is an interesting
direction to explore and left as a future work. We believe
that the methods can help boost the performance of other
differentially private models.

7351

Acknowledgements
This research was supported by the National Science Foun-
dation under Grant No. 1943046.

References
Abadi, M.; Chu, A.; Goodfellow, I.; McMahan, H. B.;
Mironov, I.; Talwar, K.; and Zhang, L. 2016. Deep learning
with differential privacy. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Se-
curity, 308–318. ACM.
Bagdasaryan, E.; Poursaeed, O.; and Shmatikov, V. 2019.
Differential Privacy Has Disparate Impact on Model Accu-
racy. Advances in Neural Information Processing Systems,
32: 15479–15488.
Balog, M.; Tolstikhin, I.; and Schölkopf, B. 2018. Differ-
entially Private Database Release via Kernel Mean Embed-
dings. In International Conference on Machine Learning,
414–422.
Chen, D.; Orekondy, T.; and Fritz, M. 2020. GS-WGAN:
A Gradient-Sanitized Approach for Learning Differentially
Private Generators. Advances in Neural Information Pro-
cessing Systems, 33: 12673–12684.
Chen, Q.; Xiang, C.; Xue, M.; Li, B.; Borisov, N.; Kaafar,
D.; and Zhu, H. 2018. Differentially Private Data Generative
Models. CoRR, abs/1812.02274.
Chu, C.; Minami, K.; and Fukumizu, K. 2020. Smooth-
ness and Stability in GANs. In International Conference
on Learning Representations.
Durkan, C.; Bekasov, A.; Murray, I.; and Papamakarios, G.
2019. Neural Spline Flows. In Wallach, H.; Larochelle, H.;
Beygelzimer, A.; dAlché-Buc, F.; Fox, E.; and Garnett, R.,
eds., Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.
Dwork, C.; Kenthapadi, K.; McSherry, F.; Mironov, I.; and
Naor, M. 2006a. Our data, ourselves: Privacy via distributed
noise generation. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques,
486–503. Springer.
Dwork, C.; McSherry, F.; Nissim, K.; and Smith, A. 2006b.
Calibrating noise to sensitivity in private data analysis. In
Theory of Cryptography Conference, 265–284. Springer.
Frankle, J.; and Carbin, M. 2019. The Lottery Ticket Hy-
pothesis: Finding Sparse, Trainable Neural Networks. In In-
ternational Conference on Learning Representations.
Germain, M.; Gregor, K.; Murray, I.; and Larochelle, H.
2015. MADE: Masked Autoencoder for Distribution Esti-
mation. In International Conference on Machine Learning,
881–889. PMLR.
Harder, F.; Adamczewski, K.; and Park, M. 2021. DP-
MERF: Differentially Private Mean Embeddings with Ran-
domFeatures for Practical Privacy-Preserving Data Genera-
tion. In International Conference on Artificial Intelligence
and Statistics, 1819–1827. PMLR.
Ho, J.; Chen, X.; Srinivas, A.; Duan, Y.; and Abbeel, P.
2019. Flow++: Improving Flow-Based Generative Models
with Variational Dequantization and Architecture Design.

In International Conference on Machine Learning, 2722–
2730. PMLR.
Jordon, J.; Yoon, J.; and van der Schaar, M. 2019. PATE-
GAN: Generating Synthetic Data with Differential Privacy
Guarantees. In ICLR.
Kingma, D. P.; and Dhariwal, P. 2018. Glow: Genera-
tive Flow with Invertible 1x1 Convolutions. In Proceed-
ings of the 32nd International Conference on Neural In-
formation Processing Systems, NIPS’18, 10236–10245. Red
Hook, NY, USA: Curran Associates Inc.
Kingma, D. P.; and Welling, M. 2014. Auto-Encoding Vari-
ational Bayes. In Bengio, Y.; and LeCun, Y., eds., 2nd In-
ternational Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Conference
Track Proceedings.
Lee, J.; and Kifer, D. 2021. Scaling up Differentially Private
Deep Learning with Fast Per-Example Gradient Clipping.
Proceedings on Privacy Enhancing Technologies, 2021(1):
128–144.
Lu, Y.; and Huang, B. 2020. Woodbury transformations for
deep generative flows. Advances in Neural Information Pro-
cessing Systems, 33.
McMahan, H. B.; Ramage, D.; Talwar, K.; and Zhang, L.
2018. Learning Differentially Private Recurrent Language
Models. In International Conference on Learning Repre-
sentations.
Mironov, I. 2017. Renyi differential privacy. In Computer
Security Foundations Symposium (CSF), 2017 IEEE 30th,
263–275. IEEE.
Papernot, N.; Abadi, M.; Erlingsson, Ú.; Goodfellow, I.; and
Talwar, K. 2017. Semi-Supervised Knowledge Transfer for
Deep Learning from Private Training Data. In Proceedings
of the International Conference on Learning Representa-
tions.
Raihan, M. A.; and Aamodt, T. 2020. Sparse Weight Activa-
tion Training. Advances in Neural Information Processing
Systems, 33: 15625–15638.
Rezende, D.; and Mohamed, S. 2015. Variational Inference
with Normalizing Flows. In International Conference on
Machine Learning, 1530–1538. PMLR.
Sun, X.; Ren, X.; Ma, S.; and Wang, H. 2017. MeProp:
Sparsified Back Propagation for Accelerated Deep Learning
with Reduced Overfitting. In Proceedings of the 34th In-
ternational Conference on Machine Learning - Volume 70,
ICML’17, 3299–3308. Sydney, NSW, Australia: JMLR.org.
Tabak, E. G.; and Turner, C. V. 2013. A Family of Nonpara-
metric Density Estimation Algorithms. Communications on
Pure and Applied Mathematics, 66(2): 145–164.
Tantipongpipat, U.; Waites, C.; Boob, D.; Siva, A.; and
Cummings, R. 2020. Differentially Private Mixed-Type
Data Generation For Unsupervised Learning.
Theis, L.; van den Oord, A.; and Bethge, M. 2016. A Note
on the Evaluation of Generative Models. arXiv:1511.01844
[cs, stat].
Torkzadehmahani, R.; Kairouz, P.; and Paten, B. 2019. DP-
CGAN: Differentially Private Synthetic Data and Label

7352

Generation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops.
Uria, B.; Murray, I.; and Larochelle, H. 2013. RNADE: The
Real-Valued Neural Autoregressive Density-Estimator. In
Burges, C. J. C.; Bottou, L.; Welling, M.; Ghahramani, Z.;
and Weinberger, K. Q., eds., Advances in Neural Informa-
tion Processing Systems, volume 26. Curran Associates, Inc.
Waites, C.; and Cummings, R. 2021. Differentially Private
Normalizing Flows for Privacy-Preserving Density Estima-
tion. arXiv:2103.14068 [cs, stat].
Xie, L.; Lin, K.; Wang, S.; Wang, F.; and Zhou, J. 2018.
Differentially private generative adversarial network. arXiv
preprint arXiv:1802.06739.
Xu, L.; Skoularidou, M.; Cuesta-Infante, A.; and Veera-
machaneni, K. 2019. Modeling Tabular data using Condi-
tional GAN. Advances in Neural Information Processing
Systems, 32: 7335–7345.
Ye, X.; Dai, P.; Luo, J.; Guo, X.; Qi, Y.; Yang, J.; and Chen,
Y. 2020. Accelerating CNN Training by Pruning Activation
Gradients. In Vedaldi, A.; Bischof, H.; Brox, T.; and Frahm,
J.-M., eds., Computer Vision – ECCV 2020, Lecture Notes in
Computer Science, 322–338. Cham: Springer International
Publishing. ISBN 978-3-030-58595-2.
Zhuang, J.; Tang, T.; Ding, Y.; Tatikonda, S. C.; Dvornek,
N.; Papademetris, X.; and Duncan, J. 2020. AdaBelief Opti-
mizer: Adapting Stepsizes by the Belief in Observed Gradi-
ents. Advances in Neural Information Processing Systems,
33.

7353

