
Stability Verification in Stochastic Control Systems via Neural Network
Supermartingales

Mathias Lechner*, Ðord̄e Žikelić*, Krishnendu Chatterjee, Thomas A. Henzinger

IST Austria, Klosterneuburg, Austria
{mathias.lechner, djordje.zikelic, krishnendu.chatterjee, tah}@ist.ac.at

Abstract
We consider the problem of formally verifying almost-sure
(a.s.) asymptotic stability in discrete-time nonlinear stochas-
tic control systems. While verifying stability in deterministic
control systems is extensively studied in the literature, veri-
fying stability in stochastic control systems is an open prob-
lem. The few existing works on this topic either consider only
specialized forms of stochasticity or make restrictive assump-
tions on the system, rendering them inapplicable to learn-
ing algorithms with neural network policies. In this work,
we present an approach for general nonlinear stochastic con-
trol problems with two novel aspects: (a) instead of classical
stochastic extensions of Lyapunov functions, we use rank-
ing supermartingales (RSMs) to certify a.s. asymptotic stabil-
ity, and (b) we present a method for learning neural network
RSMs. We prove that our approach guarantees a.s. asymp-
totic stability of the system and provides the first method to
obtain bounds on the stabilization time, which stochastic Lya-
punov functions do not. Finally, we validate our approach ex-
perimentally on a set of nonlinear stochastic reinforcement
learning environments with neural network policies.

Introduction
Reinforcement learning (RL) presents a promising approach
to learning high-performing control policies in nonlinear
control problems. However, most RL algorithms focus on
learning a policy that maximizes the expected reward (Sut-
ton and Barto 2018), and do not take safety constraints
into account. This raises concerns about their suitability for
safety-critical applications such as autonomous vehicles or
healthcare. Thus, a fundamental challenge for the deploy-
ment of policies learned via RL algorithms in safety-critical
applications is certifying their safety (Amodei et al. 2016).

Stability is one of the most important properties that a
control policy needs to ensure for the system to be safe (Lya-
punov 1992). In their training phase, RL algorithms explore
unknown environments through randomized actions while
optimizing the learned policy’s expected reward. Without a
control mechanism to ensure that the system safely recovers
from such exploratory actions and goes back to some known
safe region, this might lead to catastrophic events. For ex-
ample (Berkenkamp et al. 2017), if a self-driving car ends

*Equal Contribution.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

up driving outside its lane, a safe control policy needs to be
able to stabilize the car back within the lane. Stability anal-
ysis is concerned with providing formal guarantees that the
system can, with probability 1, recover back to this safe re-
gion from any system state and stay there indefinitely.

Formal verification of stability in deterministic control
problems is well-studied. In particular, Lyapunov functions
are an established method for stability analysis of determin-
istic systems (Khalil 2002). A more recent line of research
focuses on automatically learning a Lyapunov function in
the form of a neural network (see Related Work). While
there are several theoretical results on extending Lyapunov
functions to stochastic systems (Kushner 1965, 2014), only a
few works consider the problem of automated stability anal-
ysis for control problems where the stochasticity originates
from the environment (Crespo and Sun 2003; Vaidya 2015).
Moreover, these works rely on restrictive assumptions on
the system, making them inapplicable to learning algorithms
with neural network policies, and they only verify strictly
weaker notions of stability. Since uncertainty is a crucial
component of RL systems, through exploration and to bridge
the simulation-to-real gap (Tobin et al. 2017; James, Davi-
son, and Johns 2017), methods for stability verification in
stochastic control problems are needed. These methods need
to support neural network policies and truly certify stability.

In this work, we present a method for formally verify-
ing stability in discrete-time stochastic control problems.
Our method is based on ranking supermartingales (RSMs),
which were originally introduced in the programming lan-
guages literature for termination analysis of probabilistic
programs (Chakarov and Sankaranarayanan 2013). Intu-
itively, RSMs are nonnegative functions that decrease in ex-
pectation by at least ϵ > 0 after every one-step evolution of
the system and in each state that is not in the target region.
We prove, for the first time, that RSMs can also be used to
define stability certificates for stochastic control problems.

There are two key advantages of using RSMs instead of
existing stochastic extensions of Lyapunov functions. First,
we show that the defining properties of RSMs are much eas-
ier to encode within a learning framework. Second, we show
that RSMs provide the first method to obtain bounds on the
stabilization time, which stochastic Lyapunov functions do
not. Ensuring that stabilization happens within some toler-
able time limit is another practical concern about system

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

7326

safety. For instance, given a stabilizing policy for a self-
driving car that drives at a very high speed, it is not sufficient
to only ensure that the speed eventually stabilizes within the
allowed speed limit. A good stabilizing policy in such sce-
narios additionally needs to provide plausible guarantees on
the stabilization time. One of the key benefits of using RSMs
is that they provide such guarantees.

We then proceed to presenting an algorithmic framework
for learning RSMs in the form of neural networks. Our algo-
rithm draws insight from existing methods for learning Lya-
punov functions in deterministic control problems (Chang,
Roohi, and Gao 2019), and consists of two modules: the
learner which learns an RSM candidate in the form of a neu-
ral network, and the verifier which then verifies the learned
candidate. Whenever the verification step fails, a set of coun-
terexamples showing that the candidate is not an RSM is
computed, which are then used by the learner to fine-tune the
candidate. This loop is repeated until a learned RSM candi-
date is successfully verified.

One of the key algorithmic challenges in designing the
verifier module, compared to the case of deterministic sys-
tems, is that we need to verify an expected decrease con-
dition which requires being able to compute the expected
value of a neural network function over a probability distri-
bution. Note, sampling cannot be used for this task since it
only allows computing statistical bounds. To solve this chal-
lenge, we propose a method for efficiently computing formal
and tight bounds on the expected value of an arbitrary neu-
ral network function over a probability distribution. We also
demonstrate experimentally that our method computes tight
bounds in practice. Our algorithmic contribution on comput-
ing expected value bounds for neural networks might on its
own open various research directions on analyzing neural
networks in probabilistic settings.

Finally, we evaluate our approach on two stochastic RL
tasks with neural network control policies. It successfully
learns RSMs proving that the policies stabilize the systems.

Contributions Our contributions are as follows:

1. We show that ranking supermartingales (RSMs) provide
a stability certificate for stochastic control problems, as
well as guarantees on the stabilization time.

2. We present a framework for learning neural network
RSMs which also formally verifies the learned RSM.

3. As a part of our verification framework, we present a
method for efficiently computing formal bounds on the
expected value of a neural network function over a prob-
ability distribution. We are not aware of any existing
works that tackle this problem.

4. We empirically validate that our approach can prove sta-
bility of stochastic systems with neural network policies.

Related Work
Stability verification via Lyapunov functions Stabil-
ity verification in deterministic dynamical systems has re-
ceived a lot of attention in recent works. For systems with
polynomial dynamics and Lyapunov functions restricted to
the sum-of-squares (SOS) form, a Lyapunov function can

be computed via semi-definite programming (Henrion and
Garulli 2005; Parrilo 2000; Jarvis-Wloszek et al. 2003). A
learner-verifier framework similar to ours but for computing
polynomial Lyapunov functions has been proposed in (Ra-
vanbakhsh and Sankaranarayanan 2019). However, these
methods require polynomial approximations and may not be
efficient for systems with general nonlinearities. Moreover,
it is known that even some simple dynamical systems that
are asymptotically stable do not admit polynomial Lyapunov
functions (Ahmadi, Krstic, and Parrilo 2011).

Learning Lyapunov functions in the form of a neural net-
work has been considered in (Richards, Berkenkamp, and
Krause 2018; Chang, Roohi, and Gao 2019; Abate et al.
2021), and it is an approach that is better suited to dynamical
systems with general nonlinearities. In particular, (Richards,
Berkenkamp, and Krause 2018) learn a Lyapunov function
together with a region in which the system is stable by first
discretizing the state space of the system, then learning a
Lyapunov function candidate which tries to maximize the
number of the discrete states at which the Lyapunov condi-
tion holds, and finally verifying that the candidate is indeed
a Lyapunov function. The works (Chang, Roohi, and Gao
2019; Abate et al. 2021) propose a learner-verifier frame-
work which uses counterexamples found by the verifier to
improve the loss function and thus learn a new candidate.
This loop is repeated until the verifier certifies that the Lya-
punov function is correct. Our method for stability verifica-
tion combines and extends ideas from these works.

Stability for stochastic control problems All of the
above methods consider deterministic dynamical systems.
While there are several theoretical results on the stability
of stochastic dynamical systems (see (Kushner 2014) for a
comprehensive survey), to our best knowledge there are very
few works that consider their automated stability verifica-
tion (Vaidya 2015; Crespo and Sun 2003). Both of these are
numerical approaches that first partition the system’s state
space into finitely many regions and then over-approximate
the system’s continuous dynamics via a discrete finite-state
abstraction. Thus, the computed stability certificates are
piecewise-constant. Furthermore, (Vaidya 2015) verifies a
weaker notion of stability called “coarse stochastic stability”
that depends on the partition of the state space, and (Crespo
and Sun 2003) imposes stability by requiring the system to
reach the stabilizing region within some pre-specified finite
time and deterministically (i.e. for each sample path).

Reachability for stochastic control problems Reachabil-
ity is a property that is naturally related to stability since
stability requires reachability of the stabilization set. Veri-
fication and control under finite time horizon probabilistic
reachability constraints in stochastic systems has been stud-
ied in (Soudjani, Gevaerts, and Abate 2015; Lavaei et al.
2020; Cauchi and Abate 2019; Vinod, Gleason, and Oishi
2019). These works approximate stochastic systems via a
finite-state Markov decision process (MDP). Due to accu-
mulation of the approximation error, the size of the approxi-
mating MDP needs to grow with the length of the time hori-
zon. Therefore, these methods are applicable to finite and
short time horizons systems. In contrast, we consider proba-

7327

bility 1 stability verification over the infinite time horizon.

Reachability for deterministic control problems There
are several approaches and tools that analyze reachabil-
ity in deterministic continuous-time feedback loop systems
controlled by neural network policies. Some notable ex-
amples are Sherlock (Dutta, Chen, and Sankaranarayanan
2019) and ReachNN/ReachNN∗ (Huang et al. 2019; Fan
et al. 2020) which use polynomial approximations to over-
approximate the reachable set over a given time horizon,
NNV (Tran et al. 2020) which is based on abstract inter-
pretation, LRT-NG (Gruenbacher et al. 2020) which overap-
proximates the reachable set as sequence of hyperspheres,
or Verisig (Ivanov et al. 2019) which reduces the problem
to reachability analysis in hybrid systems. Furthermore, Go-
Tube (Gruenbacher et al. 2021) constructs the reachable set
of a deterministic continuous-time system with statistical
guarantees about the constructed set overapproximating the
true reachable states.

Note, however, that the goal of reachability analysis in de-
terministic systems is to compute a set of states that are vis-
ited by some trajecotry of the system. In contrast, the goal
of stability analysis is to show that all trajectories stabilize
within the stabilization set (or with probability 1 in the case
of stochastic systems). Furthermore, the above tools con-
sider reachability over some finite time horizon and in de-
terministic systems, whereas in this work we do not impose
any time limit and consider stochastic systems. Thus, these
tools are not applicable to the stability verification problem
in stochastic control systems.

Safe exploration RL algorithms need to explore the en-
vironment via randomized actions to learn which actions
lead to a high future reward. However, in safety-critical en-
vironments, random actions may lead to catastrophic results.
Safe exploration RL aims to restrict the exploratory actions
to those that ensure safety of the environment. The most
dominant approach to addressing this problem is learning
the system dynamics’ uncertainty bounds and limiting the
exploratory actions within a high probability safety region.
In the literature, Gaussian Processes (Koller et al. 2018;
Turchetta, Berkenkamp, and Krause 2019; Berkenkamp
2019), linearized models (Dalal et al. 2018) , deep robust
regression (Liu et al. 2020), and Bayesian neural networks
(Lechner et al. 2021a) are used to learn uncertainty bounds.

Learning stable dynamics Learning dynamics from ob-
servation data is the first step in many control methods as
well as model-based RL. Recent works considered learning
deterministic system dynamics with guarantees on stability
of some specified region (Kolter and Manek 2019). Learning
stochastic dynamics from observation data has been studied
in (Umlauft and Hirche 2017; Lawrence et al. 2020).

RSMs for probabilistic programs Ranking supermartin-
gales (RSMs) were first introduced in the programming lan-
guages community in order to reason about termination
of probabilistic programs (PPs) (Chakarov and Sankara-
narayanan 2013). They are a stochastic extension of the clas-
sical notion of ranking functions in programs (Floyd 1967),
and in addition to ensuring probability 1 termination they

also provide guarantees on termination time (Fioriti and Her-
manns 2015; Chatterjee et al. 2016). Our theoretical guaran-
tees on the stabilization time draw insight from these results.

While some of our theoretical results are motivated by the
works on PPs, our approach to stability verification differs
significantly from the existing methods for RSM computa-
tion in PPs (Chakarov and Sankaranarayanan 2013; Chat-
terjee et al. 2016; Chatterjee, Fu, and Goharshady 2016). In
particular, these methods compute linear/polynomial RSMs
via linear/semi-definite programming, and are more similar
to the early methods for the computation of polynomial Lya-
punov functions that we discussed above. On the contrary,
our method learns an RSM in the form of a neural network.
The only method for learning RSMs in PPs has been pre-
sented in the recent work of (Abate, Giacobbe, and Roy
2021), but this work computes only neural network RSMs
with a single hidden layer and for a restricted class of PPs. In
contrast, one of the main algorithmic novelties of our work
is that we propose a general framework for computing the
expected value of a neural network function over some prob-
ability distribution, which allows us to learn multi-layer neu-
ral network RSMs for general nonlinear systems.

Preliminaries
We consider a discrete-time stochastic dynamical system

xt+1 = f(xt,ut, ωt), t ∈ N0.

The dynamics of the system are defined by the dynamics
function f : X × U ×N → X , where X ⊆ Rm is the state
space, U ⊆ Rn is the control action space and N ⊆ Rp

is the disturbance space. The system starts in some initial
state x0 ∈ X and at each time step t, given a state xt, the
action ut = π(xt) is chosen according to a control policy
π : X → U . The action ut, the state xt and a randomly
sampled disturbance vector ωt ∼ d then give rise to the sub-
sequent state xt+1 = f(xt,ut, ωt). Here, we use d to denote
the probability distribution over N from which the distur-
bance vector is sampled. Thus, the dynamics function f , the
policy π and the probability distribution d together form a
stochastic feedback loop system (or a closed-loop system).

Model assumptions Stability analysis of stochastic dy-
namical systems would be impossible without additional as-
sumptions on the system, so that the model is sufficiently
well-behaved. To that end, we assume that X , U and N
are all Borel-measurable for the system semantics to be
well-defined, and that X is compact in the Euclidean topol-
ogy of Rm. The dynamics function f and the control pol-
icy π are assumed to be Lipschitz continuous, which is a
common assumption in control theory and allows a rich
class of control policies including various types of neural
networks (Szegedy et al. 2014). Moreover, assuming Lip-
schitz continuity is standard in existing works on stability
analysis (Richards, Berkenkamp, and Krause 2018; Chang,
Roohi, and Gao 2019). Finally, we assume that d is a prod-
uct of independent univariate distributions, which is needed
for efficient sampling and expected value computation.

7328

Probability space of trajectories A sequence of state-
action-disturbance triples (xt,ut, ωt)t∈N0 is said to be a tra-
jectory of the system, if for each t ∈ N0 we have ut =
π(xt), ωt ∈ support(d) and xt+1 = f(xt,ut, ωt). For each
initial state x0 ∈ X , the system dynamics induces a Markov
process which gives rise to the probability space over the set
of all trajectories that start in x0 (Puterman 1994, Section 2).
We use Px0

and Ex0
to denote the probability measure and

the expectation operator in this probability space.

Almost-sure (a.s.) asymptotic stability There are several
notions of stochastic stability, so we formally define the
one that we consider in this work (Kushner 1965). Con-
sider a stochastic feedback loop system defined as above,
and let Xs ⊆ X be Borel-measurable. We say that Xs is
closed under system dynamics if, for every x ∈ Xs and
ω ∈ support(d), we have that f(x, π(x), ω) ∈ Xs.

For Xs ⊆ X that is closed under system dynamics, we
say that it is almost-surely asymptotically stable if from any
initial state the system almost-surely converges to Xs (and
therefore stays in Xs due to closedness under system dy-
namics). In order to define this formally, for each x ∈ X let
d(x,Xs) = infxs∈Xs

||x−xs||1, where || · ||1 is the l1-norm
on the Euclidean space Rm.
Definition 1. A non-empty set of states Xs ⊆ X that is
closed under system dynamics is said to be almost-surely
(a.s.) asymptotically stable if, for each x0 ∈ X , we have

Px0

[
lim
t→∞

d(xt,Xs) = 0
]
= 1.

Our definition slightly differs from that of (Kushner 1965)
which considers the special case of the stabilization set being
the singleton equilibrium point at the origin, i.e. Xs = {0}.
The reason for this discrepancy is that many practical ap-
proaches to the stability analysis of nonlinear systems need
to make additional assumptions on the system’s behavior
around the origin, as otherwise they would suffer from nu-
merical error issues. For instance, (Berkenkamp et al. 2017;
Richards, Berkenkamp, and Krause 2018) study stability of
deterministic dynamical systems and both assume that some
open neighbourhood of the origin is a priori known to be
stable, whereas (Chang, Roohi, and Gao 2019) only check
stability conditions away from some neighbourhood around
the origin. In order to avoid making such assumptions and
to ensure that our method truly certifies stability, we assume
that the region Xs has non-empty interior (i.e. it contains an
open ball around a point in X). By making either of the as-
sumptions from the aforementioned works, our method nat-
urally extends to the case where Xs = {0}.
Relation to a.s. reachability verification We remark that
our method can also formally verify a.s. reachability of a
specified target set, i.e. that for any initial state the system
reaches a state in the target set with probability 1. In fact, due
to the assumption that the stabilization setXs is closed under
system dynamics, the problem of verifying a.s. asymptotic
stability reduces to the a.s. reachability verification problem
for the stabilization set.

Assuming the closedness under system dynamics of the
stabilization set is a reasonable and a realistic choice, due

to dynamical systems typically expressing weak dynam-
ics around the systems’ stable points. As discussed above,
many works on stability of deterministic dynamical systems
also make a similar assumption, i.e. that an open neigh-
bourhood of the origin 0 is closed under system dynam-
ics (Berkenkamp et al. 2017; Richards, Berkenkamp, and
Krause 2018; Chang, Roohi, and Gao 2019).

Theoretical Results
We now present a theoretical framework for formally certi-
fying stability of a region in a discrete-time stochastic dy-
namical system. Our framework is based on ranking super-
martingales which we introduce below.

Ranking supermartingales Consider a discrete-time
stochastic dynamical system defined by a dynamics function
f , a policy π and a probability distribution d with model as-
sumptions as in the previous section, and let Xs ⊆ X be
closed under system dynamics and have non-empty interior.

Intuitively, a ranking supermartingale (RSM) is a non-
negative continuous function whose value at each state in
X\Xs decreases in expectation by at least ϵ > 0 (is ϵ-
ranked) after a one-step evolution of the system under the
policy π, where the expected value is taken with respect
to the probability distribution d over disturbance vectors.
The name comes from the connection to supermartingales,
a class of discrete-time stochastic processes in probabil-
ity theory whose value decreases in expectation after each
time step (Williams 1991). RSMs were first introduced
in (Chakarov and Sankaranarayanan 2013) for the termina-
tion analysis of probabilistic programs, and we adapt them
to the setting of stochastic dynamical systems.
Definition 2. A continuous function V : X → R is said to
be a ranking supermartingale (RSM) for Xs, if V (x) ≥ 0
holds for any x ∈ X and if there exists ϵ > 0 such that

Eω∼d

[
V
(
f(x, π(x), ω)

)]
≤ V (x)− ϵ (1)

holds for every x ∈ X\Xs.

We note that RSMs differ from the commonly considered
stochastic Lyapunov functions for discrete-time stochastic
systems (Kushner 2014), which require V to be continuous
and to satisfy the following conditions:
• Eω∼d[V (f(x, π(x), ω))] < V (x) for x ∈ X\Xs,
• V (x) > 0 for x ∈ X\Xs, and
• V (x) = 0 for x ∈ Xs.

The third condition would be quite restrictive if we tried
to learn V in the form of a neural network (which will be
the goal of our novel approach to stability verification in
the next section). Thus, one of the key benefits of consid-
ering RSMs instead of stochastic Lyapunov functions is that
we may replace the V (x) = 0 for x ∈ Xs condition by a
slightly stricter expected decrease condition that requires the
decrease by at least some ϵ > 0. Theorem 1 establishes that
RSMs are indeed sufficient to prove a.s. asymptotic stability.
Theorem 1. Let f : X ×U×N → X be a Lipschitz contin-
uous dynamics function, π : X → U a Lipschitz continuous

7329

policy and d a distribution over N . Suppose that X is com-
pact and let Xs ⊆ X be closed under system dynamics and
have a non-empty interior. Suppose that there exists an RSM
V : X → R for Xs. Then Xs is a.s. asymptotically stable.

The main idea behind the proof of Theorem 1 is as fol-
lows. For each state x0 ∈ X , we consider the probability
space of all trajectories that start in x0. We then show that
the RSM V for Xs gives rise to an instance of the mathemat-
ical notion of RSMs in this probability space, and use results
from probability theory on the convergence of RSMs to con-
clude that Xs is a.s. asymptotically stable. The overview of
the results from probability and martingale theory that we
use in our proof as well as the formal proof of the theorem
can be found in the Supplementary Material (Lechner et al.
2021b).

Bounds on the convergence time While formally verify-
ing that a control policy stabilizes the system with proba-
bility 1 is very important for safety critical applications, an-
other practical concern is to ensure that stabilization happens
within some tolerable time limit.

Another important caveat of using RSMs for stability
analysis of stochastic systems is that they provide formal
guarantees on the stabilization time. For a system trajec-
tory (xt,ut, ωt)t∈N0

, we define its stabilization time TXs
=

inf{t ∈ N0 | xt ∈ Xs} to be the first hitting time of the
region Xs (with TXs = ∞ if trajectory never reaches Xs).
Given c > 0, the system has c-bounded differences if the
distance between any two consecutive system states with re-
spect to the l1-norm does not exceed c, i.e. for any x ∈ X
and ω ∈ support(d) we have ||f(x, π(x), ω)− x||1 ≤ c.

Theorem 2. Let f : X ×U×N → X be a Lipschitz contin-
uous dynamics function, π : X → U a Lipschitz continuous
policy and d a distribution over N . Suppose that X is com-
pact and let Xs ⊆ X be closed under system dynamics and
have a non-empty interior. Suppose that there exists an ϵ-
RSM V : X → R for Xs. Then, for any initial state x0 ∈ X ,

1. Ex0
[TXs

] ≤ V (x0)
ϵ .

2. Px0 [TXs ≥ t] ≤ V (x0)
ϵ·t , for any time t ∈ N.

3. If the system has c-bounded differences for c > 0, then
Px0

[TXs
≥ t] ≤ A · e−t·ϵ2/(2·(c+ϵ)2) for any time t ∈ N

and A = eϵ·V (x0)/(c+ϵ)2 .

The proof of Theorem 2 can be found in the Supplemen-
tary Material (Lechner et al. 2021b) and here we present the
key ideas. The first part shows that the expected stabilization
time is bounded from above by the initial value of V divided
by ϵ. To prove it, we show that the stabilization time gives
rise to a stopping time in the probability space of all trajec-
tories that start in x0. We then observe that the RSM V sat-
isfies the expected decrease condition until TXs

is exceeded
and use the results from probability theory on the conver-
gence of RSMs to conclude the bound on the expected value
of this stopping time.

The second part shows a bound on the probability that the
stabilization time exceeds a threshold t, and it follows imme-
diately from the first part by an application of Markov’s in-
equality. Note that this bound decays linearly in t, as t→∞.

Finally, the third part shows an asymptotically tighter
bound with the decay in t being exponential, for systems
that have c-bounded differences. The proof follows by an
application of Azuma’s inequality (Azuma 1967) which is a
classical result from martingale theory and which we also in-
clude in the Supplementary Material (Lechner et al. 2021b).

Method for Stability Verification
In this section, we present our method for verifying
a.s. asymptotic stability of a given region via RSM compu-
tation. Our method consists of two modules which alternate
within a loop: the learner and the verifier. In each loop itera-
tion, the learner first learns an RSM candidate in the form of
a neural network. The candidate is then passed to the veri-
fier, which checks whether the learned candidate is indeed
an RSM. If the answer is positive, the verifier terminates
the loop and concludes the system’s a.s. asymptotic stabil-
ity. Otherwise, the verifier computes a set of counterexam-
ples which show that the candidate is not an RSM and passes
it to the learner, which then proceeds with the next learning
iteration. This process is repeated until either a learned can-
didate is verified or a given timeout is reached.

We consider a discrete-time stochastic dynamical system
defined by a dynamics function f , a policy π and a probabil-
ity distribution d with model assumptions as in the previous
sections, and Xs ⊆ X which is closed under system dy-
namics and has non-empty interior. The rest of this section
describes the details behind our method for stability verifi-
cation. The algorithm is presented in Algorithm 1.

Discretization and Initial Sampling
Recall, an RSM V needs to satisfy the expected decrease
condition in eq. (1) at each point in X\Xs. However, one of
the main difficulties in verifying this condition when V has
a neural network form is that it is not clear how to compute
a closed form for the expected value of V at a successor sys-
tem state. In order to be able to verify neural network RSM
candidates, our method discretizes the state space and then
verifies the expected decrease condition only at the states in
the discretization (which we will show to be possible due to
f , π and V all being Lipschitz continuous andX being com-
pact). The discretization X̃ of X\Xs satisfies the property
that, for each x ∈ X\Xs, there is x̃ ∈ X̃ with ||x−x̃||1 < τ ,
with τ an algorithm parameter that we call the mesh of X̃ .
Since X is compact and so X\Xs is bounded, the discretiza-
tion consists of finitely many states.

The method also initializes the collection of pairs D =
{(x,Dx) | x ∈ X̃}, where each Dx consists of N successor
states of x obtained by independent sampling. Here, N ∈ N
is an algorithm parameter. The collection D will be used to
approximate expected values at successor states for each x
in X̃ in the loss function used by the learner.

Verifier
In order to motivate the form of the loss function used by
the learner, we first describe the verifier module of our al-
gorithm. For a neural network V to be an RSM as in Def-
inition 2, it needs to be (1) continuous, (2) nonnegative at

7330

Algorithm 1: Verification of a.s. asymptotic stability

Input Dynamics function f , policy π, disturbance distri-
bution d, region Xs ⊆ X , Lipschitz constants Lf , Lπ

parameters τ > 0, N ∈ N, λ > 0
X̃ ← discretization of X\Xs with mesh τ

for x in X̃ do
Dx ← N sampled successor states of x

end for
while timeout not reached do
V ← trained candidate by minimizing the loss in eq. (4)
LV ← Lipschitz constant of V
K ← LV · (Lf · (Lπ + 1) + 1)

if ∃x ∈ X̃ s.t. Eω∼d[V (f(x, π(x), ω))] ≥ V (x)−τ ·K
then
Dx ← add N sampled successor states of x

else
Return A.s. asymptotically stable

end if
end while
Return Unknown

each state, and (3) to satisfy the expected decrease condi-
tion in eq. (1) for each state in X\Xs. Since V is a neu-
ral network we already know that it is a continuous func-
tion. Moreover, since X is compact and V is continuous, the
function V admits a finite global lower bound −m ∈ R.
Hence, if we verify that V satisfies the expected decrease
condition, we may consider the function V ′(x) = V (x)+m
which is in addition nonnegative and thus an RSM to con-
clude a.s. asymptotic stability of Xs. Therefore, the verifier
only needs to check that V satisfies the expected decrease
condition in eq. (1) for each state in X\Xs, from which it
immediately follows that V ′ is an RSM.

As explained above, checking this for each state in X\Xs

is not feasible since we cannot compute a closed form for the
expected value of V at a successor system state. Instead, we
show that it is sufficient to check a slightly stricter condition
on states in the discretization X̃ . Let Lf , Lπ and LV be the
Lipschitz constants of f , π and the candidate function V ,
respectively. We assume that the Lipschitz constant for the
dynamics function f and the policy π are provided, and use
the method of (Szegedy et al. 2014) to compute the Lipschitz
constant of the neural network candidate V (and also of π,
in cases when π is a neural network policy). Then define

K = LV · (Lf · (Lπ + 1) + 1). (2)

In order to verify that V satisfies the expected decrease con-
dition in eq. (1) for each state in X\Xs, the verifier checks
for each x in the discretization X̃ that

Eω∼d

[
V
(
f(x, π(x), ω)

)]
< V (x)− τ ·K (3)

If eq. (3) holds for each x ∈ X̃ , the verifier concludes
a.s. asymptotic stability of Xs. Otherwise, if x ∈ X̃ for
which eq. (3) does not hold is found, it is passed to the
learner by independently sampling N successor states of x
which are then added to the set Dx.

Theorem 3 establishes the correctness of Algorithm 1 by
showing that it indeed suffices to check eq. (3) for states in
the discretization. The proof uses the fact that f and π are
Lipschitz continuous and that X is compact, and is provided
in the Supplementary Material (Lechner et al. 2021b).
Theorem 3. Suppose that the verifier in Algorithm 1 veri-
fies that V satisfies eq. (3) for each x ∈ X̃ . Let −m ∈ R
be such that V (x) ≥ −m for each x ∈ X . Then, the func-
tion V ′(x) = V (x) + m is an RSM for Xs. Hence, Xs is
a.s. asymptotically stable.

We remark that the cardinality of the discretization X̃
grows exponentially in the dimension of the state space,
which in turn implies an exponential complexity for each
verification step in our algorithm. This limitation is also
present in related works on stability analysis in determin-
istic dynamical systems (Berkenkamp et al. 2017). A poten-
tial approach to overcome the complexity bottleneck would
be to discretize different dimensions and regions of the state
space with a heterogeneous instead of a uniform granularity.

Expected value computation What is left to be described
is how our algorithm computes the expected value in eq. (3)
for a given state x ∈ X̃ . This is not trivial, since V is a
neural network and so we do not have a closed form for
the expected value. However, we can bound the expected
value via interval arithmetic. In particular, let x ∈ X̃ be a
throughout fixed state for which we want to bound the ex-
pected value Eω∼d[V (f(x, π(x), ω))]. Our algorithm par-
titions the disturbance space N ⊆ Rp into finitely many
cells cell(N) = {N1, . . . ,Nk}, with k being the number
of cells. We use maxvol = maxNi∈cell(N) vol(Ni) to de-
note the maximal volume with respect to the Lebesgue mea-
sure over Rp of any cell in the partition. The algorithm then
bounds the expected value via

Eω∼d

[
V
(
f(x, π(x), ω)

)]
≤

∑
Ni∈cell(N)

maxvol· sup
ω∈Ni

F (ω)

where F (ω) = V (f(x, π(x), ω)). Each supremum is then
bounded from above via interval arithmetic by using the
method of (Gowal et al. 2018). In our experimental eval-
uation, we observed that this method computes very tight
bounds when the number of cells is sufficiently large.

Note that maxvol is not finite in cases when N is un-
bounded. In order to allow expected value computation for
an unbounded N , we first apply the probability integral
transform (Murphy 2012) to each univariate probability dis-
tribution in d. Recall, in our model assumptions we assumed
that d is a product of univariate distributions and our dynam-
ics function f takes the most general form.

Learner
We now describe the learner module of our algorithm. The
learner constructs an RSM candidate function as a multi-
layer neural network Vθ, where θ is the vector of neural net-
work parameters. A candidate neural network is learned by
minimizing the following loss function

L(θ) = LRSM(θ) + λ · LLipschitz(θ). (4)

7331

0.5 0.0 0.5
x1

0.4

0.2

0.0

0.2

0.4

0.6

x 2
Deterministic environment

0.5 0.0 0.5
x1

0.4

0.2

0.0

0.2

0.4

0.6

x 2

Stochastic environment

Figure 1: Example of a deterministic and a stochastic system
with the same dynamics function, illustrating the difficulties
of proving stability in stochastic systems. The orange mark-
ers indicate the system state after 200 time steps.

The first loss term LRSM(θ) is defined via

LRSM(θ) =
1

|X̃ |

∑
x∈X̃

(
max

{ ∑
x′∈Dx

Vθ(x
′)

|Dx|
−Vθ(x)+τ ·K, 0

})
.

Intuitively, for x ∈ X̃ , the corresponding term in the sum
incurs a loss whenever the condition in eq. (3) is violated.
Since the closed form for the expected value in eq. (3) in
terms of parameters θ cannot be computed, for each x ∈ X̃
we approximate it as the mean of the values of V at sampled
successor states of x that the algorithm stores in the set Dx.

The second loss term λ · LLipschitz(θ) is the regularization
term used to incentivize that the Lipschitz constant LVθ

of
Vθ does not exceed some tolerable threshold, and hence to
enforce that τ ·K in eq. (3) is sufficiently small. The constant
λ is an algorithm parameter balancing the two loss terms,
and we define

LLipschitz(θ) = max
{
LVθ
− δ

τ · (Lf · (Lπ + 1) + 1)
, 0
}
.

Here, δ is a parameter that specifies the threshold, and LVθ

in terms of θ is computed as in (Szegedy et al. 2014).
To conclude this section, we note that the loss function
L(θ) is nonnegative but is not necessarily equal to 0 even if
Vθ satisfies eq. (3) for each x ∈ X̃ and its Lipschitz con-
stant is below the allowed threshold. This is because L(θ)
depends on samples in D which are used to approximate the
expected values in eq. (3). However, in Theorem 4 we show
that the loss L(θ) → 0 almost-surely as we add samples to
the set Dx for each x ∈ X̃ , whenever Vθ satisfies eq. (3)
for each x ∈ X̃ and its Lipschitz constant is below the al-
lowed threshold. The claim follows from the Strong Law
of Large Numbers (Williams 1991, Section 12.10) and the
proof can be found in the Supplementary Material (Lechner
et al. 2021b).

Theorem 4. Let M = minx∈X̃ |Dx|. If Vθ satisfies eq. (3)
for each x ∈ X̃ and if LVθ

≤ δ/(τ · (Lf · (Lπ + 1) + 1)),
then limM→∞ L(θ) = 0 holds almost-surely.

0.40.20.00.20.4

0.4
0.2

0.0
0.2

0.4

0.0
0.5
1.0
1.5

2.0

Iteration 1

0.40.20.00.20.4

0.4
0.2

0.0
0.2

0.4

0.0

0.5

1.0

1.5

2.0

Iteration 2

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Figure 2: Learned RSM candidates after 1 and 2 iterations
of our algorithm for the stochastic inverted pendulum task.
The candidate on the left violates the expected decrease con-
dition while the function of the right is a verified RSM.

Learning Stable Policies
While in this work we focus on the stability verification
problem for a given control policy, our approach can also
be adapted to the setting in which we want to learn a sta-
ble neural network policy for the region Xs together with a
formal certificate for the a.s. asymptotic stability of Xs. This
can be done by replacing the loss function in eq. (4) with

L(θ,u) = LRSM(θ,u) + λ · LLipschitz(θ,u)

where u is now a vector of policy parameters while θ is again
a vector of neural network parameters for the RSM candi-
date. The correctness of our algorithm proved in Theorem 3
then ensures that any learned and verified control policy is
indeed stable. Note that this modified algorithm does not
try to optimize the expected reward obtained by the learned
policy, but only ensures stability. Exploring ways to learn a
stable policy while simultaneously maximizing the expected
reward is an interesting direction of future work.

Experiments
We validate our algorithm empirically on two RL bench-
mark environments. Our first benchmark is a two-
dimensional dynamical system of the form xt+1 = Axt +
Bg(ut) + ω, where ω is a disturbance vector sampled from
a zero-mean triangular distribution. The function g clips the
control action to stay within the interval [−1, 1]. The ma-
trices A and B are provided in the Supplementary Material
(Lechner et al. 2021b).

Our second benchmark is the inverted pendulum problem
(Brockman et al. 2016). Contrarily to the standard inverted
pendulum task, which has deterministic dynamics, we con-
sider a more difficult stochastic variant. The system has two
state variables x1 and x2 which represent the angle and the
angular velocity of the pendulum. The objective of this task
is to balance the pendulum in an upright position through
control actions in the form of a torque that is applied to the
pendulum. Our stochastic variant of the task applies a zero-
mean triangular noise to both state variables.

For each RL task, we consider the state space X = {x |
||x||1 ≤ 0.5} and train a control policy comprised of two
hidden layers with 128 ReLU units each by using proximal

7332

0.4 0.2 0.0 0.2 0.4
x1

0.4

0.2

0.0

0.2

0.4

x 2 2

5

8

8

10

10

12

12

15

15

18

18

Figure 3: Contour lines of the convergence time bounds ob-
tained from the RSM on the inverted pendulum task.

policy optimization (Schulman et al. 2017), while applying
our Lipschitz regularization to keep the Lipschitz constant
of the policy within a reasonable bound. We then run our al-
gorithm to verify that the region Xs = {x | ||x||1 ≤ 0.2} is
a.s. asymptotically stable. Our RSM neural networks consist
of one hidden layer with 128 ReLU units.

Example trajectories of a policy trained for the first bench-
mark with the deterministic (ω = 0) and stochastic dynam-
ics are shown in Figure 1. The policy stabilizes the determin-
istic system in a single point, however this is not the case for
the stochastic system. This illustrates the intricacies of veri-
fying stability in stochastic systems, and justifies our choice
to consider stabilizing regions with non-empty interiors.

Our method could successfully learn and verify RSMs for
both systems within a reasonable time frame. The runtime
statistics are shown in Table 1. The final RSM neural net-
work for the inverted pendulum task is shown in Figure 2.
We further computed the ϵ of the RSM network according
to Definition 2 for the inverted pendulum task to obtain the
convergence time bounds as outlined in Theorem 2. The re-
sulting convergence time bounds are shown in Figure 3.

We perform an additional experiment to study the effec-
tiveness of our method for computing bounds on the ex-
pected value a neural network. In particular, we sample 100
random states of the inverted pendulum environment. For
each sampled state, we use our method to compute the bound
on the expected value of the final RSM neural network
(shown in Figure 2) in a successor system state, with differ-
ent sizes of the cell partition. We then compute the ground-
truth of the expected value by averaging the RSM value at
1000 independently sampled successor states (Strong Law
of Large Numbers). The results shown in Figure 4 indicate
that, even with a modest size of the cell partition, a tight
bound can be obtained. As the partition is further refined,
the expected value bound converges to the ground-truth.

Conclusion
In this work, we study the stability verification problem for
nonlinear stochastic control systems. We show, for the first
time, that ranking supermartingales (RSMs) provide a for-

Environment Iters. Mesh (τ) Runtime

2D system 4 0.002 559
Inverted pendulum 2 0.01 176

Table 1: Number of learner-verifier loop iterations, mesh of
the discretization used by the verifier, and the total algorithm
runtime (in seconds).

0 500 1000 1500 2000 2500
Number of cells

1.0

1.2

1.4

N
eu

ra
l n

et
w

or
k

ou
tp

ut True expectation
Expectation upper bound

Figure 4: Comparison of our method for bounding the ex-
pected value of an RSM neural network with the ground-
truth expected value on 100 randomly sampled states of the
inverted pendulum environment.

mal certificate for a.s. asymptotic stability as well as guar-
antees on the stabilization time. We then present a method
for a.s. asymptotic stability verification which learns and
verifies an RSM in the form of a neural network. In order
to design the verifier module of our algorithm, we propose
a method for efficiently computing tight bounds on the ex-
pected value of a neural network function over a probability
distribution. Finally, we validate our approach experimen-
tally on a set of nonlinear stochastic RL environments with
neural network policies. There are several interesting venues
for future work. While we showed how our verification al-
gorithm can be adapted to also learn a stabilizing policy, this
adaptation does not try to optimize the learned policy. Ex-
ploring ways to learn high performing stabilizing policies is
an interesting direction.

A limiting factor of our algorithm for computing RSMs is
that the complexity of the verification step grows exponen-
tially with the dimension of the state space. In order to over-
come this limitation and improve scalability, future work
may consider different ways to discretize the state space,
such as an on-demand discretization that does not use the
same granularity at all parts of the state space. Moreover,
future work may explore the boundaries and limitations of
our approach on a more diverse set of stability verification
tasks. Potential followup work may study how the hyper-
parameters of our algorithm for learning an RSM, e.g., the
Lipschitz threshold or the size of the counterexample buffer,
affect the success of our method. Another future research di-
rection is to integrate our approach to safe exploration RL in
stochastic systems with stochastic environments.

7333

Acknowledgements
This work was supported in part by the ERC-2020-AdG
101020093, ERC CoG 863818 (FoRM-SMArt) and the Eu-
ropean Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Skłodowska-Curie Grant Agree-
ment No. 665385.

References
Abate, A.; Ahmed, D.; Giacobbe, M.; and Peruffo, A. 2021.
Formal Synthesis of Lyapunov Neural Networks. IEEE Con-
trol. Syst. Lett., 5(3): 773–778.
Abate, A.; Giacobbe, M.; and Roy, D. 2021. Learning
Probabilistic Termination Proofs. In Silva, A.; and Leino,
K. R. M., eds., Computer Aided Verification - 33rd Inter-
national Conference, CAV 2021, Virtual Event, July 20-23,
2021, Proceedings, Part II, volume 12760 of Lecture Notes
in Computer Science, 3–26. Springer.
Ahmadi, A. A.; Krstic, M.; and Parrilo, P. A. 2011. A glob-
ally asymptotically stable polynomial vector field with no
polynomial Lyapunov function. In 50th IEEE Conference
on Decision and Control and European Control Conference,
11th European Control Conference, CDC/ECC 2011, Or-
lando, FL, USA, December 12-15, 2011, 7579–7580. IEEE.
Amodei, D.; Olah, C.; Steinhardt, J.; Christiano, P. F.; Schul-
man, J.; and Mané, D. 2016. Concrete Problems in AI
Safety. CoRR, abs/1606.06565.
Azuma, K. 1967. Weighted sums of certain dependent ran-
dom variables. Tohoku Mathematical Journal, Second Se-
ries, 19(3): 357–367.
Berkenkamp, F. 2019. Safe Exploration in Reinforcement
Learning: Theory and Applications in Robotics. Ph.D. the-
sis, ETH Zurich.
Berkenkamp, F.; Turchetta, M.; Schoellig, A. P.; and Krause,
A. 2017. Safe Model-based Reinforcement Learning with
Stability Guarantees. In Guyon, I.; von Luxburg, U.; Ben-
gio, S.; Wallach, H. M.; Fergus, R.; Vishwanathan, S. V. N.;
and Garnett, R., eds., Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural Informa-
tion Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, 908–918.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. OpenAI
Gym. arXiv preprint arXiv:1606.01540.
Cauchi, N.; and Abate, A. 2019. StocHy-automated verifica-
tion and synthesis of stochastic processes. In Proceedings of
the 22nd ACM International Conference on Hybrid Systems:
Computation and Control, 258–259.
Chakarov, A.; and Sankaranarayanan, S. 2013. Probabilistic
Program Analysis with Martingales. In Sharygina, N.; and
Veith, H., eds., Computer Aided Verification - 25th Interna-
tional Conference, CAV 2013, Saint Petersburg, Russia, July
13-19, 2013. Proceedings, volume 8044 of Lecture Notes in
Computer Science, 511–526. Springer.
Chang, Y.; Roohi, N.; and Gao, S. 2019. Neural Lyapunov
Control. In Wallach, H. M.; Larochelle, H.; Beygelzimer,

A.; d’Alché-Buc, F.; Fox, E. B.; and Garnett, R., eds., Ad-
vances in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, 3240–3249.
Chatterjee, K.; Fu, H.; and Goharshady, A. K. 2016. Ter-
mination Analysis of Probabilistic Programs Through Posi-
tivstellensatz’s. In Chaudhuri, S.; and Farzan, A., eds., Com-
puter Aided Verification - 28th International Conference,
CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Pro-
ceedings, Part I, volume 9779 of Lecture Notes in Computer
Science, 3–22. Springer.
Chatterjee, K.; Fu, H.; Novotný, P.; and Hasheminezhad,
R. 2016. Algorithmic analysis of qualitative and quantita-
tive termination problems for affine probabilistic programs.
In Bodík, R.; and Majumdar, R., eds., Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2016, St. Peters-
burg, FL, USA, January 20 - 22, 2016, 327–342. ACM.
Crespo, L. G.; and Sun, J. 2003. Stochastic optimal control
via Bellman’s principle. Autom., 39(12): 2109–2114.
Dalal, G.; Dvijotham, K.; Vecerík, M.; Hester, T.; Paduraru,
C.; and Tassa, Y. 2018. Safe Exploration in Continuous Ac-
tion Spaces. ArXiv, abs/1801.08757.
Dutta, S.; Chen, X.; and Sankaranarayanan, S. 2019. Reach-
ability analysis for neural feedback systems using regressive
polynomial rule inference. In Ozay, N.; and Prabhakar, P.,
eds., Proceedings of the 22nd ACM International Confer-
ence on Hybrid Systems: Computation and Control, HSCC
2019, Montreal, QC, Canada, April 16-18, 2019, 157–168.
ACM.
Fan, J.; Huang, C.; Chen, X.; Li, W.; and Zhu, Q. 2020.
ReachNN*: A Tool for Reachability Analysis of Neural-
Network Controlled Systems. In Hung, D. V.; and Sokolsky,
O., eds., Automated Technology for Verification and Analysis
- 18th International Symposium, ATVA 2020, Hanoi, Viet-
nam, October 19-23, 2020, Proceedings, volume 12302 of
Lecture Notes in Computer Science, 537–542. Springer.
Fioriti, L. M. F.; and Hermanns, H. 2015. Probabilistic Ter-
mination: Soundness, Completeness, and Compositionality.
In Rajamani, S. K.; and Walker, D., eds., Proceedings of the
42nd Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2015, Mumbai,
India, January 15-17, 2015, 489–501. ACM.
Floyd, R. W. 1967. Assigning Meanings to Programs. Pro-
ceedings of Symposium on Applied Mathematics, 19: 19–32.
Gowal, S.; Dvijotham, K.; Stanforth, R.; Bunel, R.; Qin,
C.; Uesato, J.; Arandjelovic, R.; Mann, T. A.; and Kohli,
P. 2018. On the Effectiveness of Interval Bound Prop-
agation for Training Verifiably Robust Models. CoRR,
abs/1810.12715.
Gruenbacher, S.; Cyranka, J.; Lechner, M.; Islam, M. A.;
Smolka, S. A.; and Grosu, R. 2020. Lagrangian Reachtubes:
The Next Generation. In CDC, 1556–1563. IEEE.
Gruenbacher, S.; Lechner, M.; Hasani, R.; Rus, D.; Hen-
zinger, T. A.; Smolka, S.; and Grosu, R. 2021. Gotube:

7334

Scalable stochastic verification of continuous-depth models.
arXiv preprint arXiv:2107.08467.
Henrion, D.; and Garulli, A. 2005. Positive polynomials in
control, volume 312. Springer Science & Business Media.
Huang, C.; Fan, J.; Li, W.; Chen, X.; and Zhu, Q. 2019.
ReachNN: Reachability Analysis of Neural-Network Con-
trolled Systems. ACM Trans. Embed. Comput. Syst., 18(5s):
106:1–106:22.
Ivanov, R.; Weimer, J.; Alur, R.; Pappas, G. J.; and Lee, I.
2019. Verisig: verifying safety properties of hybrid systems
with neural network controllers. In Ozay, N.; and Prabhakar,
P., eds., Proceedings of the 22nd ACM International Confer-
ence on Hybrid Systems: Computation and Control, HSCC
2019, Montreal, QC, Canada, April 16-18, 2019, 169–178.
ACM.
James, S.; Davison, A. J.; and Johns, E. 2017. Transferring
end-to-end visuomotor control from simulation to real world
for a multi-stage task. In Conference on Robot Learning,
334–343. PMLR.
Jarvis-Wloszek, Z.; Feeley, R.; Tan, W.; Sun, K.; and
Packard, A. 2003. Some controls applications of sum of
squares programming. In 42nd IEEE international confer-
ence on decision and control (IEEE Cat. No. 03CH37475),
volume 5, 4676–4681. IEEE.
Khalil, H. 2002. Nonlinear Systems. Pearson Education.
Prentice Hall.
Koller, T.; Berkenkamp, F.; Turchetta, M.; and Krause, A.
2018. Learning-Based Model Predictive Control for Safe
Exploration. 2018 IEEE Conference on Decision and Con-
trol (CDC), 6059–6066.
Kolter, J. Z.; and Manek, G. 2019. Learning Stable Deep Dy-
namics Models. In Wallach, H. M.; Larochelle, H.; Beygelz-
imer, A.; d’Alché-Buc, F.; Fox, E. B.; and Garnett, R., eds.,
Advances in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, 11126–11134.
Kushner, H. J. 1965. On the stability of stochastic dynamical
systems. Proceedings of the National Academy of Sciences
of the United States of America, 53(1): 8.
Kushner, H. J. 2014. A partial history of the early develop-
ment of continuous-time nonlinear stochastic systems the-
ory. Autom., 50(2): 303–334.
Lavaei, A.; Khaled, M.; Soudjani, S.; and Zamani, M. 2020.
AMYTISS: Parallelized Automated Controller Synthesis for
Large-Scale Stochastic Systems. In Lahiri, S. K.; and Wang,
C., eds., Computer Aided Verification - 32nd International
Conference, CAV 2020, Los Angeles, CA, USA, July 21-24,
2020, Proceedings, Part II, volume 12225 of Lecture Notes
in Computer Science, 461–474. Springer.
Lawrence, N. P.; Loewen, P. D.; Forbes, M. G.; Backström,
J. U.; and Gopaluni, R. B. 2020. Almost Surely Stable Deep
Dynamics. In Larochelle, H.; Ranzato, M.; Hadsell, R.; Bal-
can, M.; and Lin, H., eds., Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Infor-
mation Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual.

Lechner, M.; Žikelić, Ð.; Chatterjee, K.; and Henzinger, T.
2021a. Infinite Time Horizon Safety of Bayesian Neural
Networks. In Advances in Neural Information Processing
Systems 35: Annual Conference on Neural Information Pro-
cessing Systems 2021.
Lechner, M.; Žikelić, Ð.; Chatterjee, K.; and Henzinger,
T. A. 2021b. Stability Verification in Stochastic Control Sys-
tems via Neural Network Supermartingales. arXiv preprint
arXiv:2112.09495.
Liu, A.; Shi, G.; Chung, S.-J.; Anandkumar, A.; and Yue, Y.
2020. Robust Regression for Safe Exploration in Control. In
L4DC.
Lyapunov, A. M. 1992. The general problem of the stability
of motion. International journal of control, 55(3): 531–534.
Murphy, K. P. 2012. Machine learning - a probabilistic per-
spective. Adaptive computation and machine learning series.
MIT Press. ISBN 0262018020.
Parrilo, P. A. 2000. Structured semidefinite programs and
semialgebraic geometry methods in robustness and opti-
mization. California Institute of Technology.
Puterman, M. L. 1994. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. Wiley Series in
Probability and Statistics. Wiley. ISBN 978-0-47161977-2.
Ravanbakhsh, H.; and Sankaranarayanan, S. 2019. Learn-
ing control lyapunov functions from counterexamples and
demonstrations. Auton. Robots, 43(2): 275–307.
Richards, S. M.; Berkenkamp, F.; and Krause, A. 2018.
The Lyapunov Neural Network: Adaptive Stability Certifi-
cation for Safe Learning of Dynamical Systems. In 2nd
Annual Conference on Robot Learning, CoRL 2018, Zürich,
Switzerland, 29-31 October 2018, Proceedings, volume 87
of Proceedings of Machine Learning Research, 466–476.
PMLR.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Soudjani, S. E. Z.; Gevaerts, C.; and Abate, A. 2015. FAUST
2 : Formal Abstractions of Uncountable-STate STochastic

Processes. In Baier, C.; and Tinelli, C., eds., Tools and Al-
gorithms for the Construction and Analysis of Systems - 21st
International Conference, TACAS 2015, Held as Part of the
European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2015, London, UK, April 11-18, 2015. Pro-
ceedings, volume 9035 of Lecture Notes in Computer Sci-
ence, 272–286. Springer.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I. J.; and Fergus, R. 2014. Intriguing prop-
erties of neural networks. In Bengio, Y.; and LeCun, Y., eds.,
2nd International Conference on Learning Representations,
ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Confer-
ence Track Proceedings.
Tobin, J.; Fong, R.; Ray, A.; Schneider, J.; Zaremba, W.;
and Abbeel, P. 2017. Domain randomization for transfer-
ring deep neural networks from simulation to the real world.

7335

In 2017 IEEE/RSJ international conference on intelligent
robots and systems (IROS), 23–30. IEEE.
Tran, H.; Yang, X.; Lopez, D. M.; Musau, P.; Nguyen, L. V.;
Xiang, W.; Bak, S.; and Johnson, T. T. 2020. NNV: The Neu-
ral Network Verification Tool for Deep Neural Networks and
Learning-Enabled Cyber-Physical Systems. In Lahiri, S. K.;
and Wang, C., eds., Computer Aided Verification - 32nd In-
ternational Conference, CAV 2020, Los Angeles, CA, USA,
July 21-24, 2020, Proceedings, Part I, volume 12224 of Lec-
ture Notes in Computer Science, 3–17. Springer.
Turchetta, M.; Berkenkamp, F.; and Krause, A. 2019. Safe
Exploration for Interactive Machine Learning. In NeurIPS.
Umlauft, J.; and Hirche, S. 2017. Learning Stable Stochas-
tic Nonlinear Dynamical Systems. In Precup, D.; and Teh,
Y. W., eds., Proceedings of the 34th International Confer-
ence on Machine Learning, ICML 2017, Sydney, NSW, Aus-
tralia, 6-11 August 2017, volume 70 of Proceedings of Ma-
chine Learning Research, 3502–3510. PMLR.
Vaidya, U. 2015. Stochastic stability analysis of discrete-
time system using Lyapunov measure. In American Control
Conference, ACC 2015, Chicago, IL, USA, July 1-3, 2015,
4646–4651. IEEE.
Vinod, A. P.; Gleason, J. D.; and Oishi, M. M. K. 2019.
SReachTools: a MATLAB stochastic reachability toolbox.
In Ozay, N.; and Prabhakar, P., eds., Proceedings of the 22nd
ACM International Conference on Hybrid Systems: Com-
putation and Control, HSCC 2019, Montreal, QC, Canada,
April 16-18, 2019, 33–38. ACM.
Williams, D. 1991. Probability with Martingales. Cam-
bridge mathematical textbooks. Cambridge University
Press. ISBN 978-0-521-40605-5.

7336

