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Abstract

Several methods for discovering interpretable directions in
the latent space of pre-trained GANs have been proposed.
Latent semantics discovered by unsupervised methods are
relatively less disentangled than supervised methods since
they do not use pre-trained attribute classifiers. We pro-
pose Scale Ranking Estimator (SRE), which is trained using
self-supervision. SRE enhances the disentanglement in di-
rections obtained by existing unsupervised disentanglement
techniques. These directions are updated to preserve the or-
dering of variation within each direction in latent space. Qual-
itative and quantitative evaluation of the discovered direc-
tions demonstrates that our proposed method significantly
improves disentanglement in various datasets. We also show
that the learned SRE can be used to perform Attribute-based
image retrieval task without further training.

Introduction

Generative Adversarial Networks (GAN) are generative
models that have witnessed significant performance im-
provements in image synthesis over the last decade (Good-
fellow et al. 2014). It has many applications, including im-
age, audio, and video generation, image manipulation and
editing, image-to-image translation, and many others.

The latent space of GANs is hard to interpret due to its
high dimensional and abstract structure. Various architec-
tures such as InfoGAN (Chen et al. 2016), Structured GAN
(Deng et al. 2017), and many others learn interpretable and
meaningful representations from images by either maximiz-
ing the information or promoting independence between the
latent variables. The fundamental drawback of these ap-
proaches is that they fail in the case of complex datasets
since the generation quality degrades as they learn to dis-
entangle. To alleviate this problem, recent works such as
(Shen et al. 2020), (Voynov and Babenko 2020) discover
interpretable directions directly from the latent space of
pre-trained GANs. (Voynov and Babenko 2020) performs
unsupervised learning to identify distinguishable directions
while (Hirkonen et al. 2020), (Spingarn-Eliezer, Banner,
and Michaeli 2020) and (Shen and Zhou 2021) obtains direc-
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tions analytically. These directions need not be completely
disentangled.

We propose Scale Ranking Estimator(SRE), a model
learned via self-supervision strategy to enhance disentan-
glement in the directions derived by current posthoc dis-
entanglement approaches. Self-supervision is a successful
training paradigm for deep learning models that allows them
to learn in a label-efficient manner. In essence, SRE en-
hances disentanglement by enforcing the order of varia-
tion within each transformation. Our method is indepen-
dent of the GAN architecture used. We perform extensive
qualitative and quantitative analysis on synthetic and natu-
ral datasets to show that the proposed method improves the
disentanglement of existing directions. SRE learns to encode
the magnitude of variation in each direction. We demonstrate
a practical application where these encodings can be directly
used for Attribute-based image retrieval task.

Related Work

Generative Adversarial Networks GANs are one of the
most popular generative models that shows promising re-
sults on image synthesis (Goodfellow et al. 2014). It consists
of a Generator and Discriminator that learns in an adver-
sarial setting. Recent variants of GANs such as StyleGAN
(Karras, Laine, and Aila 2019), StyleGAN-2 (Karras et al.
2020), Progressive GAN (Karras et al. 2018) and BigGAN
(Brock, Donahue, and Simonyan 2019) are shown to be very
successful in generating high-resolution images. Progres-
sive GAN, a successor of conventional GAN, attempts to
generate high-resolution images by progressively growing
the generator and discriminator. StyleGAN and StyleGAN-
2 learn a mapping network that maps the z-space to w-space
that is more disentangled.

Post-hoc Disentanglement from pre-trained GANs
(Higgins et al. 2017), (Dupont 2018), (Lin et al. 2020)
e.t.c. disentangle factors of variations very well in synthetic
datasets, but they fail to do so in complex natural datasets.
These classical disentanglement learning techniques im-
prove disentanglement at the cost of generation quality. To
overcome this limitation, extensive research has been con-
ducted in the field of learning interpretable directions from
pre-trained models. They can be categorized into three based
on the learning paradigm used :

* Supervised : (Bau et al. 2019) computes the agreement
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Figure 1: Illustration of the proposed approach; D is initialized with existing post-hoc disentanglement directions. We first
compute two linear combinations of directions in D, where the coefficients are values in scale vectors ! and €2, respectively.
These linear combinations are then added to latent code z, which gives a pair of shifted latent codes. Generator G outputs
a pair of images which are passed to the SRE. SRE decodes the scale vectors, £' and £2 from the pair of images. Binary
cross-entropy loss is computed based on the difference between the predicted scale vectors and pseudo-ground truth labels.
Pseudo-ground truth labels are the original pairwise ordering between the values in ¢! and £2.

between the output of a pre-trained semantic segmenta-
tion network and the spatial location of the unit activation
map to identify the concept encoded in each unit. (Shen
et al. 2020) and (Yang, Shen, and Zhou 2021) use off-
the-shelf classifiers to discover interpretable directions in
the latent space. A conditional normalizing flow version
of (Shen et al. 2020) and (Yang, Shen, and Zhou 2021)
is explored in (Abdal et al. 2021). The main limitation
of the above approaches is that they require pre-trained
networks, which may not be available for complex trans-
formations.

¢ Unsupervised : (Voynov and Babenko 2020) discovers
interpretable directions in an unsupervised manner by
jointly updating a candidate direction matrix and recon-
structor that predicts the perturbed direction. (Peebles
et al. 2020) proposes a regularization term that forces
the Hessian of a generative model with respect to its
input to be diagonal. However, such methods require
training. (Hérkonen et al. 2020) observed that apply-
ing PCA on the latent space of Style-GAN and Big-
GAN retrieves human-interpretable directions. (Shen and
Zhou 2021) and (Spingarn-Eliezer, Banner, and Michaeli
2020) obtained a closed-form solution by extracting the
interpretable directions from the weight matrices of pre-
trained generators. These methods are computationally
inexpensive since they do not require any form of train-
ing. (Voynov and Babenko 2020) and (Peebles et al.
2020) attempts to learn directions that are easily dis-
tinguishable while (Shen and Zhou 2021), (Spingarn-
Eliezer, Banner, and Michaeli 2020) and (Hérkonen
et al. 2020) finds directions of maximum variance. How-
ever, none of these approaches ensure that only a sin-
gle factor of variation gets captured in a transformation.
Our method addresses this problem by defining a self-
supervision task that promotes disentanglement on direc-
tions captured by these methods.

¢ Self-supervised : (Jahanian, Chai, and Isola 2020) and
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(Plumerault, Borgne, and Hudelot 2020) make use of
user-specified simple transformations as a source of self-
supervision to learn corresponding directions. The main
drawback of these approaches is that, user-specified ed-
its are hard to obtain for complex transformations. Un-
like these methods, our method relies on transformations
discovered by unsupervised methods and hence can dis-
cover a wide variety of disentangled transformations.

Proposed Method

Firstly, we provide the intuition behind our approach. In an
entangled transformation, formulating a task that favors the
dominant factor of variation will enhance the dominant fac-
tor in it. To achieve this, we propose Scale Ranking Estima-
tor (SRE), a neural network that learns to rank the scale of
each transformation in generated images. Imposing a rank-
ing on the magnitude of variation in each direction would
hopefully force the SRE to distinguish between the factors
of variation in the associated transformation and thus cap-
ture the dominant factor of variation. The directions could
then be updated based on this knowledge. An illustration of
the proposed approach is given in Figure 1.

We formally define all the components involved in our
training scheme. Let G : Z — I be the pre-trained gener-
ator, where Z is the latent space and I represents the pixel
space. Interpretable directions are discovered from the la-
tent space of generator G. Let D € R**? denote the ma-
trix whose columns correspond to interpretable directions
in latent space. k and d are the latent space dimensionality
and the number of interpretable directions, respectively. We
also define a neural network SRE(i;6),i € I that outputs
the scale of transformation corresponding to each direction
in D. D and SRFE are the trainable components in our ap-
proach, while the parameters of G are non-trainable.

Training Scheme

We initialize D with a set of directions obtained from any
post-hoc disentanglement method. A linear walk in the la-



tent space is given by 2 — 2z + De, where De is the linear
combination of directions in D. ¢ = (e1,¢€2,..,e4) € RY,
where ¢; ~ U(—e, e) represents the scale of corresponding
direction. We sample ¢!, €2 € R? to generate images G(7))
and G(%3), where 7 — 2z + Del and 73 — 2z + De?. These
images are then passed to SRE which predicts &' and &2
based on the information encoded in the generated images.
The loss function to be minimized is as follows :

d
L= E ZLBCE(Z/M%), (D
z~N(0,1) i1
ele?~nU(—e,e)
where,
Qi = 0(5i1 - 52‘2);
1, ifel > ¢e?
i p— ’ ? 1/7 2
Yi {O, otherwise. @

Here, Lpcg is the binary cross-entropy loss between
the predicted output and the pseudo ground-truth, y; is de-
termined by comparing the scale of transformation used
to generate the images as shown in (2). We provide self-
supervision using the knowledge already present in the ini-
tialized direction matrix to update it further.

We perform weight updates on D and SRFE in an alter-
nate fashion. There are two optimization steps in each train-
ing iteration. Firstly, we compute the loss as specified in (1)
to update the weights of SRE by freezing the weights of
direction matrix D. In the subsequent step, we use the up-
dated SRFE to recalculate the loss as in (1). The parameters
of SRE are now freezed to update D. Training in this man-
ner helps continually transfer some of the information from
SRE to D and vice-versa. This is critical since the initial-
ization of S RFE is random, whereas the initialization of D is
partially learned directions.

As discussed above, ¢ is sampled from a multivariate uni-
form distribution with parameters e and —e. If the specified
range (—e, e) is relatively small, our method becomes highly
constrained, making it hard to capture the variations in a dis-
entangled factor. If the range is set very wide, the model has
the freedom to allow a lot of variation in the transformation,
which can cause it to stay entangled. As a result, determin-
ing the correct values for the hyper-parameter e is crucial for
improved disentanglement.

Experimental Details

This section discusses the datasets used, pre-trained gener-
ators corresponding to each dataset, choice of initialization
for D, and hyperparameters involved.

Datasets
We perform the experiments on following datasets:
¢ CelebA-HQ (Karras et al. 2018) consist of 30,000,
1024 x 1024 resolution images of Celebrity faces.

¢ AnimeFaces dataset (Jin et al. 2017) consist of 64 x 64
resolution face images of Anime characters.
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Floor hue

Wall hue

Object hue

Figure 2: Latent traversal corresponding to Floor hue, Wall
hue, Object hue on 3DShapes. For each attribute, the first
row corresponds to SeFa and the second row corresponds to
SeFa + SRE.

e LSUN-Cars (Yu et al. 2015) consist of 512 x 512 reso-
lution images of cars.

* 3D Shapes (Burgess and Kim 2018) containing 480,000
images of 64 x 64 resolution synthetic images with 6 fac-
tors of variation.

Pre-trained Generators

We use four different variants of GAN for our experiments
to show that our method is independent of the GAN archi-
tecture used. PGGAN (Karras et al. 2018) is used for gener-
ating samples from CelebA-HQ dataset. As a representative
of conventional GANs, we use Spectral Norm GAN (Miy-
ato et al. 2018) to generate Anime Faces. StyleGAN, (Kar-
ras, Laine, and Aila 2019) and StyleGAN-2 (Karras et al.
2020) are used for LSUN-Cars and 3DShapes dataset, re-
spectively. We used the same pre-trained generators that are
used in (Voynov and Babenko 2020) and (Shen and Zhou
2021).

Initialization

We mainly use two contrasting post-hoc disentanglement al-
gorithms to obtain initialization for the direction matrix D.
As a sampling-based initialisation, we consider SeFa (Shen
and Zhou 2021) because it does not require any form of
training, whereas the other initialization used is based on di-
rections learned by LD (Voynov and Babenko 2020), which
requires learning to obtain interpretable directions. We show
that our method enhances the disentanglement of any set
of directions regardless of the paradigm used to generate it,
be it sampling or learning. We used the implementation re-
leased by the authors of (Voynov and Babenko 2020) and
(Shen and Zhou 2021) to derive the directions for initializa-
tion on all the datasets.

Hyperparameters

e Architecture : For all the four datasets, We utilize
ResNet-18 model (He et al. 2016) for SRFE while D is
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Figure 3: Comparison of latent traversals obtained by SeFa and SeFa + SRE on CelebA-HQ dataset. For each attribute, middle
image represents the original image, image to the left and right represents the source image manipulated in positive and negative

directions, respectively.

Pose  Gender  Age Smile  Glasses
Pose 0.06 0.04
Gender 0.20 0.04
Age 0.09 0.27 0.01
Smile 0.17 0.04
Glasses 0.09 0.04

Gender Smile  Glasses

Pose

Pose 0.10 0.04
Gender 0.04
Age 0.00
Smile 0.04
Glasses  0.06 0.06 0.07 0.01 0.20

Figure 4: Rescoring matrix obtained for SeFa (Left) and SeFa + SRE (Right) on CelebA-HQ dataset. Each row represents an
attribute obtained by moving in the relevant direction, and the column corresponds to attribute predictors used to compute the

SCOres.

a simple linear operator. We discovered that ensuring or-
thogonality between directions in D in each iteration re-
sulted in better disentanglement.

Number of iterations : We set number of iterations to
be 6000 for 3DShapes and 20000 for all other datasets.
3DShapes requires relatively lesser number of iterations
since it is a synthetic dataset.

Optimization : We use Adam optimizer to optimize both
D and SRE. The learning rate is set to 0.0001. Batch
size is 64 for 3DShapes and 8 in the case of CelebA-HQ
dataset. For all other datasets, batch size is set to 16.

Results

In this section, we discuss the qualitative and quantitative re-
sults for each of the datasets. SeFa + SRE and LD + SRE cor-
respond to our approach where D is initialized with SeFa and
LD directions, respectively. We compare the performance of
SeFa + SRE with SeFa and LD + SRE with LD directions.

Qualitative Analysis

We conducted a thorough qualitative analysis to evaluate
the performance of our proposed approach. Firstly, we an-
alyze the performance of SeFa compared to SeFa + SRE on
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3DShapes, CelebA, and LSUN Cars datasets. We plot the
latent traversal starting with the original image by traversing
in opposite sides along the relevant directions. The range of
€ is set from -10 to 10. Figure 2 shows the qualitative re-
sults on Shapes3D for three different attributes, floor hue,
wall hue, and object hue. It can be observed that floor hue
is entangled with object shape and wall hue in the case of
SeFa directions while our method improves these directions
by disentangling floor hue from the other attributes. A sim-
ilar trend can be seen in the case of wall hue which is en-
tangled with floor hue in SeFa. More latent traversals on
3DShapes are available in Technical Appendix. Qualitative
analysis on CelebA-HQ and LSUN Cars dataset is demon-
strated in Figure 3 and Figure 7. Each transformation corre-
sponding to SeFa is entangled with one or more attributes. In
Figure 7, car type and color are entangled with zoom in case
of SeFa. However, SeFa + SRE disentangles these attributes
from zoom. Similarly, SeFa entangles zoom with orientation
whereas our method preserves zoom by removing the effect
of orientation. Qualitative analysis shows that SRE applied
on SeFa initialization disentangles SeFa directions.

We also analyze the directions obtained by LD and SRE
applied on LD initialization as shown in Figure 5 and 6.
Even though LD seeks distinguishable directions, it can be
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Figure 5: Comparison of latent traversals obtained by LD and LD + SRE on CelebA-HQ dataset. For each attribute, middle

image represents the original image, image to the left and right represents the source image manipulated in positive and negative
directions, respectively.

LD + SRE

Age Gender ) Hair color

S WA (@7

LD + SRE

i

Figure 6: Comparison of latent traversals obtained by LD and LD + SRE on AnimeFaces dataset. For each attribute, middle
image represents the original image, image to the left and right represents the source image manipulated in positive and negative
directions, respectively.

N

seen that the transformations obtained are quite entangled produced for the original image and the manipulated im-
on both CelebA-HQ and AnimeFaces datasets. We noticed age. The rescoring for the selected direction is computed
that these transformations are less identity-preserving which by taking the mean of this metric across images. Figure 4
is reflected in the Identity preservation accuracies shown in shows the rescoring matrix corresponding to SeFa and SeFa
Table 1. Qualitative analysis shows that our approach based + SRE. It can be seen that, when applied on SeFa initializa-
on SRE updates the directions so that it results in disentan- tion, SRE better disentangles each of the five attributes com-
gled and identity-preserving transformations. Additional la- pared to SeFa. This analysis supports the qualitative anal-
tent traversal on various datasets and directions are provided ysis discussed in the previous section. The directions up-
in the Technical Appendix. dated by SRE retain the knowledge of individual attributes
while reducing the entanglement with other attributes. As
Quantitative Analysis observed in the rescoring matrix, SeFa fails to capture Eye-
We perform quantitative analysis on CelebA-HQ and glasses. However, there are directions in SeFa that encodes
3DShapes to evaluate the proposed approach. The two quan- eyeglasses as the dominant factor. By dominant factor, we
titative metrics that we employed to analyze the performance mean that it is dominant compared to other factors while
on CelebA-HQ dataset are Rescoring Analysis and Identity the magnitude of the variation is less. SRE disentangles eye-
Preservation accuracy. We use pre_trained attribute predic_ glasses better in one of these directions, which is an interest-
tors released by the authors of (Yuxuan Han and Fu 2021) to ing observation. This shows that SRE can disentangle factors
perform rescoring analysis. These attribute predictors are bi- of finer variation that the initialization struggles to capture.
nary classifiers trained on each of the 40 attributes of CelebA We provide a summary of rescoring to compare the perfor-
dataset (Liu et al. 2015). We perform rescoring analysis sim- mance of our approach with SeFa and LD. Since the rescor-
ilar to that described in (Shen et al. 2020). We take a ran- ing matrix should be close to the diagonal matrix in case of
dom sample of 2000 generated images and manipulate them ideal disentanglement, we compute the ratio of the sum of
in the direction of the desired attribute. The pre-trained at- squares of diagonal elements to that of the off-diagonal el-
tribute predictors are then used to obtain predictions for ements. Higher the value, better the disentanglement. These
the original and altered images. We subsequently compute values are reported in Table 1.
the absolute value of the difference between the predictions Identity preservation accuracy is also computed to see
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SeFa SeFa+SRE SeFa SeFa+SRE SeFa

SeFa+SRE

Figure 7: Comparison of latent traversals obtained by SeFa
and SeFa + SRE on LSUN Cars dataset. For each attribute,
middle image represents the original image.

how effectively SRE retains identity while enhancing dis-
entanglement. We randomly sample 2000 generated images
and edit them in the desired direction to obtain the manipu-
lated images. The pair of images are fed into the face recog-
nition model given by (Geitgey 2018), which returns a bi-
nary value indicating whether the faces are similar or not.
We repeat this procedure in three different directions for all
the methods to compute average Identity preservation accu-
racy. Table 1 summarizes these values. Results suggest that
SRE implicitly learns to preserve identity as it learns to dis-
entangle. We believe that our model learns to incorporate
smoothness while learning a ranking function on the scale
of transformation which helps it to preserve identity.

We also perform quantitative evaluation on 3DShapes
since the ground truth factors are readily available. We train
SRE and the baselines using seven pre-trained StyleGAN
generators for each random seed. Training is done for five
different random seeds. We calculate Mutual Information
Gap (MIG) (Chen et al. 2018) and Factor-VAE (Kim and
Mnih 2018), which are two widely used disentanglement
metrics in the literature. This is done by computing the latent
space embeddings for real samples by training a GAN in-
version network as in (Khrulkov et al. 2021). The evaluation
metrics are computed on real samples to analyze the perfor-
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mance of disentangled directions. The mean and standard
deviation of the metrics across the models trained for differ-
ent seeds are reported in Table 2. Both the MIG and Factor-
VAE metrics show that SRE outperforms the baselines. Ap-
plying SRE on top of SeFa and LD directions increases aver-
age MIG by 104.54% and 50% respectively. Results for ad-
ditional metrics such as DCI (Eastwood and Williams 2018)
and B-VAE (Higgins et al. 2017) can be found in the Tech-
nical Appendix.

The use of directions derived by post-hoc disentangle-
ment algorithms as initialization is motivated by the fact that
some of these (SeFa, GANSpace e.t.c.) are computationally
cheap to obtain. However, we also performed extensive ex-
perimentation on 3DShapes and CelebA-HQ to evaluate the
performance of our approach using random initialization. In
comparison to SRE with existing post-hoc disentanglement
initialization, we observe that SRE with random initializa-
tion requires more iterations to converge and a higher learn-
ing rate to optimize the direction matrix D. As shown in Ta-
ble 3, SRE with random initialization performs reasonably
well at the expense of longer training time. We also observe
a similar trend in the case of CelebA-HQ (Rescoring value :
6.722).

We perform real image editing using the directions ob-
tained by SRE. We first approximate the latent vector in
the latent space for real images using the GAN inversion
paradigm mentioned in (Tov et al. 2021) and then shift the
latent vector in the direction of desired attributes to obtain
the manipulated images. Qualitative results are provided in
Figure 8 which suggests that the SRE directions can also be
applied to real images.

Inverted Car Type

Original

Figure 8: Results for Real image editing with respect to mul-
tiple attributes in LSUN Cars dataset.

Identity
Method Rescoring(?) Preservation
Accuracy (1)
SeFa 0.64 0.61
SeFa + SRE 7.77 0.97
LD 1.43 0.73
LD + SRE 3.73 0.94

Table 1: Comparison of Quantitative metrics on CelebA-HQ
dataset.

Effect of Epsilon (¢)

We devise an ablation to study the effect of ¢ on training
of SRE. We consider three ranges of ¢ : (-1, 1), (-3, 3), (-
10, 10) with all the other parameters fixed. The results are
summarized in Table 4. SRE is able to disentangle factors of



Method MIG(1) Fgfgrre?’gE
ScFa 0222001 0.86 £0.01
ScFa + SRE 0.45-0.06 0.940.02
LD 0.1420.05 0.7820.06

LD + SRE 0.21-0.05 0.90-0.05

Table 2: Comparison of Quantitative metrics on 3DShapes
dataset.

Initialization MIG(T) Iterations
Random 0.34 £0.04 28000
SeFa 0.45+£0.06 6000

Table 3: Quantitative metrics of SRE on different initializa-
tions averaged across 5 different random seeds.

variation with ¢ range set to (-1,1). As ¢ is progressively in-
creased, MIG shows a declining trend. Restricting the range
of ¢ forces the model to accommodate factors that take rel-
atively lesser number of variations, hence forcing the rep-
resentation to be disentangled. An e with larger range pro-
vides flexibility to accommodate entangled factors, whereas
extremely less range of £ will not have sufficient values to
properly accommodate variation within a single feature, thus
failing to learn any factors of variation properly in both the
cases.

Attribute-based Image Retrieval

This section demonstrates an immediate practical applica-
tion of the learned SRE where it can be directly used for
Attribute-based image retrieval task. As we already dis-
cussed, our approach updates the initialization and enhances
disentanglement in the directions. During the training phase,
the Scale Ranking Estimator is updated as well to aid the
whole learning process. This section explores the possibility
of using the trained SRE for Attribute-based image retrieval
without any kind of task specific retraining or fine-tuning.

Given a query image and a specific attribute, our goal
is to retrieve images from a pool of real images similar to
the query image based on the specified attribute. Attribute-
based image retrieval could be of great use in Reverse image
search, Person Identification e.t.c. We provide qualitative ev-
idence to show that the SRE that comes as a by-product of
our training process can be used for attribute-based image
retrieval without any additional training. During the infer-
ence, given any image, SRE outputs a vector representa-
tion where each value at index ¢ represents the scale or the
amount of variation of attribute encoded by the direction at
index ¢ in the learned direction matrix D.

We first get the output representations from SRE for all
the pool images and the query image. For a given attribute,
we obtain the attribute-specific variation for all images by
accessing the index corresponding to the direction that en-
codes the given attribute in the output representations. Pool
images are sorted in an ascending order based on the Eu-
clidean distance between their attribute-specific variation to
that of the query image. Top K images from the sorted set
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Range of ¢ MIG(T)
CLD 031
(-3,3) 0.26

(-10, 10) 0.18

Table 4: Effect of € on performance of SRE.

Query Images

Attribute-based similar images

Figure 9: Results for Attribute-based image retrieval task
on CelebA-HQ dataset. Each row corresponds to attributes
Pose, Gender, Expression and Age respectively.

are K images from the pool most similar to the query image
with respect to the specified attribute.

We empirically demonstrate the performance of Attribute-
based image retrieval on CelebA-HQ data set in Figure 9.
We considered SRE model trained using SeFa initialization
for the analysis. We set K = 5 for all the attributes. The at-
tributes considered are Pose, Gender, Expression, and Age.
According to qualitative results, SRE performs well on the
Attribute-based retrieval task, although it is not explicitly
trained to do so.

Conclusion & Future work

We propose a new method for improving disentanglement
and interpretability in the directions obtained by existing
post-hoc disentanglement methods by learning the Scale
Ranking Estimator (SRE). We also provide a thorough quan-
titative and qualitative analysis of its performance on var-
ious real-world and synthetic datasets. Our approach could
be used to improve the disentanglement of any set of existing
directions regardless of the underlying algorithm used to ob-
tain them. In addition to enhancing disentanglement, trained
SRE can also be used for Attribute-based image retrieval
without any task-specific training. Computing a closed-form
analytical solution to enforce order on the variation in each
transformation would also be helpful to enhance the disen-
tanglement by cutting down the training time. Better quanti-
tative metrics need to be proposed to evaluate post-hoc dis-
entanglement methods on natural datasets which consist of
complex attributes.
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