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Abstract

Off-policy sampling and experience replay are key for im-
proving sample efficiency and scaling model-free temporal
difference learning methods. When combined with function
approximation, such as neural networks, this combination is
known as the deadly triad and is potentially unstable. Recently,
it has been shown that stability and good performance at scale
can be achieved by combining emphatic weightings and multi-
step updates. This approach, however, is generally limited to
sampling complete trajectories in order, to compute the re-
quired emphatic weighting. In this paper we investigate how
to combine emphatic weightings with non-sequential, off-line
data sampled from a replay buffer. We develop a multi-step
emphatic weighting that can be combined with replay, and
a time-reversed n-step TD learning algorithm to learn the
required emphatic weighting. We show that these state weight-
ings reduce variance compared with prior approaches, while
providing convergence guarantees. We tested the approach at
scale on Atari 2600 video games, and observed that the new
X-ETD(n) agent improved over baseline agents, highlighting
both the scalability and broad applicability of our approach.

Many deep reinforcement learning systems are not sample
efficient. A simple and effective way to improve sample ef-
ficiency is to make better use of prior experience via replay
(Lin 1992; Mnih et al. 2015; Schaul et al. 2016; Hessel et al.
2018). Previous work demonstrated, somewhat surprisingly,
that increasing the amount of replay in a model-free learn-
ing system can surpass the sample efficiency and final per-
formance of model-based agents which utilize significantly
more computation (van Hasselt, Hessel, and Aslanides 2019).

While improving on sample efficiency, using experience
replay also introduces more potential for instability. Most
approaches update from mini-batches of previous experience
corresponding to older policies, and is therefore off-policy
(Mnih et al. 2015; Hessel et al. 2018). Unfortunately combin-
ing bootstrapping via temporal-difference updates, function
approximation and off-policy learning—known as the deadly
triad (Sutton and Barto 2018)—can destabilize learning re-
sulting in “soft divergence”, slower learning, and reduced
sample efficiency even if the parameters do not fully diverge
(van Hasselt et al. 2018). Additionally, learning methods
based on off-policy importance sampling (IS) corrections can
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result in high variance and poor performance during learning.
This can be improved in practice by bootstrapping more, for
instance by cleverly clipping the IS ratios as in the V-trace al-
gorithm (Espeholt et al. 2018) or ABTD (Mahmood, Yu, and
Sutton 2017), though bootstrapping too much can exacerbate
issues related to the deadly triad.

In order to prevent divergence, we can try to correct the
mismatch between the state distribution in the replay buffer
and the current policy. The emphatic TD(λ) or ETD(λ) al-
gorithm (Sutton, Mahmood, and White 2016) reweights the
TD(λ) updates with an “emphatic” state weighting based
on a “followon” trace that, intuitively, keeps track of how
important each state is in the learning process. For instance,
states that are heavily used to update other state values, via
bootstrapping, will receive more emphasis, which ensures
their values are sufficiently accurate even if they are updated
infrequently. This prevents divergent learning dynamics.

ETD(λ) uses eligibility traces and has not yet been com-
bined with neural network function approximation or replay.
Fortunately, the idea of emphatic weighting is not restricted
to trace-based (“backward-view”) algorithms and can be ex-
tended to other settings. For instance, n-step Emphatic TD
(NETD) (Jiang et al. 2021) is a recent algorithm that com-
bines emphatic weighting with n-step forward-view updates
as well as V-trace learning targets. For consistency with the
canonical name TD(n), for n-step TD learning, we call this al-
gorithm ETD(n) in this paper. This was shown to outperform
V-trace at scale in Atari and diagnostic MDP experiments
(Jiang et al. 2021).

The emphatic weightings used in ETD(n) are sequentially
accumulated over time, in the form of trajectory-dependent
traces, and can thus only be computed from online sequen-
tial trajectories, or full episodes of offline trajectories. In
this paper we investigate how to combine emphatic weight-
ings with non-sequential, off-line data sampled from a replay
buffer. The idea is to estimate expected emphatic weightings
as a function of state (Zhang et al. 2020; van Hasselt et al.
2020), allowing us to appropriately weight the learning up-
dates even if the inputs are sampled out of order. This reduces
well-known variance issues with emphatic weightings (Ghi-
assian et al. 2018; Imani, Graves, and White 2018; Zhang
et al. 2020). We show in Sec. that well-estimated emphatic
weights reduce the potentially high variance of ETD(n) and
achieve convergence with an upper bound on the bias from
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the ground-truth value function.
Our contributions include 1) an off-policy time-reversed

TD learning algorithm to learn the expected n-step emphatic
trace using non-sequential data; 2) a discussion of potential
stabilization techniques; 3) an analysis theoretical properties
of variance, stability and convergence for the resulting algo-
rithm X-ETD(n); 4) an investigation of practical benefits of
the approach when used at scale: we observed that X-ETD(n)
outperformed the baseline on Atari when using replay.

Background
We denote random variables with uppercase (e.g., S) and the
obtained values with lowercase letters (e.g., S = s). Multi-
dimensional functions or vectors are bolded (e.g., b), as are
matrices (e.g. A). For all state-dependent functions, we also
allow time-dependent shorthands (e.g., γt=γ(St)).

Reinforcement Learning Problem Setup
We consider the usual RL setting in which an agent inter-
acts with an environment, modelled as an infinite horizon
Markov Decision Process (MDP) (S,A, P, r), with a finite
state space S , a finite action space A, a state-transition distri-
bution P :S×A → P(S) (with P(S) the set of probability
distributions on S and P (s′|s, a) the probability of transition-
ing to state s′ from s by choosing action a), and a reward
function r : S × A → R. A policy π : S → P(A) maps
states to distributions over actions; π(a|s) denotes the prob-
ability of choosing action a in state s and π(s) denotes the
probability distribution of actions in state s. Let St, At, Rt
denote the random variables of state, action and reward at
time t, respectively.

The goal of policy evaluation is to estimate the value func-
tion vπ, defined as the expectation of the discounted return
under policy π:

Gt
.
= Rt+1 + Σ∞i=t+1γiRi+1 = Rt+1 + γt+1Gt+1 ,

(1)
vπ(s)

.
= EAk∼π(Sk),Sk+1∼P (Sk,Ak) ∀k≥t[Gt | St = s] ,

(2)

where γ : S → [0, 1] is a discount factor. We consider
function approximation and use vw as our estimate of vπ,
where w are parameters of vw to be updated.

In the case of off-policy policy evaluation, though our goal
is to estimate vπ, the actions for interacting with the MDP
are sampled according to a different policy µ. We refer to π
and µ as target and behavior policies respectively and make
the following assumption for the behavior policy µ:

Assumption 1. (Ergodicity) The Markov chain induced by
µ is ergodic.

Assumption 2. (Coverage) π(a|s) > 0 =⇒ µ(a|s) > 0
holds for any (s, a).

Under Assumption 1, we use dµ to denote the ergodic dis-
tribution of the chain induced by µ. In this paper, we consider
two off-policy learning settings: the sequential setting and
the i.i.d. setting. In the sequential setting, the algorithm is

presented with an infinite sequence as induced by the interac-
tion

(S0, A0, R1, S1, A1, R2, . . . ),

where At ∼ µ(St), Rt+1
.
= r(St, At), St+1 ∼ P (St, At).

The idea is then that we update the value and/or policy at each
of these states St, using data following the state (e.g., the
sampled return). Updates at state St always happen before
updates at states St+k, for k > 0.

In the i.i.d. setting, the algorithm is presented with an
infinite number of finite sequences of length n

{(Sk0 , Ak0 , Rk1 , Sk1 , Ak1 , Rk2 , . . . , Skn)}k=1,2,... ,

where the starting state of a sequence is sampled i.i.d., such
that Sk0 ∼ dµ, and then the generating process for the sub-
sequent steps is the same as before: Akt ∼ µ(Skt ), Rkt+1

.
=

r(Skt , A
k
t ), Skt+1 ∼ P (Skt , A

k
t ). The idea is then that we up-

date the value and/or policy of the first state in each sequence,
Sk0 , using the rest of that sequence, e.g., by constructing a
bootstrapped n-step return.

The sequential setting corresponds to the canonical agent-
environment interaction (Sutton and Barto 2018). Sequential
algorithms are often data inefficient, since typically each state
St is updated only once and then discarded (e.g., Watkins
and Dayan 2004). One way to improve data efficiency is to
store transitions in a replay buffer (Lin 1992) and reuse these
for further updates. If µ is stationary and these tuples are
uniformly sampled from a large-enough buffer, their distribu-
tion is similar to dµ. Hence uniform replay is akin to the i.i.d.
setting. If we sample from the replay buffer with different
priorities, e.g., Sk0 is sampled from some other distribution
dp, the updates to Sk0 can be reweighted with importance-
sampling ratios dµ(Sk0 )/dp(S

k
0 ) to retain the similarity to the

i.i.d. setting. Therefore, for simplicity and clarity, we present
our theoretical results in the i.i.d. setting.1

Policy Evaluation
We use the sequential setting and linear function approxima-
tion to demonstrate three algorithms for off-policy evaluation.
We denote the features of state St by φ(St) or φt.

Off-policy TD(n) Off-policy TD(n) updates w as

wt+1 = wt + α
∑t+n−1
k=t

(∏k−1
i=t ρiγi+1

)
ρkδk(wt)φt,

(3)

where ρt
.
= π(At|St)

µ(At|St) is an importance sampling (IS) ratio
and δk(wt) is the TD error:

δk(wt) = Rk+1 + γk+1vwt(Sk+1)− vwt(Sk) . (4)

ETD(n) Off-policy TD(n) can possibly diverge with func-
tion approximation. Emphatic weightings are an approach to
address this issue (Sutton, Mahmood, and White 2016). In

1In practice, computing dµ(S
k
0 )/dp(S

k
0 ) exactly is usually im-

possible. One can, however, approximate it with 1/(dp(S
k
0 )N) with

N being the size of the replay buffer. We refer the reader to (Schaul
et al. 2016) for more details about this approximation.
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particular, ETD(n) considers the following “followon trace”
to stabilize the off-policy TD(n) updates (Jiang et al. 2021):

Ft =
(∏t−1

i=t−n ρiγi+1

)
Ft−n + 1, (5)

with F0 = F1 = · · · = Fn−1 = 1, thus updating wt itera-
tively as

wt+1 = wt + αFt
∑t+n−1
k=t

(∏k−1
i=t ρiγi+1

)
ρkδk(wt)φt.

(6)

Jiang et al. (2021) proved that this ETD(n) update is stable.
In this paper, we consider stability in the sense of Sutton,
Mahmood, and White (2016): a stochastic algorithm com-
puting {wt} according to wt+1

.
= wt + αt(bt −Atwt) is

stable if A
.
= limt→∞ E[At] is positive definite (p.d.)2.

Notice Ft in (5) is a trace, defined on a sequence of transi-
tions ranging, via recursion on previous values Ft−n, into the
indefinite past. When we do not have access to this sequence
to compute the right weighting for a given state, for instance
because we sampled this state uniformly from a replay buffer,
we need to consider an alternative way to correctly weight the
update. This incompatibility between the i.i.d. setting and
ETD(n) is the main problem we address in the paper. To
differentiate from our proposed emphatic weighting, from
here on we refer to the ETD(n) trace as the Monte Carlo
trace since it is a Monte Carlo return in reversed time with
“reward” signal of 1 every n steps. In addition, we use the
term emphasis as a shorthand for “emphatic trace”.

Proposal: Learn the Expected Emphasis
In order to apply emphatic traces to non-sequential i.i.d. data,
we propose, akin to Zhang et al. (2020), to directly learn a
prediction model that estimates the limiting expected em-
phatic trace, i.e., we train a function fθ parameterized by θ
such that fθ(s) approximates limk→∞ Eµ[Fk | Sk = s].3
We use the learned emphasis fθk in place of the Monte Carlo
ETD(n) trace Fk, to re-weight the n-step TD update in (6).
We refer to the resulting value learning algorithm eXpected
Emphatic TD(n), X-ETD(n). Thanks to the trace prediction
model fθ, a sequential trajectory is no longer necessary for
computing the emphatic weighting X-ETD(n). We know that
using a learned expected emphasis can introduce approxi-
mation errors. Thus Section contains a theoretical analysis,
which shows that as long as the function approximation error
is not too large, stability, convergence, and a reduction in
variance, are all guaranteed. We dedicate this section to the
describing how to learn fθ.

The n-step emphatic traces in (5) are designed to empha-
size n-step TD updates. Consequentially, the trace recursion
in (5) follows the same blueprint as TD(n), but in the reverse
direction of time. Hence a natural choice of learning algo-
rithm for the expected emphasis is time-reversed TD learning

2See (13) for specific forms of vector bt, matrix At in our case.
3For the ease of presentation, we assume the existence of the

limit, following Sutton, Mahmood, and White (2016); Jiang et al.
(2021). The existence can be proven similar to Lemma 1 of Zhang,
Boehmer, and Whiteson (2019), which we leave for future work.

that learns the “reward” 1 every nth step using off-policy
TD(n) with the time index reversed. Considering the i.i.d.
setting, we update θk using a “semi-gradient” (Sutton and
Barto 2018) TD update:

θk+1 = θk+ (7)

αθk

[(
n∏
t=1

γkt ρ
k
t−1

)
fθk(Sk0 ) + 1− fθk(Skn)

]
∇θkfθk(Skn),

where αθk is a possibly time-dependent step size, ρkt
.
=

π(Akt |S
k
t )

µ(Aki |Skt )
, and γkt

.
= γ(Skt ) . This update corresponds to

the semi-gradient of the following loss,

LFk
.
=
[(∏n

t=1 γ
k
t ρ

k
t−1

)
fθk(Sk0 ) + 1− fθk(Skn)

]2
. (8)

For the case of linear value function approximation, the
update in (7) may not be stable because its update matrix,
ΦT (I− (ΓPT

π )n)DµΦ, is not guaranteed to be positive defi-
nite (details in the appendix). Here Pπ is the transition matrix
such that Pπ(s, s′)

.
=
∑
a π(a|s)P (s′|s, a), Γ is a diagonal

matrix such that Γ(s, s)
.
= γ(s), Dµ is a diagonal matrix

whose diagonal entry is dµ, and Φ is the feature matrix whose
s-th row is φ(s)>. Thus we propose two stabilization tech-
niques for the time-reversed TD learning updates.

IS Clipping One straightforward way is to clip the IS ratios
in (7) just like in V-trace (Espeholt et al. 2018), i.e., we update
θ iteratively as

θk+1 = θk +∇θkfθk(Skn)× (9)

αθk

[(
n∏
t=1

γkt min(ρkt−1, ρ̄)

)
fθk(Sk0 ) + 1− fθk(Skn)

]
,

for some ρ̄ > 0; typically ρ̄ = 1.
Define the substochastic matrix Pρ̄ such that for any state

s, s′,

Pρ̄(s, s
′)
.
=
∑
a µ(a|s) min(ρ(a|s), ρ̄)p(s′|s, a)γ(s′).

(10)

Then the update matrix of (9) is ΦT (I− (PT
ρ̄ )n)DµΦ (see

details in the appendix).
We prove that when estimating the expected emphasis

using linear function approximation, there exist conditions
under which we can guarantee stability at the cost of incurring
additional bias.
Proposition 1. There exists a constant τ > 0 such that the
update in (9) is stable whenever ρ̄ < τ .

See its proof in the appendix. One such constant is τ =
maxs 1/γ(s) where the maximum of discounts γ(s) is over
states. Notice that while achieving stability, clipping at 1/γ
also restricts variance of learning to a finite amount since the
Monte Carlo ETD(n) trace is bounded. In practice, we tune
ρ̄ to optimize a bias-stability trade-off.

Auxiliary Monte-Carlo loss In most learning settings
(e.g., (Mnih et al. 2015)), both sequential samples and i.i.d.
samples are available. To take advantage of this fact, we can
stabilize the emphasis learning by partially regressing on the

7017



Monte Carlo emphatic trace. We can thus learn the parame-
ters θ by TD-learning using samples from the replay buffer
and by Monte Carlo learning using online experience:

θk+1 = θk + αθkβ (Fk − fθk(Sk))∇θkfθk(Sk) + (11)

αθk

[(
n∏
t=1

γkt ρ
k
t−1

)
fθk(Sk0 ) + 1− fθk(Skn)

]
∇θkfθk(Skn).

This update corresponds to the joint loss function:

LF,MC
k

.
=

[(
n∏
t=1

γkt ρ
k
t−1

)
fθk(Sk0 ) + 1− fθk(Skn)

]2

+ β(fθk(Sk)− Fk)2, (12)

where β is a hyper-parameter for balancing the two losses.
When fθ uses linear function approximation, we prove the
following guarantee on its stability (proof in the appendix).
Proposition 2. There exists a constant ξ such that the update
in (11) is stable whenever β > ξ.

The time-reversed TD update can be unstable, whereas
the Monte Carlo update target Fk can have large variance
(Sutton, Mahmood, and White 2016; Jiang et al. 2021). By
choosing β, we optimize a variance-stability trade off.

Expected Emphatic TD Learning
To prevent deadly triads, we use the learned expected em-
phasis fθ to re-weight the learning updates of TD(n). In
this section, we analyze the resulting algorithm, X-ETD(n).
For simplicity, let the trace model fθ be parameterized by a
fixed parameter θ.4 In this section, we analyze X-ETD(n) in
the sequential setting for the ease of presentation. A similar
analysis would apply to X-ETD(n) in the i.i.d. setting. Then
X-ETD(n) updates w iteratively as

wt+1 = wt + αw
t fθ(St)∆

w
t , (13)

where

∆w
t
.
=
∑t+n−1
k=t (

∏k−1
i=t γi+1ρi)ρk(Rk+1 + γk+1w

>
t φ(Sk+1)

−w>t φ(St))φ(St).

Equivalently, we can write (13) as

wt+1 = wt + αw
t (bt −Atwt), where (14)

At
.
= fθ(St)φ(St)

∑t+n−1
k=t

(∏k−1
i=t γi+1ρi

)
ρk[φ(Sk)

− γk+1φ(Sk+1)]> (15)

bt
.
= fθ(St)

∑t+n−1
k=t

(∏k−1
i=t γi+1ρi

)
ρkRk+1φ(St) (16)

As we use fθ(St) to reweight the update, it is conve-
nient to define a diagonal matrix Dθ

µ with diagonal entries
[Dθ

µ]ss
.
= dµ(s)fθ(s) for any state s. In X-ETD(n), we ap-

proximate limt→∞ Eµ[Ft|St = s] with fθ(s). In this, we
also define a ground-truth diagonal matrix Df

µ such that

4This is not a special setting since the expected emphasis learn-
ing process is independent from learning parameters w.

[Df
µ]ss

.
= dµ(s) limt→∞ Eµ[Ft|St = s], and their differ-

ence, Dε
µ
.
= Dθ

µ−Df
µ, is the (dµ-weighted) function approx-

imation error matrix of the emphasis approximation. It can
be computed that

A
.
= lim
t→∞

E[At] = Φ>Dθ
µ(I− (PπΓ)n)Φ, (17)

b
.
= lim
t→∞

E[bt] = Φ>Dθ
µrnπ, (18)

where rnπ
.
=
∑n−1
i=0 (PπΓ)irπ is the n-step reward vector

with rπ(s)
.
=
∑
a π(a|s)r(s, a).

Variance
Learning to estimate the emphatic trace not only makes value-
learning compatible with offline learning methods that make
use of replay buffers, but is also instrumental in reducing
the variance of the value-learning updates. The incremental
update of ETD(n) in (6) can be rewritten as Ft∆w

t . The fol-
lowing proposition shows that when the trace approximation
error is small enough, variance in learning can indeed be re-
duced by replacing the Monte Carlo trace Ft with the learned
trace fθ(St).
Proposition 3. (Reduced variance) Let εs

.
= |fθ(s)− f(s)|

be the trace approximation error at a state s. For any s, there
exists a time t̄ > 0, such that for all t > t̄,

εs(εs + 2f(s)) < V(Ft|St = s)

=⇒ V(fθ(St)∆
w
t |St = s) ≤ V(Ft∆

w
t |St = s). (19)

The inequality is strict if V(∆w
t |St = s) > 0.

(Proof in the appendix.) In some cases V(Ft|St = s) can
be infinite (Sutton, Mahmood, and White 2016); then the
condition in Proposition 3 holds trivially. This also underpins
the importance of variance reduction.

Convergence
Next, under the following assumption about the learning rate,
we show the convergence of (13).
Assumption 3. (Learning rates) The learning rates
{αw

t }
∞
t=0 are nonnegative, deterministic, and satisfy∑

t α
w
t =∞,

∑
t(α

w
t )2 <∞.

Theorem 1. (Convergence of X-ETD(n)) Under Assump-
tions 1-3, for the iterates {wt} generated by (13), there exists
a constant η > 0 such that∥∥Dε

µ

∥∥ < η =⇒ limt→∞wt = A−1b a.s.. (20)
The proof of this theorem is in the appendix, along with

a stability guarantee for the X-ETD(n) updates. Theorem 1
shows that under some mild conditions, assuming the func-
tion approximation error is not too large, X-ETD(n) con-
verges to w∞

.
= A−1b.. We now study the performance of

w∞, i.e., the distance between the value prediction by w∞
and the true value function vπ .
Proposition 4. (Suboptimality of the fixed point) Under As-
sumptions 1 & ??, there exists positive constants c1, c2, and
c3 such that∥∥Dε

µ

∥∥ ≤ c1 (21)

=⇒ ‖Φw∞ − vπ‖ ≤ c2
∥∥Dε

µ

∥∥+ c3

∥∥∥ΠDf
µ
vπ − vπ

∥∥∥
Df
µ

,
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Figure 1: RMSE in the value estimates and RMSE in expected trace approximation over time in a modified version of Baird’s
counterexample (Baird 1995). We report the performance of each algorithm using the best performing hyper-parameters
(according to RMSE of the value function) from an extensive sweep (described in text). Shaded regions indicate two standard
deviations of the mean performance computed from 100 independent runs.

where
∥∥∥ΠDf

µ
vπ − vπ

∥∥∥
Df
µ

is the value estimation error of

the unbiased fixed point using the Monte Carlo emphasis. We
prove this proposition in the appendix.

Illustration on Baird’s Counterexample
We illustrate the theoretical results in this section on
a small MDP based on Baird’s counterexample (Baird
1995). The MDP has seven states with linear features.
The over-parametrized features are designed to cause
instability even though the true values can be represented.
See Sutton and Barto (2018) for an extensive discussion
and analysis of Baird’s counterexample. As in Zhang
et al. (2020) we modify the MDP (see Fig. ?? in the
appendix), using a discount of γ = 0.95 and a target
policy π(solid|·) = 0.3. We tested all combinations of
αw ∈ {2i : i = −6, . . . ,−14} and αθ = αwβ, with β ∈
{0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 2.0, 5.0}.
Fig. 1 contains a summary; additional results in the appendix.

X-ETD(n) was more stable in this small but challenging
MDP. ETD(n) exhibited high variance and instability. X-
ETD(n) had very low variance, echoing the conclusion of
Prop. 3 that X-ETD(n) has lower variance when its emphasis
errors are small. X-ETD(n) also converged faster to the true
fixed point, illustrating Theorem 1 and, moreover, achieving
the optimal fixed point, far better than the worst case upper
bound of Prop. 4. Note, even when choosing αw and β of
X-ETD(n) to minimize the RMSE in the value function, the
emphasis approximation error exhibits steady improvement.

Experiments
Back to the problem that motivated this paper, our goal is
to stabilize learning at scale when using experience replay.
Inspired by the performance achieved by Surreal (Jiang et al.
2021) and StacX (Zahavy et al. 2020), both extensions of IM-
PALA (Espeholt et al. 2018), we adopt the same off-policy
setting of learning auxiliary tasks to test X-ETD(n), with
the additional use of experience replay. It has become con-
ventional to clip IS ratios to reduce variance and improve
learning results (Espeholt et al. 2018; Zahavy et al. 2020; Hes-
sel et al. 2021a). We similarly adapt X-ETD(n) to the control
setting by clipping IS ratios at 1 in both policy evaluation, as

described in Sec. , and applying the learned emphatic weight-
ing to the corresponding policy gradients. Further details are
in the appendix.

Data We evaluate X-ETD(n) on a widely used deep RL
benchmark, Atari games from the Arcade Learning Environ-
ment (Bellemare et al. 2013)5. The input observations are
in RGB format without downsampling or gray scaling. We
use an action repeat of 4, with max pooling over the last
two frames and the life termination signal. This is the same
data format as that used in Surreal (Jiang et al. 2021) and
StacX (Zahavy et al. 2020). In addition, we randomly sample
half of the training data from an experience replay buffer
which contains the most recent 10,000 sequences of length
20. In order to compare with previous works, we use the
conventional 200M online frames training scheme, with an

5Licensed under GNU General Public License v2.0.

Deep Residual Block

observation

LSTM

MLP MLP MLPMLP MLP

π, v π1, v1 π2, v2f1 f2

L(w; γ) L(w; γi) +wLf (θi; γi), i = 1, 2Losses

auxiliary heads

stop gradient backprop

Figure 2: Block diagram of X-ETD(n). Agent has one main
head, two auxiliary heads and two trace heads with stop
gradients. The subset of architecture in gray denotes the
baseline agent Surreal, and those highlighted in blue are used
in trace learning. We use the IMPALA loss on each head
with different discounts γ, γ1, γ2. The behavior policy is
fixed to be π. The predicted traces f1, f2 are learned with
time-reversed TD losses Lf (θi; γi) weighted by w for the
auxiliary heads i = 1, 2.
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Figure 3: Improvement in individual human normalized game scores compared to Surreal: X-ETD(n) in orange and X-ETD(n)-
MC in blue. Both improve over baseline Surreal in median human normalized scores on 57 Atari games, and scores improved in
more games than in which they deteriorated. Results averaged between 200M - 250M frames (evaluation phase) across 3 seeds.

evaluation phase at 200M-250M learning frames.

Baseline Agent Surreal is an IMPALA-based agent that
learns two auxiliary tasks with different discounts γ1, γ2

simultaneously while learning the main task (Fig. 2, in gray).
The auxiliary tasks are learned off-policy since the agent
generates behaviours only from the main policy output. Prior
to applying X-ETD(n), we swept extensively on its hyper-
parameters to produce the best baseline we could find with
50% replay data (see the appendix for further details).

X-ETD(n) Agents We investigate whether X-ETD(n) up-
dates can improve off-policy learning of the auxiliary tasks.
For each of the two auxiliary tasks, we implement an addi-
tional Multilayer Perceptron (MLP) that predicts the expected
emphatic trace using the time-reversed TD learning loss Lf
in (8) (see Fig. 2, in blue). The prediction outputs f i are then
used to re-weight both the V-trace value and policy updates
for the auxiliary task i = 1, 2, similar Jiang et al. (2021).
In order to isolate the effect of using X-ETD(n) from any
changes to internal representations as a result of the addi-
tional trace learning losses, we prevent the gradients from
back-propagating to the core of the agent. We denote learned
emphasis with auxiliary Monte Carlo loss as X-ETD(n)-MC,
described in Sec. . We implement all agents in a distributed
system based on JAX libraries (Hennigan et al. 2020; Budden
et al. 2020; Hessel et al. 2020)6 using a TPU Pod infrastruc-
ture called Sebulba (Hessel et al. 2021b).

Evaluation Running many seeds on all 57 Atari games
is expensive. However a single metric with few seeds can

6Licensed under Apache License 2.0.

be noisy, or hard to properly interpret. Hence we adopt a
four-faceted evaluation strategy. We report mean and median
human normalized training curves with standard deviations
across 3 seeds (Fig. 4), accompanied by a bar plot of per-
game improvements in normalized scores averaged across 3
seeds and the evaluation window (Fig. 3). In addition, to test
rigorously whether X-ETD(n) improved performance, we
apply a one-sided Sign Test (Arbuthnot 1712) on independent
pairs of agent scores on 57 (games) x 3 (seeds) to compute
its p-value, where scores are averaged across the evaluation
window and the baseline and test agent seeds are paired ran-
domly. To guarantee random pairing, we uniformly sample
and pair the seeds 10,000 times and take the average number
of games on which the test agent is better. The p-value is
the probability of observing the stated results under the null
hypothesis that the algorithm performs equally. Results might
be thought of as statistically significant when p < 0.05.

Statistics X-ETD(n) X-ETD(n)-MC Surreal
Median 503% 537% 525%
Mean 2122% 2090% 1879%
games > baseline 97 (of 171) 97 (of 171) N/A
p-value 0.046 0.046 N/A

Table 1: Performance statistics for Surreal and learned em-
phases applied to Surreal on 57 Atari games. Scores are
human normalized, averaged across 3 seeds and across the
evaluation phase (200M-250M). Mean and median refer to
human-normalized scores.
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Figure 4: Training curves of (a) median and (b) mean hu-
man normalized scores on 57 Atari games, with standard
deviations (shaded area) across 3 seeds.

Results The mean and median scores in Table 1 are human-
normalized and averaged across 3 seeds, then averaged over
200-250M frames evaluation window. On a per-game level,
both X-ETD(n) and X-ETD(n)-MC outperformed Surreal on
97 out of 57x3=171 games with a p-value of 0.046, as well
as reaching higher mean scores. Fig. 3 shows per-game im-
provements over Surreal. The improvements are stable across
two emphatic variants on the majority of games. In the games
where learned emphasis hurt performance, we observed two
scenarios: 1) the predicted emphasis collapsed to 1, e.g.
assault, road_runner, 2) the predicted emphasis runs
wild to huge values, e.g. yars_revenge, centipede.
The huge negative predictions are especially detrimental as
the gradient directions are flipped.

In Fig. 4 shows mean and median training curves, with stan-
dard deviations across 3 seeds for each learning frame and
then smoothed via a standard 1-D Gaussian filter (σ = 10)
for clarity. Adding auxiliary Monte Carlo loss is a double-
edged sword, while improving stability of the time-reversed
TD learning, it also brings in higher variance from the Monte
Carlo emphasis. For this reason X-ETD(n)-MC exhibited
more variance than X-ETD(n) during training, however,
it also lead to more stability in score improvement across
games, especially mitigating losses where learned emphasis
failed to help (see Fig. 3).

What X-ETD(n) approximates is essentially similar to the
density ratio between the state distributions of the target and
behavior policies in that they both share a backward Bellman
equation (Liu et al. 2018; Zhang et al. 2020). Learning den-
sity ratios is an active research area but past works usually
only tested on benchmarks with low-dimensional observa-
tions (e.g. MuJoCo (Todorov, Erez, and Tassa 2012), (Liu
et al. 2018; Nachum et al. 2019; Zhang, Liu, and Whiteson
2020; Uehara, Huang, and Jiang 2020; Yang et al. 2020)). In
this work, we demonstrate that performance improvement is
entirely possible when applying learned emphasis to challeng-
ing Atari games using high-dimensional image observations.

Related Work
The idea of learning expected emphatic traces as a function
of state has been explored before on the canonical followon

trace for backward view TD(λ), to improve trackability of the
critic in off-policy actor-critic algorithms (Zhang et al. 2020).
However in this work we focus on the n-step trace from Jiang
et al. (2021) in the forward view, to improve data efficiency in
deep RL. Our proposed stabilization techniques, to facilitate
at-scale learning, differ from Zhang et al. (2020). Though
Zhang et al. (2020) also use a learned trace to reweight 1-step
off-policy TD in the GEM-ETD algorithm, theoretical anal-
yses were not provided. In contrast, we provide a thorough
theoretical analysis for X-ETD(n). Finally, we demonstrate
the effectiveness of our methods in challenging Atari do-
mains, while Zhang et al. (2020) experiment with only small
diagnostic environments.

The idea of bootstrapping in the reverse direction has also
been explored by Wang, Bowling, and Schuurmans (2007);
Wang et al. (2008); Hallak and Mannor (2017); Gelada and
Bellemare (2019) in learning density ratios and by Zhang,
Veeriah, and Whiteson (2020) in learning reverse general
value functions to represent retrospective knowledge. Besides
learning a scalar followon trace, van Hasselt et al. (2020)
learn a vector eligibility trace (Sutton 1988), which, together
with Satija, Amortila, and Pineau (2020), inspired our use of
an auxiliary Monte Carlo loss.

Several prior works have focused on learning density ra-
tios. These algorithms reweight TD-style updates to the value
function by the ratio of the stationary distribution of the target
policy to the stationary distribution of the behavior policy
(Hallak and Mannor 2017; Liu et al. 2018, 2019; Gelada
and Bellemare 2019; Kallus and Uehara 2020). These ap-
proaches are inspired by the original approach, called COP-
TD (Hallak and Mannor 2017), including a non-linear control
algorithm (Gelada and Bellemare 2019). COP-TD is simi-
lar to ETD(λ) with state/feature-dependent emphasis (Zhang
et al. 2020). In this work, we choose to focus on emphatic
weightings building on the highly performant ETD(n) al-
gorithm. ETD(n) achieves state-of-the-art across the Atari
suite, whereas the non-linear extension of COP-TD to control
(Gelada and Bellemare 2019) only performs well in select
games. In the linear prediction setting, COP-TD—even with
an additional tuneable step-size parameter—has not been
shown to reliably outperform ETD(λ) (Hallak and Mannor
2017), whereas ETD(λ) significantly outperforms classical
importance sampling approaches (Ghiassian et al. 2018). A
systematic comparison of all these reweighting schemes is
currently missing, as well as a careful study of each algo-
rithm’s scaling properties. These question are beyond the
scope of the current study and are left to future work.

Conclusion
In this paper, we propose a simple time-reversed TD learning
algorithm for learning expected emphases that is applicable
to non-sequential i.i.d. data. We proved that under certain
conditions the resulting algorithm X-ETD(n) has low vari-
ance, is stable and convergence to a reasonable fixed point.
Furthermore, it improved off-policy learning results upon
well-established baselines on Atari 2600 games, demonstrat-
ing its generality and wide applicability. In future works, we
would like to study X-ETD(n) in more diverse off-policy
learning settings using different data sources.
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