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Abstract

Simplicial complexes can be viewed as high dimensional gen-
eralizations of graphs that explicitly encode multi-way or-
dered relations between vertices at different resolutions, all
at once. This concept is central towards detection of higher
dimensional topological features of data, features to which
graphs, encoding only pairwise relationships, remain oblivi-
ous. While attempts have been made to extend Graph Neural
Networks (GNNs) to a simplicial complex setting, the meth-
ods do not inherently exploit, or reason about, the underly-
ing topological structure of the network. We propose a graph
convolutional model for learning functions parametrized by
the k-homological features of simplicial complexes. By spec-
trally manipulating their combinatorial k-dimensional Hodge
Laplacians, the proposed model enables learning topological
features of the underlying simplicial complexes, specifically,
the distance of each k-simplex from the nearest “optimal” k-
th homology generator, effectively providing an alternative to
homology localization.

Introduction
Tremendous advancements in sensor technology and data-
driven machine learning have enabled exciting applica-
tions such as automatic health monitoring and autonomous
cars. In many cases, the lack of data in certain regions
of the domain reveals important structure. For instance,
the sensors on a car driving through a parking lot might
have dense observation points in 3D except inside pil-
lars. Such voids in the data are ubiquitous across applica-
tions whether it is a subspace of unattainable configura-
tions for a robot (Farber 2018), regions without network
coverage (Ghrist and Muhammad 2005) or missing mea-
surements in an experimentally-determined chemical struc-
ture (Townsend et al. 2020), to name a few (Aktas, Akbas,
and El Fatmaoui 2019).

A standard approach to extract structural information
from data proceeds by first encoding pairwise relationships
in a problem via a graph and then analysing its properties.
Recent advances in Graph Neural Networks have enabled
practical learning in the domain of graphs and have provided
approximate solutions to difficult graph problems (Hamil-
ton, Ying, and Leskovec 2017). Despite the wealth of tech-
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niques underpinned by solid graph theory, this approach is
fundamentally misaligned with problems where the relation-
ships involve multiple points, and topological & geometric
structure must be encoded beyond pairwise interactions.

Fortunately, higher dimensional combinatorial structures
come to the rescue in the form of simplicial complexes,
the powerhorse of topological data analysis (Chazal and
Michel 2017). Interfacing between combinatorics and geom-
etry, simplicial complexes capture multi-scale relationships
and facilitate the passage from local structure to global in-
variant features. These features occur in the form of homol-
ogy groups, intuitively perceived as holes, or voids, in any
desired dimension. Alas, this expressive power comes with a
burden, that of high computational complexity, and difficulty
in localization of said voids (Chen and Freedman 2011).

For every hard computational problem there seems to ex-
ist a neural network approximation (Xu et al. 2018). Nev-
ertheless, homology and simplicial complexes have only re-
cently started to follow suit (Bodnar et al. 2021b; Ebli, Def-
ferrard, and Spreemann 2020; Bunch et al. 2020), with in-
ference of homological information still lacking.

The key insight in this paper is to guide learning on sim-
plicial complexes by flipping the conventional view of ap-
proximation. We propose a GNN model for localizing ho-
mological information in the form of a distance function of
each point of a complex to its the nearest homology gen-
erating features, a bird’s-eye view of which is illustrated in
Figure 1. Instead of using the most-significant eigenvectors
of the relevant Laplacian operator we focus on the subspace
spanned by the eigenvectors corresponding to the lowest
eigenvalues. The justification is that homology-related in-
formation is contained in its nullspace. We implement this
idea by calculating the most-significant subspace of an in-
verted version of the operator (see Sec. ). Figure 2 shows
the result of twelve diffusion iterations performed using the
conventional view and compares it with our inverted opera-
tor. Although diffusion is insufficient to localise homology,
it highlights the tendency of the inverted operator to localize
cycles.

The main contributions in the paper are:

1. A novel way to represent simplicial complexes as com-
putational graphs suitable for inference via GNNs, the
Hodge Laplacian graphs, focusing on the dimension of
interest (see Section ), and
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Figure 1: Overview of Dist2Cycle model. An arbitrary input complex K is transformed into a Hodge Laplacian graph GL1 , via
its Hodge Laplacian appropriately shift-inverted (L̃+) (Section ), and zero-masked (A�L̃+) (Section ), suitable for downstream
processing as a GNN by the proposed Dist2Cycle model (Section ). The model outputs the distance of each simplex to its nearest
optimal homology generator (cooler colors indicate closeness).

2. A new homology-aware graph convolution framework
operating on the proposed Hodge Laplacian graphs, tak-
ing advantage of the spectral properties of a shifted-
inverted version of the Hodge Laplacian (see Section ,
Eq. (8)).

The rest of the paper is structured as follows: first all the
necessary theoretical background is presented in the “Pre-
liminaries” section, followed by a literature review of rele-
vant work. We then describe our proposed model in detail in
the “Dist2Cycle” section. We end the paper with a thorough
evaluation and discussion of our model.

Preliminaries
The Simplicial Laplacian Operators
An abstract simplicial complex is a collection K of subsets
of a finite set S satisfying two axioms: first, for each v in S
the singleton set {v} lies in K, and second, whenever some
σ ⊂ S lies in K, every subset of σ must also lie in K. The
constituent subsets σ ⊂ S which lie in K are called sim-
plices, and the dimension of each such σ is one less than its
cardinality, i.e., dimσ = |σ| − 1. By far the most familiar
examples of simplicial complexes are (undirected, simple)
graphs; each graph G = (V,E) forms a simplicial complex
whose 0-dimensional simplices are given by the vertex set V
and 1-dimensional simplices constitute the edge set E. The
passage from graphs to simplicial complexes is motivated by
the compelling desire to model phenomena beyond pairwise
interactions using higher-dimensional simplices.

Homology Groups To each directed graph G = (V,E)
one can associate an incidence matrix, which is best viewed
as a linear map A : R[E] → R[V ] from a real vector space
spanned by edges to the vector space spanned by the ver-
tices. The entry of A in the column corresponding to a di-
rected edge e : v → v′ and the row corresponding to a
vertex u is prescribed by

Au,e =


−1 if u = v,

1 if u = v′, and
0 otherwise.

.

Writing r for the rank of A, the number of connected com-
ponents and loops in G equals |V | − r and |E| − r, respec-

tively. Thus, one can learn the geometry ofG from the linear
algebraic data given by its adjacency matrix.

This linear algebraic success story admits a remarkable
simplicial sequel. Fix a simplicial complex K and write Kd

to indicate the set of all d-simplices in K. We seek lin-
ear maps ∂d : R[Kd] → R[Kd−1] to play the role of the
d-dimensional incidence matrices. To build these bound-
ary operators, one first orders the vertices in K0 so that
each d-simplex σ ∈ K can be uniquely expressed as a list
σ = [v0, . . . , vd] of vertices in increasing order. The desired
matrix ∂d is completely prescribed by the following action
on each such σ:

∂d(σ) =

d∑
i=0

(−1)i · σ−i (1)

where σ−i := [v0, . . . , v̂i, . . . , vd] is the (d − 1)-simplex
obtained by removing the i-th vertex vi from σ.

These higher incidence operators assemble into a se-
quence of vector spaces and linear maps:

· · ·
∂d+1

// R[Kd]
∂d // R[Kd−1]

∂d−1
// · · · . (2)

It follows from (1) that for each d > 0 the composite ∂d ◦
∂d+1 is the zero map, so the kernel of ∂d contains the image
of ∂d+1 as a subspace, im ∂d+1 ⊆ ker ∂d.

For each d ≥ 0, the d-th homology group ofK is the quo-
tient vector space Hd(K) := ker ∂d/im ∂d+1 of k-cycles
Zk = ker ∂d by (k + 1)-boundaries Bk = im ∂d+1. The ba-
sis ofHd(K) contains equivalence classes of d-dimensional
voids or loops [gi], i.e.Hd(K) = span{[g1], . . . , [gk]}, each
[gi] describing a family of loops that cannot be contracted to
a point, and cannot be continuously deformed into another
family [gj ], i 6= j. Consequently, the dimension of Hd(K)
provides us with a topological invariant, namely, the k-th
betti number βd = rank(Hd(K)), which counts the num-
ber of d-dimensional voids in K.

Each d-cycle g ∈ Zd is a formal sum of d-simplices sat-
isfying ∂d(g) = 0. By assigning weights w : Kd → R+

to these simplices, one can thus define the length of g by
adding together weights of its constituent simplices, i.e.,
len(g) =

∑
σ∈g w(σ). An optimal homology basis is the one

whose generators have minimum length among all possible
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(a) L1 (b) L1 (rank-3) (c) L̃+
1 (d) L̃+

1 (rank-3) (e) L1 (f) L1 (rank-5) (g) L̃+
1 (h) L̃+

1 (rank-5)

Figure 2: Twelve diffusion iterations based on the 1-dimensional Hodge Laplacian L1, and its shifted pseudoinverse L̃+
1 of a

double annulus in 2D (four leftmost) and a double torus in 3D (four rightmost). (b), (d), (f), and (h) are low-rank approximations
of the respective Laplacians based on the top 3 and 5 eigenpairs corresponding to the largest magnitude eigenvalues.

bases. Assuming unit, or Euclidean, edge weights, Figure 3
depicts the optimal H1 basis of a torus, in blue, along with
a cycle homologous to the generator inscribing the central
“hole”, in red, and a trivial, contractible 1-cycle belonging
to B1, in green.

Replacing each matrix ∂d in (2) by its transpose ∂Td , one
similarly obtains the d-th cohomology group of K, denoted
Hd(K; R). It is a straightforward consequence of the rank-
nullity theorem that there are isomorphisms Hd(K; R) ∼=
Hd(K; R) between homology and cohomology groups.

Hodge Laplacians Hodge Laplacians (Horak and Jost
2013) are to graph Laplacians what simplicial boundary op-
erators are to adjacency matrices. Given a simplicial com-
plexK and the corresponding sequence (2), both composites
Lup
d := ∂d+1∂

T
d+1 and Ldown

d := ∂Td ∂d furnish linear maps
R[Kd]→ R[Kd]. The d-th Hodge Laplacian is their sum:

Ld := Lup
d + Ldown

d . (3)

An immediate consequence of this definition is that the
standard graph Laplacian agrees with the 0-th Hodge Lapla-
cian. The nullity of the graph Laplacian equals the num-
ber of connected components of the underlying graph. Sim-
ilarly, the kernel of the d-th Hodge Laplacian of a simplicial
complex K is isomorphic the corresponding d-th homology
group (Eckmann 1944):

kerLd(K) ∼= Hd(K; R). (4)

The aforementioned isomorphism still holds for the case
of weighted simplicial complexes, where simplices are
endowed with non-trivial weights, provided appropriately
weighted Hodge Laplacians (Horak and Jost 2013) are em-
ployed.

Figure 3: OptimalH1 homology basis (blue) against an arbi-
trary cycle homologous to the central loop (red), and a triv-
ial, contractible, boundary cycle (green).

Graph Neural Networks
Graph Neural Networks (GNNs) provide a general frame-
work for Geometric Deep Learning (Bronstein et al. 2021),
where the input domain, represented by a graph G =
(V,E), is allowed to vary together with the signals that are
defined on it. More concretely, the Message Passing Graph
Neural Network (MPGNN) framework generalizes the con-
volution operation on the edges of a graph G by employing
a simple message passing scheme between features of nodes
hu, u ∈ V , and their neighbors v ∈ Nu.

The output of each layer ` for each node u can be broadly
formulated as:

h`+1
u = φ

(
h`u,

⊕
v∈Nu

wu,v · ψ
(
h`u, h

`
v

))
, (5)

with
⊕

being a permutation invariant aggregation, φ and ψ
learnable functions, andwu,v the weight of edge (u, v) ∈ E.
Under this formulation, learnable parameters of φ and ψ are
shared across all nodes in the graph network.

Each message passing layer with summation aggregation
can be described more compactly using matrix notation:

H`+1 = φ
(
L̃ψ(H`)

)
, (6)

where L̃ = AWAT is the weighted graph Laplacian matrix,
and H0 the |V |×F matrix of initial node features. This for-
mulation highlights the similarities of GNNs with Laplacian
diffusion operations, a fact that we will largely exploit.

The output of a number of message passing iterations re-
sults to latent node embeddings, largely based on the local
graph topology at each node. Such embeddings can be sub-
sequently used for node regression, node classification, or,
via feature aggregation of all nodes, for graph classification
and aggregation tasks.

Related Work
Homology Localization The minimum basis problem in
computational topology involves extracting optimal homol-
ogy generators, with optimality usually expressed in terms
of norm or length minimization of cycles. In dimensions ex-
ceeding one, this is an NP-hard problem (Chambers, Erick-
son, and Nayyeri 2009; Chen and Freedman 2011), whereas
the 1-dimensional case succumbs to a polynomial time algo-
rithm (Dey, Sun, and Wang 2010; Dey, Li, and Wang 2018).
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This latter fact spawned a significant body of work exam-
ining special cases and computational improvements (Bor-
radaile et al. 2017; Chen and Freedman 2010; Dey, Hirani,
and Krishnamoorthy 2011; Erickson and Whittlesey 2005;
Busaryev et al. 2011; Chen and Meilă 2021).

While the aforementioned methods generally output sets
of simplices that form optimal homology generators in their
respective class, the rest of the simplices in the complex re-
main largely oblivious to the location of such optimal cycles
in relation to themselves. In our work we attempt to charac-
terize each simplex in the complex with respect to its near-
est homology generator, while gaining in efficiency (once
the model is sufficiently trained). More similar to our line of
work, (Ebli and Spreemann 2019) implements a homology-
aware clustering method for point data.

Topological Methods in ML With the marriage of homol-
ogy and ML (Hensel, Moor, and Rieck 2021; Love et al.
2021; Montúfar, Otter, and Wang 2020; Hofer, Kwitt, and
Niethammer 2019), it did not take long for GNNs to meet
their higher dimensional counterparts in the form of simpli-
cial (Bodnar et al. 2021b; Ebli, Defferrard, and Spreemann
2020; Bunch et al. 2020), cell (Hajij, Istvan, and Zamzmi
2021; Bodnar et al. 2021a), hypergraph (Feng et al. 2019),
and sheaf (Hansen and Gebhart 2020) neural networks. Most
higher dimensional extensions of GNNs aim to operate on
the full complex, and redefine the convolution operation in
terms of the corresponding Laplacian operator. Contrary to
such generalizations, we still operate on a graph. The key
difference is that our graph is derived from adjacency and
Hodge Laplacian information of the complex at the dimen-
sion of interest.

Pseudoinverse & Hodge Laplacians in GNNs The pseu-
doinverse and shifted versions of the Laplacian operator
are not new in the context of GNNs (Klicpera, Weißen-
berger, and Günnemann 2019; Wu et al. 2019; Alfke and
Stoll 2021). Nevertheless, they only consider spectral ma-
nipulations of the “classic” graph Laplacian, whose kernel
is usually of no practical interest, as long as the graph is
connected.

More closely to our work, (Roddenberry and Segarra
2019; Schaub and Segarra 2018) consider edge-flows for
signal denoising, interpolation, and source localization
based on the linegraph Laplacian, and the 1-dimensional
down Hodge Laplacian Ldown

1 , based on a proxy graph re-
sulting from interchanging edges and nodes. Nevertheless,
their analysis remains restricted on graph structures, disre-
garding any homological features.

The baseline works considered in the present paper are
counterposed in Table 1. The two methods we experimen-
tally compare against, shortloop (Dey, Sun, and Wang 2010)
and hom emb (Chen and Meilă 2021), expect complexes
embedded in a metric space (first column). Ours can operate
purely on the combinatorial structure, and additional struc-
ture, such as simplex weights, can be encoded via a weighted
Hodge Laplacian, if desired. Although our method depends
on training (second column), it is virtually independent of
the number of simplices N , as long as the complex, or lo-
cal neighborhoods of simplices, can fit in GPU memory. The

embed training time cycles dist.
shortloop yes no O(N4) yes no

distr cover loc no no N/A yes no
hom emb yes no O(nω1 ) yes no

ours no yes O(1) no yes

Table 1: Qualitative comparison of our proposed method
against three baselines, shortloop (Dey, Sun, and Wang
2010),distr cover loc (Tahbaz-Salehi and Jadbabaie 2010),
and hom emb (Chen and Meilă 2021). N and n1 are the
total number of simplices, and edges, respectively, ω is the
matrix multiplication time exponent.

reference baseline, shortloop, requiresO(N4) time, whereas
hom emb requires O(n2.37...1 ) (third column). The alterna-
tive baseline considered, distr cover loc (Tahbaz-Salehi and
Jadbabaie 2010), does not provide runtime complexity or
computation times, but their method relies on L1-relaxation
minimization. Finally, post-processing is required to cal-
culate distances to optimal homology generators using the
baselines (columns 4-5). In our case, post-processing will be
required to identify the generators in terms of the simplices
comprising them.

Dist2Cycle
Here we present a model for learning homology-aware dis-
tance functions on simplicial complexes.

Shifted Inverted Hodge Laplacians
The spectral properties of the Hodge Laplacian matrices pro-
vide salient information regarding the geometry and topol-
ogy of a simplicial complex, as hinted in Section . Further-
more, Laplacian flow dynamical systems on simplicial com-
plexes tend to stabilize towards specific spectral regions of
the Laplacian (Muhammad and Egerstedt 2006). Neverthe-
less, the choice of the Laplacian operator with which diffu-
sion is performed impacts greatly the energy distribution on
the simplices of interest.

In Figures 2(a),(b),(e),(f) we perform 12 diffusion steps
according to the Hodge Laplacian L1 (and its low-rank ap-
proximation using the top 3 and 5 eigenpairs, respectively),
namely,

xi+1 = xi + L1 xi, (7)

with x0 = [1 1 . . . 1]T as the initial signal on the 1-
simplices of the complex. We show the absolute value of
the resulting flow vector at each simplex, on two basic ex-
amples. Energy tends to concentrate at well connected sim-
plices, while ignoring the homological features that we are
interested in.

The Laplacian diffusion of (7) can be seen as a simplified
version of a graph convolution that takes place in GNNs (5),
with all nonlinearities and learnable parameters pruned, and
trivial initial features. Thus, in order to focus our attention on
optimal homology generators, we must invert the spectrum
of the Hodge LaplacianL1, while making sure that its kernel
will replace the part of the spectrum corresponding to its top
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(a) K. (b) GLdown
1

. (c) GLup
1

. (d) GL1 .

Figure 4: Laplacian graph constructions on example com-
plex K for 1-simplices (square nodes with red edges over-
laid on top of the original complex).

eigenvalues. For this purpose we employ a shifted inverted
version of the Hodge Laplacian

L̃+
d = (1 + Ld)+,

which makes the kerLd the prominent part of the spectrum
of L̃+

d with eigenvalue 1, onto which the diffusion asymptot-
ically converges. The effect this modified Laplacian matrix
has on diffusion is shown in 2(c),(d),(g),(h).

From Simplicial Complexes to Graph Neural
Networks
In order to employ the GNN framework for inference on the
complex, we need to express the space of k-simplices ac-
cordingly. Furthermore, we desire the resulting graph struc-
ture to retain the spectral properties of the Laplacian opera-
tor of interest.

We interpret the |Kd|×|Kd|Hodge Laplacian operatorLd
(or L̃+

d ) as the weighted graph Laplacian L̃GNN = AWAT

of a computational graph GGNN = (VGNN, EGNN). Under
this lens, each d-simplex σ of the original complex K be-
comes a node of GGNN, i.e. σ ∈ VGNN, and weighted edges
are drawn according to the adjacency information encoded
in Ld (L̃+

d ). Namely, a weighted edge (σ, τ) ∈ EGNN is
drawn between nodes corresponding to k-simplices σ and
τ , whenever the (potentially normalized) Laplacian opera-
tor Ld (L̃+

d ) contains a nonzero entry in the respective po-
sition. This entry is also used to weight the corresponding
edge wσ,τ = Lσ,τ , allowing self-loops. Figure 4 provides
an example of the resulting graph, what we call the Hodge
Laplacian graph, when using Ldown

1 , Lup
1 , and L1 for extract-

ing adjacency relations on 1-simplices (sans self-loops, for
easier vizualization). A somewhat similar approach is fol-
lowed in (Roddenberry and Segarra 2019), with their map-
ping akin to the graph in Figure 4(b) minus the 2-simplices,
as they are only dealing with graphs.

As mentioned in Section , we are interested in capturing
the spectrum, and thus the connectivity information of L̃+,
which is in general a dense matrix and hence computation-
ally prohibitive to work with directly. To overcome this is-
sue, we impose the sparsity structure of L to L̃+, masking
all entries of L̃+ that are zero in the original, sparse, Hodge
Laplacian L. If we denote by A the adjacency matrix encod-
ing the connectivity of L, with

Au,v =

{
1 if Lu,v 6= 0, and
0 otherwise

,

this can be achieved with the Hadamard product A � L̃+.
The resulting graph is called the Hodge Laplacian graph
throughout this paper.

While more sophisticated methods for spectral sparsifi-
cation exist (Spielman and Srivastava 2011), imposing the
connectivity dictated by L or Ldown seems to preserve all im-
portant adjacency information required for the task at hand,
while not annihilating important spectral information. Fur-
thermore, in the context of learning, this approach is remi-
niscent to inference with missing values, which GNNs are
known to handle well (You et al. 2020).

Shifted Inverted Laplacian GNNs for Homology
Localization
We are now ready to propose a Simplicial Neural Network
model for homology localization. By following the con-
struction described in Section we obtain a weighted compu-
tational graph GGNN = (VGNN, EGNN), with weights accord-
ing to L̃+ and adjacency dictated by L (or Ldown). Thus,
graph convolution (message passing) on the GGNN can be
summarized as:

H`+1 = φ
(
A� L̃+

dH
`W `

)
, (8)

where A is the adjacency matrix describing the selected
sparsification regime according to L (or Ldown), L̃+

d the
shifted inverted Hodge Laplacian in dimension d (Sec-
tion ), and � denoting the Hadamard product. The learnable
weights of the model at layer ` are denoted as W `, and φ
can be any activation function, such as ReLU, Sigmoid, etc.
Finally, H` is the |VGNN| × F feature matrix having the F -
dimensional features of each node (i.e. d-simplex) as rows.

To aid the task of homology localization, we encode both
local and global information at each node. Locality is incor-
porated by computing betti numbers [β0, . . . , βd+1] of the
link at each d-simplex σ — this is the subcomplex consisting
of all simplices τ for which σ∩τ is empty and σ∪τ is a sim-
plex in K. Global features manifest in the form of spectral
embeddings of the d-simplices in the space spanned by sin-
gular vectors corresponding to the largest k singular values
of L̃+

d . Denoting the appropriately permuted singular value
decomposition (SVD) of L̃+

d as L̃+
d = UΣV T with Σ con-

taining in its diagonal the singular values of L̃+ in descend-
ing order, the rows of the matrix U1:k formed by the first
k singular vectors constitute coordinates of the simplices in
the eigenspace of L̃+

d . Due to the shift-invert operation of
L̃+, this scheme effectively embeds the d-simplices in the
spectral subspace corresponding to the kernel of Ld, i.e. the
space encoding homological information.

Evaluation
In this section we describe the function learned by our
model, the dataset we developed to train and evaluate our
model (Section ), the experiments conducted (Section ) and
an analysis of the results (Section )1.

1Code & models: https://github.com/alexdkeros/Dist2Cycle
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Figure 5: MSE error plots comparing our method against hom emb for the TORI dataset in 2D (top) and 3D (bottom). Due to
hardness of computing a “ground truth”, the best known baseline appoximation, shortloop, acts as reference. Column 1 shows
MSE against stratified distance values (x-axis). Columns 2, 3 and 4 plot MSE against the number of simplices, the homology
rank β1, and the maximum cycle length, respectively. Dashed line: mean, solid horizontal line: median, box limits: quartiles,
whiskers: error range, shaded regions: standard deviation, insets: histograms for the respective parameters in the test set.

Nearest Optimal Homology Generator
Our model approximates a function that depends on the op-
timal homology generators. To validate our model we only
consider 1-simplices, since efficient algorithms acting as
proxies to ground truth, and combinatorial, baseline, meth-
ods only exist for d = 1. We denote byQ1 the set of optimal
generators ofH1. For each simplex σ ∈ K1 we seek to learn
its distance from the nearest optimal g ∈ Q1,

f(σ) = min
g∈Q1

d̂(σ, g). (9)

As distance d(σ, g) between a k-simplex σ and a k-
dimensional homology generator we consider the minimum
number of k-simplices required to reach any k-simplex ρ ∈
g participating in a k-cycle g. To keep the function complex-
independent, we then normalize the distance in the range
[0, 1], obtaining d̂(·), with simplices near an optimal homol-
ogy generator attaining values close to zero.

TORI Dataset
Our TORI datasets consist of Alpha complexes (Edelsbrun-
ner 2010) that originate from considering “snapshots” of fil-
trations (Edelsbrunner and Harer 2010) on points sampled
from tori manifolds of diverse topological characteristics, in
2 and 3 dimensions. We seek to capture richness of homo-
logical information, controlability in terms of scalability in

the number of simplices and homology cycles, as well as
ease of visualization.

We first sampled 400 point clouds from randomly gen-
erated configurations of tori and pinched tori, with number
of “holes” ranging from 1 to 5, to which Gaussian noise
is added. We then constructed Alpha filtrations on the col-
lection of point clouds, i.e. sequences of simplicial com-
plexes dictated by a monotonically increasing distance pa-
rameter α. Tracking homological changes in the sequence
of complexes results in a barcode representation, with one
bar per homology feature, that spans a range of α values.
The longer the bar, the more persistent, and possibly “sig-
nificant”, a homological feature is. From these barcodes we
considered the 5 most persistent features, expressed by the
longest bars. The birth and death values of these features
were deemed as appropriate points to capture “snapshots”
of the complexes, guaranteed to contain interesting large and
small scale homological information. This pipeline yields a
collection of 2000 complexes for each dataset. The gener-
ality of the datasets stems from the spurious homological
features occuring while considering filtrations of noisy point
clouds, as confirmed by the histogram insets describing the
test sets in Figure 5. The number of simplices ranges from
tens to thousands, and betti numbers, i.e. number of homol-
ogy cycles, from 0 up to 66. Furthermore, homology gen-
erators present in the dataset can contain from 3 up to 60
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Figure 6: Qualitative comparisons of selected complexes from the 2D TORI (four left) and 3D (four right) test set. The 1-
simplices of the complexes are color-coded according to their distance from the nearest homology cycle, with blue indicating
close proximity to an optimal homology cycle, and red indicating large distance from a homology cycle.

Figure 7: Plots of predicted distances (blue) of the simplices sorted in increasing ground truth distance value (orange) for the
Tori dataset in 2D (top) and 3D (bottom). The plots show four cases (columns) ranging from the best (left) to the worst (right).

1-simplices.
Unfortunately, constructing a general enough dataset that

contains rich homological information, whilst explicitly
knowing ground-truth optimal homology generators, is not
feasible. Thus, we calculate the reference function using
optimal homology generators of H1 discovered via short-
loop (Dey, Sun, and Wang 2010), by calculating the normal-
ized “hop” distance of each simplex to its nearest optimal
generator (see Eq.(9)). Thus, shortloop algorithm acts both
as a baseline, and a ground truth proxy.

Experimental Settings
We used a GNN with 12 graph convolutional layers (for 2D
as well as 3D), as described by Eq. (8), and 128 hidden units.
We chose LeakyReLU activations (φ in Eq. (5)) with nega-
tive slope r = 0.02 for the layers, and a hyperbolic tan-
gent Tanh for the output. Neighbor activations are aggre-
gated via a summation (

⊕
in Eq. (5)). Learnable weights

undergo Kaiming uniform initialization (He et al. 2015). Fi-
nally, node features are the result of concatenating the betti
numbers describing the homology of the link at each sim-
plex, with its 5-dimensional spectral embedding.

The dataset is split into training (80%) and testing (20%)
sets and the models were trained for 1000 epochs, with a
mini-batch size of 5 complexes using an Intel Xeon E5-2630
v.4 processor, a TITAN-X 64GB GPU and 64GB of RAM,
using CUDA 10.1. The GNN model was implemented us-
ing the dgl library (Wang et al. 2019) with the Torch back-
end (Paszke et al. 2017). All simplicial and homology com-
putations were handled by the Gudhi library (The GUDHI
Project 2021).

We apply a Laplacian smoothing post-processing step.
Let x the output of the model, i.e. the inferred distances for
each 1-simplex, and L̂ = D−1/2(D−A)D−1/2 the normal-
ized graph Laplacian of the 1-skeleton of the complexK, i.e.
the underlying graph spanned by the 0 and 1-simplices ofK.
The signal at the simplices are smoothed using x′ = x−L̂x.

Results
The main quantitative results can be found in Figure 7 and
Figure 5 with qualitative examples in Figure 6. We report
mean squared error (MSE) between the predicted and ref-
erence relative distances, with distances based on short-
loop (Dey, Sun, and Wang 2010) acting as ground truth. We
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Figure 8: Computation time as a function of the number of
simplices (left), and the number of generators (right) for the
3D TORI dataset. We compare our trained model against
the reference baseline, shortloop, and hom emb. +dist de-
notes additional post-processing required for obtaining dis-
tances.

experimentally compare our method against a combinatorial
baseline, hom emb (Chen and Meilă 2021). Since the range
of d̂(·) is within [0, 1], MSE can never exceed 1, i.e. 100%
error. While additional baselines were considered, such as
distr cover loc (Tahbaz-Salehi and Jadbabaie 2010), unfor-
tunately they do not provide code or empirical analysis that
is easy to compare with.

In 2D as well as 3D our model learns the homology-
parametrized distance function by achieving an MSE
of 3.81% (0.0381) (2D), and 4.47% (0.0447) (3D),
respectively, compared to 7.86% (0.0786) (2D), and
8.89% (0.0889) (3D), obtained by hom emb. Figure 5 (first
column) provides insights into the distribution of error at
different distances (x-axis) from optimal generators. In 2D
the error is monotonically increasing with the distance from
the homology generators, whereas in 3D the model per-
forms slightly better at relative distances of about a third
from the optimal cycles. Our method consistently outper-
forms hom emb at small and moderate distances (< 0.67),
whereas for the farthest distance range hom emb performs
slightly better. In both settings, areas far away from the ho-
mology cycles attain the maximum mean MSE but never in
excess of 15%.

Figure 5 also investigates the scalability of the model as
the number of simplices, homology features (β1) and maxi-
mum cycle lengths, increase (columns 2-4). The insets pro-
vide histograms of the respective parameter counts in the
test sets to shed light into the standard deviation (shaded).
The parameter values are non-uniformly represented in the
test sets, partly explaining the larger variance towards the
lower ends of the value ranges. Our model scales well in all
three parameters and we observe that the error decreases for
larger numbers of simplices. The baseline, hom emb, overall
scales similarly to our method (with the exception of scal-
ability in terms of number of simplices), albeit exhibiting
consistently higher MSE across all parameter scales. The
maximum MSE of our method across all parameters never

exceeded 12%.
Qualitative assessment of the model’s performance is pro-

vided in Figure 6 for examples from the test sets. The com-
parisons are arranged from lowest error (left) to maximum
error (right) within our dataset. The top row of figures vi-
sualize the predicted distances projected onto the complex
while the bottom shows the ground truth. Cool areas indi-
cate close proximity to an optimal homology generator.

Figure 7 plots reference distance values (orange) and our
model’s output (blue) for each simplex against the rank of
the simplex’s distance from an optimal generator (X axis).
Ideally, the blue curve should be monotonically increasing
and should closely match the orange curve.

Both in 2D and 3D the model can handle multiple homol-
ogy cycles of various lengths, even greater than the number
of convolutional layers that usually dictate the receptive field
of each simplex. Problematic appear to be the cases where
components of the complexes have trivial homology, evident
from the rightmost column in Figure 7. In such cases the
model attempts to detect homological structure, where none
exists.

Timing results are provided in Figure 8, where computa-
tion time is presented as a function of the number of sim-
plices, as well as the number of generators. Our trained
model (blue) is more efficient than the two iterative base-
line methods, shortloop (orange), and hom emb (red). We
also exhibit time taken for other methods to post-process the
results in order to obtain relative distances to the homology
generators of interest (+dist). The cost of post-processing
is independent of generators, but scales poorly with the num-
ber of simplices.

Limitations and Conclusion
Our model entifies simplices that are distant to homology
cycles, aided by the shifted-inverted Hodge Laplacian based
graph convolution and the simplified simplex adjacency con-
struction. We experimented with using a Hasse graph ana-
logue, as well as the original, non-shifted, non-inverted,
Hodge Laplacians of the complex, but these models failed
to learn.

Another advantage of our model is that both large and
small scale homology cycles are consistently localized. Al-
though we restricted our analysis to H1 for ease of evalua-
tion, the generality of our model allows direct extension to
higher dimensional simplices.

One drawback of our model is that it performs poorly
when components of complexes contain no higher dimen-
sional homological information whatsoever. In such cases,
it hallucinates homology cycles while they do not exist.

Another limitation is the variance of the inferred func-
tion on the complex, as shown in Figure 7. This variance
stems from two sources: First, the target function is piece-
wise constant; and second, the adjacency structure that we
use to sparsify an otherwise complete graph (for creating the
GNN computational graph) alters the spectrum of the kernel.

The choice of a spectral sparsification method with the-
oretical guarantees is an interesting avenue of future work.
Needless to say, our results are promising even with a basic
GNN architecture.
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