The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

Directed Graph Auto-Encoders

Georgios Kollias, Vasileios Kalantzis, Tsuyoshi Idé, Aurélie Lozano, Naoki Abe

IBM Research
T. J. Watson Research Center
{gkollias, vkal, tide, aclozano, nabe } @us.ibm.com

Abstract

We introduce a new class of auto-encoders for directed graphs,
motivated by a direct extension of the Weisfeiler-Leman algo-
rithm to pairs of node labels. The proposed model learns pairs
of interpretable latent representations for the nodes of directed
graphs, and uses parameterized graph convolutional network
(GCN) layers for its encoder and an asymmetric inner product
decoder. Parameters in the encoder control the weighting of
representations exchanged between neighboring nodes. We
demonstrate the ability of the proposed model to learn mean-
ingful latent embeddings and achieve superior performance
on the directed link prediction task on several popular network
datasets.

Introduction

Graph-structured data are ubiquitous, commonly encountered
in diverse domains, ranging from biochemical interaction
networks, to networks of social and economic transactions. A
graph introduces dependencies between its connected nodes,
thus algorithms designed to work solely with feature vectors
of isolated nodes as inputs can yield suboptimal results. One
way to remedy this issue, without reverting to more complex
graph algorithms, is to enhance the representation of a graph
node so that both its features and embedding graph structure
are captured in a single vector.

Graph Convolutional Networks (GCNs) produce vecto-
rial representations of nodes that are graph-aware and have
been successfully used in downstream learning tasks includ-
ing node classification, link prediction and graph classifi-
cation. The construction of GCNss falls into two categories:
spatial-based and spectral-based. Spatial-based GCNs are
conveniently described as Message Passing Neural Networks
(MPNNSs) detailing the steps for aggregating information
from neighbor graph nodes (Gilmer et al. 2017; Micheli 2009;
Niepert, Ahmed, and Kutzkov 2016). They adopt a local view
of the graph structure around each node and are straightfor-
ward to describe and lightweight to compute; however they
also need local customizations to enhance the performance
of the representations they produce for downstream learning
tasks (Velickovié et al. 2017). Spectral-based GCNs originate
in graph signal processing perspectives (Bruna et al. 2014).

Copyright (© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

7211

They are based on the graph Laplacian, so they inherently
adopt a global graph view (Defferrard, Bresson, and Van-
dergheynst 2016; Kipf and Welling 2016a). However they
incur more computational cost, typically addressed by ap-
proximating their convolutional filter.

In this work we focus on GCN-based models for represent-
ing the nodes of directed graphs (encoding), so that we can
faithfully reconstruct their directed edges (decoding). Our
goal is to identify both whether two nodes u and v should be
connected or not (which is the only goal for the undirected
case) and whether their connection has the direction u — v
or v — u or both. Many applications depend critically on
this distinctionality. For example in (directed) citation graphs
it cannot be the case that a publication cites a work that is
published later in time, in (directed) causal graphs a causal
node should prepend any of its effects, in knowledge graphs
subject nodes are expected to point to object nodes. As a con-
sequence, failing to identify the correct orientation even in
a single edge could severely disrupt downstream tasks: time
ordering can become contradicting, paths to root causes can
be erroneously blocked, flow computations between entities
can be totally wrong.

Our encoder follows a color refinement scheme for di-
rected graphs that reduces to the standard Weisfeiler-Leman
algorithm. Coupled with an unsymmetric decoder, our di-
rected graph auto-encoder can accurately infer missing di-
rected links from the limited, incomplete graph it has access
to during training time.

Our contributions are two-fold. First, we propose a novel
variant of the Weisfeiler-Leman algorithm that clearly empha-
sizes the dual role of directed graph nodes as both sources and
targets of directed links. This abstracts, for the first time, the
alternating update of authority and hub scalar values in HITS,
and the relations between left and right singular vectors com-
puted in SVD and the GCN-based approaches for directed
graphs inspired by them. Second, we design parameterized
GCN layers for updating the pair-of-vectors representation
of the source and target roles of directed graph nodes in an
alternating manner, and use these layers as the encoder in
a directed graph auto-encoder architecture. We demonstrate
that the parameterization we introduce is performance-critical
for learning latent representations, and the proposed model
can outperform state-of-the-art methods for the directed link
prediction task on several popular citation network datasets

in terms of area under the ROC curve (AUC) and average
precision (AP) metrics.
The code is available at https://github.com/gidiko/DiGAE.

Preliminaries and Background

We can generally describe the dependencies of a network
as a directed graph G(V, E, w), i.e., a weighted dependency
graph. Here V is the set of n = |V| graph nodes and FE =
{(i,j) € V. x V : i j}is the set of its m = | E| directed
edges, expressed as node pairs. Finally w : V xV — Ris the
edge weight function, with w(%, j) being a scalar capturing
the “strength” of the dependency ¢ — j iff (i,j) € E - and
vanishing otherwise. Following a linear algebra perspective,
we will represent G(V, E, w) as an n x n sparse, weighted,
adjacency matrix A. This matrix has m non-vanishing entries
and its (7, §) entry is set equal to the respective weight w(i, j),
ie, Ali, 31 = w(4, 7). Throughout the rest of this paper,
weuse NT(4) = NT(@)U{i} W~ () = N~ (i) U{i}) and
deg™ (i) = INT(i)| (deg™ (i) = [N~ (4)]), to denote the
neighbor node sets of the outgoing (incoming) edges and
outgoing (incoming) degrees of a node 7 - including itself.
Analogously, the corresponding diagonal matrices with the
outdegrees (indegrees) along their diagonal will be denoted

as]~)+ (D), where we top with a tilde mark the names
of adjacency matrices with added self-links. Note that for
undirected, unweighted graphs, the corresponding adjacency
matrices are symmetric and binary, i.e., Disa diagonal matrix

where d;; is the original degree of node ¢ increased by 1
(because of the added self-link).

Dual Vector Encoding of Directed Graph Nodes

Consider a directed edge i — j, with weight w(i, j), where
1 is the source node and j is the target node. Now, let’s
assume that node i is equipped with a pair of vectors in R¥,
1 <4 < n: (i) vector s; encodes i’s role as a source, which
is the same for any of the directed edges it participates as a
source, and (ii) vector t; encodes 7’s role as a target; similarly
for node j. The similarity of nodes ¢ and j in building the
weighted directed edge ¢ — j could then be captured by a
similarity function sim(:,-) which ideally evaluates to the
true edge weight: sim(s;, t;) = w(i, j).

An immediate choice for the similarity function is the dot
product: sim(s;,t;) = s, t;, with the encodings originally
realized as column vectors. We then can compactly evaluate
the weights of all edges, by buliding two matrices, S and
T, where S[i, :] s; and T[3, :] t;r, for all
1 <4,j < n, and requiring A = ST . This particular choice
has been explored in (Ou et al. 2016), which leverages the
singular value decomposition (SVD) A = UXV " and sets

S =UX: and T = VX2. The authors also explore a variant
based on truncated SVD.

Weisfeiler-Leman (WL) Algorithm and Connection
to GCNs

One-dimensional Weisfeiler-Leman (1-WL) One dimen-
sional Weisfeiler-Leman (1-WL) algorithm is a well-studied

7212

approach for assigning distinct labels to the nodes of undi-
rected, unweighted graphs with different topological roles
(Weisfeiler and Leman 1968). Given adjacency information
in the form of neighborhood lists N (i) = [k : i — kVk — i],
Vi € [0,n), 1-dim WL iteratively updates a node’s label by
computing a bijective hash of its neigbors’ labels, and map-
ping this to a unique label. The procedure terminates when
the hash-and-map procedure stabilizes. A detailed sketch of
the 1-WL algorithm is provided in the Appendix.

Graph Convolutional Network (GCN) Graph Convolu-
tional Networks (GCNs) suggest convolution operators for
graph signals defined over graph nodes. Following the
early analysis in (Hammond, Vandergheynst, and Gribon-
val 2011) and the expansions in (Defferrard, Bresson, and
Vandergheynst 2016), GCNs were particularly popularized
by Kipf et al. (Kipf and Welling 2016a). In particular, the
work in (Kipf and Welling 2016a) focused on undirected,
unweighted graphs, such that the adjacency matrices are sym-
metric and binary. Each node ¢ is initially assumed encoded
by a k = ky dimensional vector Xx;, so all node encodings
can be collected in an n x k matrix X = X9, The goal is
to transform the node embeddings so that a downstream task
such as node classification is more accurate.

The proposed transformation contains a succession of
graph convolutional layers of the form:

70 D IAD IXOWD 1)
interspersed with nonlinear layers, like ReLU and softmax.
The quantity W) is a learnable k; x kt41 matrix of weights
for the t*" graph convolutional layer (t = 0,1,...). The
algorithm in (Kipf and Welling 2016a) implements the trans-
formation of the original encodings X:

Z + softmax(A ReLUA X W)y wh)) (2

where A :=D 2AD >.
Connecting 1-WL to GCNs In (Morris et al. 2019) the
connection of 1-WL to 1-GNNs is explored. Their basic 1-

GNN model assumes the form

fOw = [@W 3T D)Wy
weN (v)
3)
In this, f(*)(v), which is the row feature vector of node v at
layer t > 0, is computed by aggregating its feature vector
and the feature vectors of its neighbors at the previous layer
t — 1, after first multiplying them respectively by parameter

matrices Wl(t) and Wz(t). It follows GCNs are 1-GNNs. These

results establish the connection of 1-WL to 1-GNNs (3):
e [Theorem 1 in (Morris et al. 2019)] For all £ > 0 and
for all choices of weights W® = (") Ww{*))

oring cl(t)

¢ <¢» col-

refines encoding f(*): cl(t) C £, This means
that for any nodes u, w in G, cl(t) (u) = cl(t)

FOu) = fO(w).

(w) implies

e [Theorem 2 in (Morris et al. 2019)] For all ¢ > 0 there
exists a sequence of W® and a 1-GNN architecture such

that the colorings and the encodings are equivalent: cl(t)

f® (e cl(t) C f®and f® C cl(t)).

DiGAE: Directed Graph Auto-Encoder

Weisfeiler-Leman (WL) Algorithm and Connection
to Encoder Layers in DiGAE

We now extend 1-WL for coloring pairs of node labels in
directed graphs. We can formally prove that this extension
reduces to standard 1-WL over a bipartite, undirected graph.
This allows us to connect it to 1-GNNs with a special struc-
ture for the parameter matrices, which corresponds to the
directed graph convolutional layers in the encoder module of
our DiGAE architecture which we define next. For the case
of shared weight matrices we can even remove this special
structure requirement.

Coloring Pairs of Node Labels in Directed Graphs To
extend 1-WL for directed graphs, we equip each node of the
graph with 2 labels, one for capturing its role as a “source”
of directed edges emanating from it and another one for its
role as a “target” node for directed edges pointing to it. Then
at each step, we propose the “source” label of a node to
be a bijective function of its current “source” label and the
multiset of “target” labels of the nodes it points to. In parallel,
its “target” label will be updated to the bijective mapping of
its current target label and the “source” labels of the nodes
pointing to it. For the detailed algorithm, please refer to the
Appendix.

Neural Source and Target Encodings The propagation
of “source” and “target” node labels along their directed
edges, as in the extension of the 1-WL algorithm, suggests
a new graph convolutional network layer. Similarly to the
way the GCN layer is closely connected to standard 1-WL,
we propose a novel directed graph convolutional layer that
transforms a pair of source and target encoding vectors for
each node, in analogy to our extension for directed graphs.
We assume that each node ¢ is originally encoded by a pair of
(0) ¢(©

vectors, its source s; and target encodings, and collect

these encodings as rows in matrices S and T,

We can now define the ' graph convolutional layer for up-
dating the source encodings by aggregating the transformed
and normalized farget encodings in the neighborhood as:

e (B) TA(DT) oWl)

In this work we propose tunable parameters o and 3 for
weighting the degrees in message passing. This subtle modifi-
cation can have important effects in performance for the link
prediction task as demonstrated in the experimental section.

Similarly we update the farget encodings by aggregat-

ing the transformed and normalized source encodings in the
neighborhood:

T () AT

A (f)*)_ﬁs(ﬂwg) (5)

7213

where Wg,f) and Wg) are the (learnable) linear tranformations
for target and encoding encodings prior to their propagation.
N N

Defining A = <D+ A(D , we can compactly ex-
press our proposed graph convolutional layer by the following
pair of tranformations:

St A T® Wi 6
T AT 8O Wi, (

Reduction to 1-WL We consider the transformation of our
directed, unweighted graph G(V, E) to its bipartite represen-
tation G4 (V, Vi, Es) with Vs =V = [0,n), Vi = [n,2n)
and Es; = {{i,j + n}|(i,j) € E} (Bang-Jensen and Gutin
2008). The bipartite graph G4, is assumed undirected and it
follows that for the set Ny (v) of the immediate neighbors of
any of its nodes v € V(Gg) = Vs U Vi

ifo<v<n
ifn<v<2

_J {i+n|(v,j) € E}
Nt(v) = { {il(i,0—n) € E}

We also assume that the 2n nodes of G; are initially
colored with two colors in the set {s, ¢} according to a col-
oring function function [: V, UV, — ¥ with I(v) = s,
if0 <v <nandl(v) =t ifn < v < 2 n. In other
words (G, 1) is a labeled graph, so we can directly apply
the standard 1-WL iterative algorithm for color refinement.
In each iteration ¢ > 0, 1-WL computes a node coloring

e

)

: V(Gs) — ¥ with an arbitrary codomain of colors 2.

We initialize this sequence of colorings as cl(o)

t > 0, node coloring is updated as:
o (v) = s (™ (), (e ™ (w)Jw € N(0)})

Termination of this standard 1-WL algorithm is guaranteed
after at most |V (G4)| = 2 n iterations and reached when
t)| = |cl(t_1)\ for some k.

Essentially, the bipartite representation maps anode : € V/
in the directed graph G to a pair of nodes (i € Vi, i+n € V;)
in the undirected, bipartite graph G;: ¢ € V, represents i €
V as a source of directed edges in G and i+n € V; represents
i € V as atarget of directed edges in G. In addition, identical
color pair labels (s, t), initially assigned to all nodes i € V
(in the directed graph GG) are mapped to: (i) an initial label s
for node ¢ € V; and (ii) an initial label ¢ for node i + n € V;
(in the undirected, bipartite graph G;). So in our refinement

scheme for a node 4 in G, it holds (cl(?(i), cl(ot) (1)) = (s,t)

while for its corresponding nodes 4, i + n in G, cl(o) (1) =s
and cl(o) (i4+n)=t.

We can now prove that the color pairs computed at each
step k and for each node ¢ by our refinement scheme on a
directed graph G can equivalently be computed by standard
1-WL on the undirected, bipartite Gs; by pairing the colors
of its nodes ¢ and 7 4+ n. In other words:

= [and at

(
le;

Theorem 1.

(@) = ¢ (@), ') (0)

forall layerst > 0 and i € [0,n).

=" = (i +n) (8)

Proof. We use induction. For ¢ = 0 this holds by our ini-

tialization convention: cl(qs)() = cl()() = s and c()() =

0 (i+n)=t
1

Let us now assume that this also holds for some ¢ and find
out for ¢ + 1. Consider a node with index ¢ € [0, n). Its neigh-
bors w = j+n € N (i) in G4 map to the outlink-neighbors
j € N (i) in G according to our bipartite representation (see
Equation (7). These neighbors w = j + n € N (i) have
color labels c()(

(0):

e\t
eV (i) =HasH((c” (i), {{c“’(w € Nae(i)}}))
=HASH((c]") (i), {{c[") ()17 € N*(0)}})

Similarly for a node with index i + n € [n, 2n), its neigh-
bors w = j € Ng (i) in G4 map to the inlink-neighbors
j € N7 (i —n) in G according to Equation 7. The node
") and the inlink

(t)

j + n) which according to (8) are equal to

~
\=]
N

with index 7 4+ n has color label equal to ¢

neighbors j, since j € [0, 1) have color labels equal to ¢;
(see 8):

A" (i 4 m) —HASH((Wi+ 1),
{{c}' (w)\wENst(')}}))
=HASH((c}} (i), {{c{2(7)|j € N~ (0)}})
(10)
According to our extension to 1-WL, the
refinement we propose reads: cl(tj 1)(z) =

S ((f20). {{ef? (7)1 € N (0)}))) and < }7(i) =

rasH ((cf) (1), {{ef)()lj € N()}})). By comparing

with equations (9) and (10) it follows that c(t+1) (H_l) (7)

(t+1) _

and ¢; l(tH)(+ n) which completes the proof. O

Connecting 1-WL to the Encoder Layers in DIGAE We

can encode the initial labels cl(o) (v) of the nodes in our bipar-
tite representation G'5; by considering two arbitrary, nonequal,
vectors s, t in R®*! and setting f(%)(v) = s' for nodes
v € [0,n) and £ (v) =t for nodes v € [n,2n); e can be
as small as 1 (i.e. for one-hot encoding). These encodings
are consistent with the initial labels (i.e. they are different
for nodes with different initial colors). Given the consistent
encodings and our reduction of our color refinement to 1-WL
for G4, two results readily apply, from theorems 1 and 2
in (Morris et al. 2019). These results readily establish the
connection of our 1-WL to 1-GNNs (3).

Alternatively, we can encode the initial labels cl(o) (v) of the
nodes in our bipartite representation G'y; by vectors f(©) (v)
as follows. For nodes v € [0,n) we assume the encoding
f©(v) =[sT,0] and for nodes v € [n, 2n) we set (O (v) =
[0,t7] where 0 € R'*¢ denotes the zero row vector. Our
encodings are in R'*2¢ and they are also consistent with our
initial labels. In this encoding scheme, the first e elements

7214

@Q@

Figure 1: An example directed graph G with n = 6 nodes
(top) and its bipartite representation Gg; (bottom). Both
graphs are colored with each node in G carrying a pair
of source and target colors - respectively in left and right
semidiscs. The example node 3 in G maps to nodes 3 and 9
in G st

(last e elements) of the initial feature vector f(%) (v) are non-
vanishing for nodes in G s; capturing the source (target) role
of nodes in G.

We can ensure this property is preserved for feature vectors
f®(v),t > 0 under the iteration in (3) by additionally select-

ing block-diagonal matrices for Wl(t) and block-antidiagonal

matrices for Wg(t):

(t) (t)

14 0 o W

Wf“—(o Wm) w3 = <W<t> O”) (11
1T 2T

where W, Wh Wil wit) e Rexe and O = 0°** is
the zero matrix.

This is straightforward to verify. For a node in i € [0,n)
for which f(t=1(7) = [sgt_l),O} its neighbors j € [n,2n)

will have encodings of the form f(*~1) (v) = [0, t§t_1)]. Sub-
stitution in Equation (3) yields:

T T

FOG) = (oW + 3 Y i), 0t
JEN(9)

so f()(4) still has only its first e elements non-vanishing, the

same as f(t—l)(') Similarly fori € [n, 2n) we get: f(*) (i) =
u
[(01><e (t—1) +ZJ€N(’L (.t 1) W(t)] Sof(t)()

? Z
still has only its last e elements non Vanrshmg, the same as
£).

The motivation behind the selection of block-structured
parameter matrices Wl(t and Wz(t) , is for allowing the extra
flexibility of learning different sets of parameters for nodes
with source and target roles (in undirected G ;). By removing

self-links and setting Wl(g) = Wl(tT

f® () can be seen to map directly to rows of matrices s

0°c*e, these vectors

and T in Equation (6). Alternatively, we can consider gen-

eral (non-structured) Wl(t) and WQ(t) in our 1-GNN which
corresponds to sharing learnt parameters for neural source
and target encodings.

Directed Graph AutoEncoder (DiGAE) Model

In analogy to the Graph AutoEncoder (GAE) model in (Kipf
and Welling 2016b), we can define its directed variant (Di-
GAE) by stacking two directed graph convolutional layers
connected with ReLU nonlinearity for its encoder and a
sigmoid applied to the inner product of the source and
target encodings for its decoder. In particular, the encoder
reads

Zs = AreLu(A' SO W W) -
A A 7O w0 ywb) (12
Zr =A ReLUATY W,)Wy

while the decoder for computing the reconstructed adja-
cency matrix A is

A=0(Zs Z7) (13)

In the sequel, we experiment with the single-layer DiGAE
model, referred to as DiGAE-1L. This autoencoder has the
same decoder as DiGAE and its encoder implements the

pair of transformations Zg = s = AT(O)W§9) and 71 =
T = A sOWY.

Related Work

Ma et al (Ma et al. 2019) formally extend convolution to
directed graphs by defining a normalized, symmetric directed
Laplacian and leveraging the Perron vector of the induced
transition probability matrix for weighing messaged passing.
In (Tong et al. 2020a), Tong et al approximate the digraph
Laplacian by means of Personalized PageRank, and this re-
laxed definition offers performance benefits and the ability
to process directed graphs that are not necessarily strongly
connected. The authors of Fast Directed GCN in (Li et al.
2020) also approximate the digraph Laplacian, by assuming
the trivial Perron vector for regular graphs. In (Monti, Otness,
and Bronstein 2018), a polynomial of selected motif Lapla-
cians is used to filter node representations. Most notably, all
aforementioned spectral-based extensions to convolution in
directed graphs, produce single-vector representations, so
the dual nature of a node as both a source and target of di-
rected edges is not captured; we do not require the separate
computation of the Perron vector and a scheme for weighing
messages is automatically learnt. For convolution in directed
knowledge graphs, we refer to (Kampffmeyer et al. 2019;
Schlichtkrull et al. 2018).

In (Tong et al. 2020b), first and second order proximity
kernels for directed graphs are combined to produce single-
vector representations for graph nodes. Second order proxim-
ity kernels normalize the products of A and its transpose, and
produce dual-vector intermediate representations, similarly
to the work proposed in this paper. However, normalization of
the products is graph-agnostic, the intermediate sparse matrix

7215

products they employ are computationally costly with poten-
tiallly dense matrix outputs, the first order proximity kernels
is symmetric. High-Order Proximity preserved Embeddings
(HOPE) in (Ou et al. 2016) rely on matrix factorization (SVD)
of a higher order proximity matrix while Asymmetric Prox-
imity Preserving (APP) embeddings in (Zhou et al. 2017)
rely on random walks with restart. These encoders are not
GCN-based which is the focus in our work. Dual-vector rep-
resentation can be enforced artificially: in (Salha et al. 2019),
source/target GAE and VGAE models are based on graph
auto-encoders for undirected graphs from the seminal work
of Kipf and Welling (Kipf and Welling 2016b), where the
single-vector representation (of even size) is assumed to be
the concatenation of two-identically sized parts The gravity-
inspired directed GCN architecture in (Salha et al. 2019) on
the other hand produces single vector encodings using fixed
normalization for the messages and embeds asymmetry in
only one of its entries by fusing the importance of the target
node and the distance of the node encodings at the ends of
the directed edge.

The directed graph can be of a special kind. Message pass-
ing in GCNss for Directed Acyclic Graphs (DAGs) is explored
in (Thost and Chen 2021). Or the directed edges can carry
labels of different types in which case the undirected GCN
can be extended to include terms denoting the additional
aggregation of edge features (Jaume et al. 2019), in close
analogy to the extension of WL test to a directed graph with
edge labels (Orsini, Frasconi, and De Raedt 2015; Grohe et al.
2017). In another interesting view, the directed graph can first
be converted to an undirected bipartite graph as in (Zhou,
Hofmann, and Scholkopf 2005) driven by the source-target
node duality.

Experiments

In this section we demonstrate the performance of the pro-
posed approach on the directed link prediction task associated
with two different datasets: (a) namely CoraML (2,995 nodes,
8,416 edges, 2,879 features), and (b) CiteSeer (3,312 nodes,
4,715 edges, 3,703 features). The CoraML dataset contains
machine learning publications grouped into seven classes.
The CiteSeer dataset contains scientific papers grouped into
six classes. Each paper in CoraML and CiteSeer is repre-
sented by a one-hot vector indicating the presence or absence
of a word from a dictionary.

We employ grid search for hyperparameter tuning: learn-
ing rate n € {0.005,0.01}, hidden layer dimension d €
{32, 64} with d/2 for the latent space dimension, («, 3) €
{0.0,0.2,0.4,0.6,0.8}? for DIGAE models and parameter
A € {0.1,1.0,10.0} for Gravity GAE. For the final mod-
els we select hyperparameter values that maximize mean
AUC computed on the validation set. In all cases, models
are trained for 200 epochs, using Adam optimizer, without
dropout, performing full-batch gradient descent.

We use Python and especially the PyTorch library and
PyTorch Geometric (Fey and Lenssen 2019), which is a geo-
metric deep learning extension library. We ran experiments
for all models (ours and baselines) on a system equipped with
an Intel(R) Core(TM) i7-8850H CPU @2.60GHz (6 cores/12
threads) and 32 GB of DDR4 memory @2400 MHz.

We consider the following directed link prediction task
adapting the description in (Kipf and Welling 2016b) to di-
graphs.

Task: Directed link prediction We randomly remove 15%
of the directed edges from the graph and train models on the
remaining edge set. Two thirds of the removed edges (i.e.
10% of all input graph edges) are used as actual edges for
testing, one third of them (i.e. 5% of all input graph edges) as
actual edges for validation. These test and validation sets also
include the same number of fake directed edges (negative
samples), as their actual ones: negative samples are gener-
ated by randomly connecting pairs of nodes which are not
wired in the input graph. Validation sets are only used for
hyperparameter tuning.

Results and Discussion

We compare the performance of our DIGAE models to Stan-
dard GAE in (Kipf and Welling 2016b), Source/Target (S/T)
GAE and Gravity GAE both in (Salha et al. 2019). Similarly
to our models, these baselines are GCN-based. We use the
TensorFlow implementations of baseline models from the
authors of (Salha et al. 2019).!

We run a series of twenty experiments for each graph
and selected model combination, and report the mean and
standard deviation of the AUC and AP metrics, as well as
their respective timings. Random train and test graph dataset
splits are used for each such experiment and metrics are
averaged over the set, to account for their sensitivity to the
choice of the split, as empirically observed in (Shchur et al.
2018).

Results with node features supplied in all cases (feature-
based configurations), are summarized in Table 1. We mark
in bold the largest entry (or largest entries in the case of their
overlapping intervals).

Mean AUC values for DiGAE-1L in particular consistently
outperform other baselines for the citation graphs and the
margin can be significant: in CiteSeer this is of the order of
6% for Gravity GAE and up to 18% compared to Standard
GAE. For mean AP, margins are similarly in the 4% to 19%
range, or up to 3% for CoraML. Varying («, 8) pair values
has significant impact on the reconstruction metrics. As an
example, the mean AUC can be as low as 73.73% and 86.10%
for DiIGAE-1L respectively for CoraML and CiteSeer for
the selected 1 and d but for suboptimal («, §) within the
search grid. In the Appendix we include metrics tables for
the full («, 8) grid collected during hyperparameter tuning.
In experiments with citation graphs, DiGAE-1L is markedly
faster by factors in the range x5 to x15. This is partly due
to the different implementations, the fact that this is a single-
layer only and for CiteSeer in particular to the smaller size for
the output vector from hyperparameter tuning (16 vs 32 for a
hidden encoding of 64 entries for baselines). Gravity GAE
is the slowest, mainly due to the complexity of its decoder
(pairwise distance computation).

The authors in (Salha et al. 2019) originally used the base-
lines with one-hot encoding of the nodes (feature-less con-
figurations). For citation networks, node features capture

"https://github.com/deezer/gravity_graph_autoencoders

7216

0.85 7 I coramLAUC
CoraML AP

M CiteSeer AUC

- CiteSeer AP

0.65 1

32 64 128

Figure 2: Truncated SVD based directed link prediction: AUC
and AP metrics for CoraML and CiteSeer.

similarity which is symmetric and this could conceptually
hinder the identification of directionality in predicted links
as in our task, which is an inherently asymmetric relation.
For this reason, we also tested feature-less configurations
for the baselines and interestingly got comparable results
to the feature-based case (Table 2): our DiGAE-1L models
from (Table 1) are top performers for both CoraML and Cite-
Seer datasets. Experiments with datasets from the WebKB
collection and Pubmed are included in the Appendix.

Truncated SVD baseline We also explore the performance
of an approach based on truncated SVD for our directed link
prediction task. For a given train/validation/test split, we use
the directed edges that are available to use for training for
building a partial adjacency matrix A, of the underlying
directed graph G(V, E) and compute its truncated SVD, re-
taining the singular triplets corresponding to its largest k sin-

gular values, A, =~ U, X% kVZ. Then we consider the matrices
for the source and target encodings of nodes Zg = Uy, E,lc/ 2
and Zp = VkE;/ % and use the asymmetric decoder from
Equation (13) for predicting directed links. We use the same
evaluation pipeline as in our GNN experiments and compute
respective AUC and AP performance metrics for the graph
reconstruction. For truncated SVD we experimented with
implementations based on ARPACK (Lehoucq, Sorensen, and
Yang 1998) and randomized SVD (Halko, Martinsson, and
Tropp 2011) for k € {2¢|i = 1,2,...,7} and we got very
similar metrics for our input graphs (please refer to the Ap-
pendix for metrics tables). We repeated for 20 random graph
splits for each graph, k£ and implementation combination.
Figure 2 summarizes the results for the largest mean AUC
and AP value for each graph, k£ combination. We observe
that for 16-dimensional encoding vectors we get best results
in reconstruction in terms of mean AP: 82.83% for CoraML
and 69.88% for CiteSeer. These are significantly lower than
94.10% for CoraML and 92.57% for CiteSeer that the “neu-
ral” source and target encodings our DiGAE-1L produces.
SVD encodes only connectivity while DIGAE models, being
GNN:ss, leverage both connectivity and node features. The
truncated SVD baseline is essentially the HOPE idea (Ou

Dataset Model AUC AP Time (secs)
CoraML DiGAE (ours) 88.10+/-1.70 89.83 +/-1.39 9.56 +/- 0.48
CoraML DiGAE-1L (ours) 94.09 +/- 0.66 94.10 +/- 0.77 7.64 +/- 0.21
CoraML Gravity GAE 92.35+/-0.57 94.17 +/-0.53 51.56 +/-0.13
CoraML S/T GAE 91.66 +/- 0.52 92.60 +/- 0.47 36.88 +/- 0.20
CoraML Standard GAE 89.54 +/-1.14 91.40+/-1.11 36.55+/-0.21
CiteSeer DiGAE (ours) 92.05 +/-1.06 92.29 +/-0.97 11.10 +/- 0.22
CiteSeer DiGAE-1L (ours) 92.76 +/- 0.87 92.57 +/-1.08 4.12 +/- 0.11
CiteSeer Gravity GAE 86.79 +/- 0.98 88.60 +/- 1.05 106.44 +/- 0.16
CiteSeer S/T GAE 82.90 +/- 1.79 84.70 +/- 1.47 73.46 +/- 0.21
CiteSeer Standard GAE 7435 +/-1.77 80.96 +/- 1.26 73.84 +/- 0.48

Table 1: General directed link prediction for the citation graphs (feature-based configurations).

Figure 3: Left and center: t-SNE embeddings on source and target representations computed with our DiIGAE-1L for CoraML.
Right: embeddings of original feature vectors (colors indicate classes).

Dataset Model AUC AP

CoraML Gravity GAE 91.56 +/- 0.71 93.62 +/- 0.59
CoraML S/T GAE 91.85 +/-0.58 9291 +/- 0.64
CoraML Standard GAE 89.42 +/- 0.84 92.09 +/- 0.64
CiteSeer Gravity GAE 87.05+/-0.99 88.88 +/-0.96
CiteSeer S/T GAE 82.39 +/-1.56 84.38 +/- 1.57
CiteSeer Standard GAE 73.81 +/- 1.37 80.52 +/- 1.13

Table 2: General directed link prediction for the citation
graphs (feature-less configurations).

et al. 2016) with the proximity matrix being the adjacency
matrix A. For comparison and for the standard Katz prox-
imity in HOPE, (I — ﬂA)_1 BA, we computed largest mean
AP values in reconstruction over k € {2%|i = 1,2,...,7},
B = 0.02, applying 20 random graph splits for each k. We
get 83.87% for CoraML and 67.29% for CiteSeer: compara-
ble to truncated SVD baseline results and significantly lower
than the respective DiIGAE-1L metrics. We include tables
with detailed results in the Appendix.

Clustering source and target encodings We used
t-Distributed Stochastic Neighbor Embedding (t-SNE)
(Van der Maaten and Hinton 2008) for reducing the dimen-

7217

sion of source and target representations of nodes produced
by DiGAE in order to visualize them. Figure 3 illustrates a
crisp separation of points with different class labels and this
is true for both source and target vectors. This separation is
not present in their feature space. This implies that DiGAE
embeddings are promising inputs for clustering purposes.
The fact that the clusters can be independently identified in
both the source and target space opens up the possibility for
exploring sets of points that share cluster identity in both
spaces, as the core ones for a label.

Vector hub and authority scores Source and target repre-
sentations are expected to be the (vector) surrogates respec-
tively of (scalar) hub and authority scores. Table 3 confirms
this intuition. A source vector of particularly large magnitude
for a node a will be more probable to yield large inner prod-
ucts with target vectors of other nodes b in the decoder. This
means that a directed edge a +— b will be likely to appear,
which will increase a’s outdegree. Similarly, a large mag-
nitude for a node’s target vector encourages other nodes to
connect to it and increase its indegree. In turn, outdegrees are
known to correlate to hub scores and indegrees to authority
and PageRank scores.

source magnitude target magnitude

hub 0.37 0.06
outdegree 0.82 0.12
authority 0.05 0.41
pagerank -0.01 0.48
indegree 0.08 0.77

Table 3: Pearson correlation coefficients between the magni-
tudes of source and target vector encodings, and a collection
of centrality scores (Hub/Authority and PageRank) and de-
grees (in/out), for all nodes in CoraML. Encodings were
computed with DiGAE-1L.

Conclusions and Future Work

In this paper we present DiGAE, a new class of directed graph
autoencoders that computes a pair of vector representations
for each node. It exploits the asymmetry in input and output
node degrees and further skews this by allowing exponents
in scaling the features to enter as parameters. DiGAE outper-
forms state-of-the art GCN-based graph autoencoders on the
directed link prediction task and can be an order of magnitude
times faster in learning representations for CoraML and Cite-
Seer datasets. In future work, we plan to explore encoders
that integrate scaling decisions that are local to each node.

References

Bang-Jensen, J.; and Gutin, G. Z. 2008. Digraphs: theory,
algorithms and applications. Springer Science & Business
Media.

Bruna, J.; Zaremba, W.; Szlam, A.; and LeCun, Y. 2014.
Spectral networks and deep locally connected networks on
graphs. In 2nd International Conference on Learning Repre-
sentations, ICLR 2014.

Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional neural networks on graphs with fast localized
spectral filtering. In Proceedings of the 30th International
Conference on Neural Information Processing Systems, 3844—
3852.

Fey, M.; and Lenssen, J. E. 2019. Fast Graph Representation
Learning with PyTorch Geometric. In ICLR Workshop on
Representation Learning on Graphs and Manifolds.

Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and
Dahl, G. E. 2017. Neural message passing for quantum
chemistry. In International Conference on Machine Learning,
1263-1272. PMLR.

Grohe, M.; Kersting, K.; Mladenov, M.; and Schweitzer, P.
2017. Color refinement and its applications. Van den Broeck,
G.; Kersting, K.; Natarajan, S, 30.

Halko, N.; Martinsson, P.-G.; and Tropp, J. A. 2011. Finding
structure with randomness: Probabilistic algorithms for con-
structing approximate matrix decompositions. SIAM review,
53(2): 217-288.

Hammond, D. K.; Vandergheynst, P.; and Gribonval, R. 2011.
Wavelets on graphs via spectral graph theory. Applied and
Computational Harmonic Analysis, 30(2): 129-150.

7218

Jaume, G.; Nguyen, A.-p.; Martinez, M. R.; Thiran, J.-P.; and
Gabrani, M. 2019. edGNN: a Simple and Powerful GNN for
Directed Labeled Graphs. arXiv preprint arXiv:1904.08745.

Kampffmeyer, M.; Chen, Y.; Liang, X.; Wang, H.; Zhang, Y.;
and Xing, E. P. 2019. Rethinking knowledge graph propaga-
tion for zero-shot learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
11487-11496.

Kipf, T. N.; and Welling, M. 2016a. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907.

Kipf, T. N.; and Welling, M. 2016b. Variational graph auto-
encoders. arXiv preprint arXiv:1611.07308.

Lehoucq, R. B.; Sorensen, D. C.; and Yang, C. 1998.
ARPACK users’ guide - solution of large-scale eigenvalue
problems with implicitly restarted Arnoldi methods. Software,
environments, tools. STAM. ISBN 978-0-89871-407-4.

Li, C.; Qin, X.; Xu, X.; Yang, D.; and Wei, G. 2020. Scalable
graph convolutional networks with fast localized spectral
filter for directed graphs. IEEE Access, 8: 105634—105644.

Ma, Y.; Hao, J.; Yang, Y.; Li, H.; Jin, J.; and Chen, G.
2019. Spectral-based graph convolutional network for di-
rected graphs. arXiv preprint arXiv:1907.08990.

Micheli, A. 2009. Neural network for graphs: A contex-
tual constructive approach. IEEE Transactions on Neural
Networks, 20(3): 498-511.

Monti, F.; Otness, K.; and Bronstein, M. M. 2018. Mo-
tifnet: a motif-based graph convolutional network for directed
graphs. In 2018 IEEE Data Science Workshop (DSW), 225—
228. IEEE.

Morris, C.; Ritzert, M.; Fey, M.; Hamilton, W. L.; Lenssen,
J. E.; Rattan, G.; and Grohe, M. 2019. Weisfeiler and le-
man go neural: Higher-order graph neural networks. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 33, 4602-4609.

Niepert, M.; Ahmed, M.; and Kutzkov, K. 2016. Learning
convolutional neural networks for graphs. In International
conference on machine learning, 2014-2023. PMLR.

Orsini, F.; Frasconi, P.; and De Raedt, L. 2015. Graph invari-
ant kernels. In Proceedings of the twenty-fourth international
Joint conference on artificial intelligence, volume 2015, 3756—
3762. IJCAI-INT JOINT CONF ARTIF INTELL.

Ou, M.; Cui, P;; Pei, J.; Zhang, Z.; and Zhu, W. 2016. Asym-
metric transitivity preserving graph embedding. In Proceed-
ings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining, 1105-1114.

Salha, G.; Limnios, S.; Hennequin, R.; Tran, V.-A.; and Vazir-
giannis, M. 2019. Gravity-inspired graph autoencoders for
directed link prediction. In Proceedings of the 28th ACM
International Conference on Information and Knowledge
Management, 589-598.

Schlichtkrull, M.; Kipf, T. N.; Bloem, P.; Van Den Berg, R.;
Titov, I.; and Welling, M. 2018. Modeling relational data
with graph convolutional networks. In European semantic
web conference, 593—-607. Springer.

Shchur, O.; Mumme, M.; Bojchevski, A.; and Giinnemann,
S. 2018. Pitfalls of graph neural network evaluation. arXiv
preprint arXiv:1811.05868

Thost, V.; and Chen, J. 2021. Directed Acyclic Graph Neural
Networks. arXiv preprint arXiv:2101.07965.

Tong, Z.; Liang, Y.; Sun, C.; Li, X.; Rosenblum, D.; and
Lim, A. 2020a. Digraph Inception Convolutional Networks.
Advances in Neural Information Processing Systems, 33.
Tong, Z.; Liang, Y.; Sun, C.; Rosenblum, D. S.; and Lim, A.
2020b. Directed graph convolutional network. arXiv preprint
arXiv:2004.13970.

Van der Maaten, L.; and Hinton, G. 2008. Visualizing data
using t-SNE. Journal of machine learning research, 9(11).
Velickovié, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio,
P.; and Bengio, Y. 2017. Graph Attention Networks. 6th
International Conference on Learning Representations.
Weisfeiler, B.; and Leman, A. 1968. The reduction of a graph
to canonical form and the algebra which appears therein. NT7,
Series, 2(9): 12-16.

Zhou, C.; Liu, Y.; Liu, X.; Liu, Z.; and Gao, J. 2017. Scalable
graph embedding for asymmetric proximity. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 31.
Zhou, D.; Hofmann, T.; and Scholkopf, B. 2005. Semi-
supervised learning on directed graphs. In Advances in neural
information processing systems, 1633—-1640.

7219

