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Abstract

Few-shot classification requires adapting knowledge learned
from a large annotated base dataset to recognize novel un-
seen classes, each represented by few labeled examples. In
such a scenario, pretraining a network with high capacity
on the large dataset and then finetuning it on the few exam-
ples causes severe overfitting. At the same time, training a
simple linear classifier on top of “frozen” features learned
from the large labeled dataset fails to adapt the model to
the properties of the novel classes, effectively inducing un-
derfitting. In this paper we propose an alternative approach
to both of these two popular strategies. First, our method
pseudo-labels the entire large dataset using the linear clas-
sifier trained on the novel classes. This effectively “hallu-
cinates” the novel classes in the large dataset, despite the
novel categories not being present in the base database (novel
and base classes are disjoint). Then, it finetunes the entire
model with a distillation loss on the pseudo-labeled base
examples, in addition to the standard cross-entropy loss on
the novel dataset. This step effectively trains the network
to recognize contextual and appearance cues that are useful
for the novel-category recognition but using the entire large-
scale base dataset and thus overcoming the inherent data-
scarcity problem of few-shot learning. Despite the simplicity
of the approach, we show that that our method outperforms
the state-of-the-art on four well-established few-shot classi-
fication benchmarks. The code and appendix are available at
https://github.com/yiren-jian/LabelHalluc.

Introduction
Deep learning has emerged as the prominent learning
paradigm for large data scenarios and it has achieved impres-
sive results in wide range of application domains, including
computer vision (Krizhevsky, Sutskever, and Hinton 2012),
NLP (Devlin et al. 2019) and bioinformatics (Senior et al.
2020). However, it remains difficult to adapt deep learning
models to settings where few labeled examples are available,
since large-capacity models are inherently prone to overfit-
ting.

Few-shot learning is usually studied under the episodic
learning paradigm, which simulates the few-shot setting dur-
ing training by repeatedly sampling few examples from a
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small subset of categories of a large base dataset. Meta-
learning algorithms (Finn, Abbeel, and Levine 2017; Ravi
and Larochelle 2017; Koch 2015; Vinyals et al. 2016; Snell,
Swersky, and Zemel 2017) optimized on these training
episodes have advanced the field of few-shot classification.
However, recent works (Chen et al. 2019; Dhillon et al.
2020; Tian et al. 2020) have shown that a pure transfer learn-
ing strategy is often more competitive. For example, Tian et
al. (Tian et al. 2020) proposed to first pretrain a large ca-
pacity classification model on the base dataset and then to
simply learn a linear classifier on this pretrained represen-
tation using the few novel examples. The few-shot perfor-
mance of the transferred model can be further improved by
multiple distillation iterations (Furlanello et al. 2018), or by
combining several losses simultaneously, e.g., entropy max-
imization, rotational self-supervision, and knowledge distil-
lation (Rajasegaran et al. 2020).

In this paper, we follow the transfer learning approach.
However, instead of freezing the representation to the fea-
tures learned from the base classes (Tian et al. 2020; Ra-
jasegaran et al. 2020; Rizve et al. 2021), we finetune the
entire model. Since finetuning the network using only the
few examples would result in severe overfitting (as evi-
denced by our ablations), we propose to optimize the model
by re-using the entire base dataset but only after having
swapped the original labels with pseudo-labels correspond-
ing to the novel classes. This is achieved by running on the
base dataset a simple linear classifier trained on the few
examples of the novel categories. The classifier effectively
“hallucinates” the presence of the novel classes in the base
images. Although we empirically evaluate our approach in
scenarios where the classes of the base dataset are com-
pletely disjoint from the novel categories, we demonstrate
that this large-scale pseudo-labeled data enables effective
finetuning of the entire model for recognition of the novel
classes. The optimization is carried out using a combina-
tion of distillation over the pseudo-labeled base dataset and
cross-entropy minimization over the few-shot examples. An
overview of our proposed approach is provided in Fig. 1.

The intuition is that although the novel classes are not
“properly” represented in the base images, many base ex-
amples may include objects that resemble those of the novel
classes as encoded by the soft pseudo-labels that define the
probabilities of belonging to the novel classes. For exam-
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Figure 1: Overview of our proposed approach in an illustrative setting involving 1-shot classification of 5 novel classes. Pre-
training learns the backbone model Θ and a classification head φ0 from a labeled base dataset. The backbone is used to compute
embeddings for the subsequent stages, while the classification head is discarded. During Episode training, step 1) learns a linear
classifier φ1 in the novel domain using the support set and the fixed embedding Θ. Step 2) pseudo-labels the base dataset with
respect to the label space of the novel domain using the fixed embedding Θ and the classifier φ1. Step 3) re-learns both the
embedding and the classifier with the support set and the pseudo-labeled base dataset using a combination of distillation and
cross-entropy maximization. Note that the base dataset and the support set do not share any classes.

ple, the pseudo-labeling may assign a probability of 0.6 for
a base image of a tiger to belong to the novel class “do-
mestic cat” given their appearance similarities. Or it may
assign large novel-class pseudo-label probability to a base
images because its true base category shares similar con-
textual background with the novel class, such in the case
of “cars” and “pedestrians” which are both likely to ap-
pear in street scenes. Fine-tuning the entire model on these
soft pseudo-labels using a distillation objective (combined
with the cross-entropy loss on the few novel image exam-
ples) trains the network to recognize these similar or con-
textual cues on the base dataset, thus steering the represen-
tation towards features that are useful for the recognition of
the novel classes. Furthermore, because the base dataset is
large-scale, these examples serve the role of massive non-
parametric data augmentation yielding a representation that
is quite general and does not overfit, thus overcoming the
data scarcity problem inherent in few-shot learning. We in-
vite the reader to review the visualizations and the explana-
tion in section Visualizations of Label Hallucination of our
Technical Appendix (TechApp) for further insights into the
behavior of our system. These visualizations confirm the in-
tuition behind our approach , i.e., the fact that the base im-

ages with highest scores tend to be those that contain con-
textual elements that co-occur with the novel-class objects.
Examples include foreground objects that have similar ap-
pearance to the few-shot images (e.g., the malamute image
in Figure 1 of TechApp), or base examples including objects
with shape akin to that of the novel class (e.g., the green
mamba in Figure 2 of TechApp, which resembles the shape
of a nematode), or even examples matching in terms of spa-
tial layout (e.g., the images of tobacco shops and upright
pianos have similar spatial layout as the bookshop class in
Figure 3 of TechApp).

We note that pseudo-labeling has been widely used before
for semi-supervised learning where the unlabeled examples
belong to the same classes as the labeled ones (Sohn et al.
2020; Chen et al. 2020; Pham et al. 2021). Pseudo-labeling
has also been adapted to the few-shot setting (Lazarou,
Avrithis, and Stathaki 2020; Wang et al. 2020) but still under
the empirical setting where novel classes are contained in
the unlabeled dataset. The novelty of our work lies in show-
ing that the advantages of pseudo-labeling extend even to
the extreme setting where the set of base classes and the set
of novel classes are completely disjoint. We also note that
our work differs from transductive few-shot learning (Wang
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et al. 2020; Dhillon et al. 2020) which requires the testing
set of unlabeled examples used during the training. Instead,
our method operates in a pure inductive setting where within
each episode only the small set of novel labeled examples
and the base dataset are used for finetuning.

Related Work
Meta-Learning or learning to learn is the most common
approach for few-shot learning. Meta-learning splits the
learning into two phases, i.e., a meta-training phase and a
meta-testing phase. During each phase, the meta-training
set or meta-testing set is organized into multiple episodes,
with each episode sampled from the task distribution. Each
episode is further partitioned into a small training set and
a testing set. In few-shot classification, the training set
within each episode has N classes and K examples per
class. Meta-learning methods can be further categorized
into metric-based versus optimization-based. Metric-based
methods (Koch 2015; Vinyals et al. 2016; Sung et al. 2018;
Snell, Swersky, and Zemel 2017) learn embeddings for
clustering or comparing examples. Few-shot metric learn-
ing methods have also been successfully applied to lo-
cal descriptors (Li et al. 2019a; Huang et al. 2021; Zhu
et al. 2021). Optimization-based methods (Finn, Abbeel, and
Levine 2017; Flennerhag et al. 2020; Li et al. 2017; Rusu
et al. 2019) learn the parameters of the model or the opti-
mizer for fast adaptation using gradient descent.

Built upon those classical meta-learning methods, Deep-
EMD (Zhang et al. 2020) learns a new metric using the Earth
Mover’s Distance. MetaOptNet (Lee et al. 2019) solves
a differentiable convex optimization problem to achieve
better generalization of linear classifier. MTL (Sun et al.
2019) explores transfer learning in the meta-learning set-
ting. FEAT (Ye et al. 2020) adapts a set-to-set function
to learn task-specific and discriminative embeddings. Neg-
Cosine (Liu et al. 2020) replaces the softmax loss with a
negative margin loss in metric learning. MELR (Fei et al.
2021) adopts an attention module with consistency regu-
larization and explicitly models the relationship between
different episodes. Instead of learning unstructured met-
ric, COMET (Cao, Brbic, and Leskovec 2021) proposes to
meta-learn along human-interpretable concepts. Constella-
tionNet (Xu et al. 2021) uses relation learning with self-
attention to introduce a cell feature clustering algorithm.
PseudoShots (Esfandiarpoor, Hajabdollahi, and Bach 2020)
applies a masking module to select useful features from aux-
iliary labeled data. IEPT (Zhang et al. 2021) devises self-
supervised pretext tasks at instance level and episode level
for few-shot classification.

Transductive/Semi-Supervised Few-Shot Learning im-
proves the few-shot results by utilizing the information from
the query set or extra unlabeled examples for meta-testing
episodes. TIM (Boudiaf et al. 2020) maximizes transductive
information for few-shot learning. TAFSSL (Lichtenstein
et al. 2020) searches discriminative feature sub-spaces for
few-shot tasks. ICI (Wang et al. 2020) solves another linear
regression hypothesis to filter out less trustworthy instances
by pseudo-labeling. The method of Lazarou et al. (Lazarou,

Avrithis, and Stathaki 2020) iteratively refines the pseudo-
labels on the unlabeled dataset. Our method is an inductive
learning approach, which differs from those used in these
works. Without having additional data or information on the
query set but only with the base dataset and the support set
in each episode, inductive learning is the more common for-
mulation of few-shot classification.

Transfer Learning is the de facto approach for many vi-
sion tasks (Donahue et al. 2014), when the labeled exam-
ples are scarce. But transfer learning has seen success in
few-shot learning only very recently. New baseline meth-
ods (Chen et al. 2019; Dhillon et al. 2020) show competitive
performances of few-shot classification by pretraining on a
base training set followed by finetuning on the support set
from each episode. RFS (Tian et al. 2020) outperforms all
advanced meta-learning methods at its time by learning a
fixed embedding model followed by a linear regression. The
success of transfer learning methods relies on the high qual-
ity of the pretrained feature embeddings. To get more gen-
eralized embeddings of examples, SKD (Rajasegaran et al.
2020) proposes to incorporate a rotational self-supervised
loss in the pretraining stage. Zhou et al. (Zhou et al. 2020)
learn to select a subset of base classes for few-shot classifica-
tion. Invariant and Equivariant Representations (IER) (Rizve
et al. 2021) explore contrastive learning during the embed-
ding learning. Chen et al. (Chen, Maji, and Learned-Miller
2021) have proposed a self-supervised method that pretrains
the embedding without using labels for the base dataset. Our
work also belongs to the genre of transfer learning. But in-
stead of focusing on improving the embedding representa-
tion, we study how to better adapt the base knowledge to
each novel task.

Under the transfer learning paradigm, Associative Align-
ment (AssoAlign) (Afrasiyabi, Lalonde, and Gagné 2020)
is the closest to our work. It also exploits the base dataset
examples (in the form of a selected subset) to enlarge the
novel training set. It aligns the novel examples to the clos-
est base examples in feature space by two strategies: 1) a
metric loss to minimize the distance between base examples
and the centroids of the novel ones, 2) a conditional Wasser-
stein adversarial alignment loss. Our method is much sim-
pler than AssoAlign (Afrasiyabi, Lalonde, and Gagné 2020):
it does not require complicated losses, selection of base ex-
amples or feature alignment of base dataset to novel exam-
ples. We show that by simply finetuning the whole network
on a pseudo-labeled version of the base dataset, our method
achieves stronger results despite using a smaller model (see
table 1, table 2).

Pseudo-Labeling (Lee 2013) or self-training (Wei et al.
2021) labels the unlabeled dataset first with the model it-
self, and then re-trains the model with both the labeled and
the pseudo-labeled dataset. It has shown great success in
semi-supervised learning (Berthelot et al. 2019; Yu et al.
2020; Sohn et al. 2020), where pseudo-labeling is applied
to a large unlabeled dataset with classes overlapping with
the labeled set (the unlabeled and labeled dataset have the
same or similar distributions). Algorithms are also designed
to filter out low-confident pseudo-labeled examples. The lat-
est work (Pham et al. 2021) which combines gradient-based
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meta learning with pseudo-labeling achieves a new state-of-
the-art result on ImageNet benchmark (Deng et al. 2009).
The same idea is adapted to semi-supervised few-shot learn-
ing as well (Li et al. 2019b; Wang et al. 2020; Lazarou,
Avrithis, and Stathaki 2020). Our method has two main dif-
ferences compared to these approaches. First, the unlabeled
and labeled data are from completely disjoint domains. We
label the base examples into classes that they do not belong
to. Second, we do not have any mechanism to filter the low-
confident examples. Our ablation shows that using all the
base examples with our pseudo-labels yields better perfor-
mance than finetuning on only the ones having higher clas-
sification probability.

Method
Problem Statement
We now formally define the few-shot classification prob-
lem considered in this work. We adopt the common setup
which assumes the existence of a large scale labeled base
dataset used to discriminatively learn a representation use-
ful for the subsequent novel-class recognition. Let Dbase =

{xbaset , ybaset }Nbase

t=1 be the base dataset, with label ybaset ∈
Cbase. It is assumed that both the number of classes (|Cbase|)
and the number of examples (N base) are large in order
to enable good representation learning. We denote with
Dnovel = {xnovelt , ynovelt }Nnovel

t=1 the novel dataset, with
ynovelt ∈ Cnovel. The base classes and novel classes are
disjoint, i.e., Cbase ∩ Cnovel = ∅. We assume the training
and testing of the few-shot classification model to be orga-
nized in episodes. At each episode i, the few-shot learner
is given a support set Dsupporti = {xsupporti,t , ysupporti,t }NKt=1
involving K novel classes and N examples per class sam-
pled from Dnovel (with N being very small, typically rang-
ing from 1 to 10). The learner is then evaluated on the query
set Dqueryi = {xqueryi,t , yqueryi,t }N ′K

t=1 , which contains exam-
ples of the same K classes as those in Dsupporti . Thus, the
query/support sets serve as few-shot training/testing sets, re-
spectively. At each episode i, the few-shot learner adapts the
representation/model learned from the large-scale Dbase to
recognize the novel classes given the few training examples
in Dsupporti .

Learning the Embedding Representation on the
Base Dataset
We first aim at learning from the base dataset an embedding
model that will transfer and generalize well to the down-
stream few-shot problems. We follow the approach of Tian
et al. (Tian et al. 2020) (denoted as RFS) and train discrimi-
natively a convolutional neural network consisting of a back-
bone fΘ and a final classification layer gφ. The parameters
{Θ, φ} are optimized jointly for the

∣∣Cbase∣∣-way base clas-
sification problem using the dataset Dbase:

Θbase, φbase = argminΘ,φE{x,y}∈DbaseLCE(gφ(fΘ(x)), y)

(1)

where LCE is the cross-entropy loss. Prior work has shown
the quality of the embedding representation encoded by pa-
rameters Θbase can be further improved by knowledge dis-
tillation (Tian et al. 2020), rotational self-supervision (Ra-
jasegaran et al. 2020) or by enforcing representations equiv-
alent and invariant to sets of image transformations (Rizve
et al. 2021). In the experiements presented in this paper,
we follow the embedding learning strategies of SKD (Ra-
jasegaran et al. 2020) (using self-supervised distillation) and
IER (Rizve et al. 2021) (leveraging invariant and equivariant
representations). However, note that our approach is inde-
pendent of the specific method used for embedding learning.

Hallucinating the Presence of Novel Classes in the
Base Dataset
In order to pseudo-label the base dataset according to the
novel classes, we first train a classifier on the support set.
For each episode i in the meta-learning phase, we learn a
linear classifier φi on top of the fixed feature embedding
model Θbase using the few-shot support set Dsupporti =

{xsupporti,t , ysupporti,t }NKt=1 .

φi = argminφE{x,y}∈Dsupport
i

LCE(gφ(fΘbase(x)), y) (2)

Note that in previous works (Tian et al. 2020; Rajasegaran
et al. 2020; Rizve et al. 2021), φi is directly evaluated
on query set Dqueryi to produce the final few-shot classi-
fication results. Instead here we use the resulting model
gφi

(fΘbase(x)) to re-label the base dataset according to
the ontology of the novel classes in episode i. We denote
with ŷbasei,t the vector of logits (the outputs before the soft-
max) generated by applying the learned classifier to example
xbaset , i.e., ŷbasei,t = gφi(fΘbase(xt)) for t = 1, . . . , N base.
These soft pseudo-labels are used to retrain the full model
via knowledge distillation, as discussed next.

Finetuning the Whole Model to Recognize Novel
Classes
We finally finetune the whole model (i.e., the backbone
and the classifier) using mini-batches containing an equal
proportion of support and base examples. The loss func-
tion for the base examples is knowledge distillation (Hin-
ton, Vinyals, and Dean 2015), while the objective minimized
for the support examples is the cross-entropy (CE). In other
words, we optimize the parameters of the model on a mixing
of the two losses:

Θ′
i, φ

′
i = argmin

Θ,φ
αE{x,y}∈DbaseLKL(gφ(fΘ(x)), ŷ)+

βE{x,y}∈Dsupport
i

LCE(gφ(fΘ(x)), y) (3)

where ŷ denotes the hallucinated pseudo-label, LKL is the
KL divergence between the predictions of the model and the
pseudo-labels scaled by temperature T , and α, β are hyper-
parameters trading off the importance of the two losses.
Since the support set is quite small (in certain settings, each
episode includes five novel classes and only one example
for each novel class), we use data augmentation to generate
multiple views of each support image, so as to obtain enough
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examples to fill half of the mini-batch. Specifically, we adopt
the standard settings used in prior works (Tian et al. 2020;
Rajasegaran et al. 2020; Rizve et al. 2021) and apply ran-
dom cropping, color jittering and random flipping to gener-
ate multiple views.

Finally, the resulting model gφ′
i
(fΘ′

i
(x)) is evaluated on

the query set Dqueryi = {xnovelt , ynovelt }N ′K
t=1 . The final re-

sults are reported by averaging the accuracies of all episodes.
We note that although the operations of pseudo-labeling

and finetuning are presented as separate and in sequence, in
practice for certain datasets we found more efficient to gen-
erate the target pseudo-labels on the fly for the base exam-
ples loaded in the mini-batch without having to store them
on disk.

Experiments
Datasets
We evaluate our method on four widely used few-shot recog-
nition benchmarks: miniImageNet (Vinyals et al. 2016),
tieredImageNet (Ren et al. 2018), CIFAR-FS (Bertinetto
et al. 2019), and FC100 (Oreshkin, López, and Lacoste
2018).

Experimental Setup
Network Architecture. To make fair comparison to recent
works (Tian et al. 2020; Rajasegaran et al. 2020; Rizve et al.
2021), we adopt the popular ResNet-12 (He et al. 2016) as
our backbone.

Further descriptions on the four datasets, the architecture
of ResNet-12 we used in experiments and optimization de-
tails on embedding learning and our finetuning can be found
in the Technical Appendix.

Results on ImageNet-based Few-Shot Benchmarks
Table 1 provides a comparison between our approach and
the state-of-the-art in few-show classification on the two
ImageNet-based few-shot benchmarks. Our method is de-
noted as Label-Halluc. On miniImageNet, our method us-
ing the SKD pretraining of the backbone yields an abso-
lute improvement of 0.96% over SKD-GEN1 in the one-
shot setting. The improvement become more substantial un-
der the 5-shot setting, with our method producing a gain of
2.42% over SKD-GEN1. When pretrained with IER (Rizve
et al. 2021), our approach achieves one-shot classifica-
tion accuracy of 68.28 ± 0.77, which is over 1.4% bet-
ter than all reported results. Under the 5-shot setting, our
method improves by 2.04% over IER-distill which had the
best reported number, yielding a new state-of-the-art accu-
racy of 86.54%. On the tieredImageNet benchmark, our
method pretrained with SKD performs on par with concur-
rent works (Fei et al. 2021; Zhang et al. 2021) and outper-
forms SKD (Rajasegaran et al. 2020) by 0.45% under the
1-shot setting and by 0.96% under the 5-shot setting. When
pretrained with IER, our approach improves over IER-distill
by 0.60% and 1.11% under the 1-shot and 5-shot settings,
respectively, yielding a new state-of-the-art even for this
benchmark.

Results on CIFAR-based Few-Shot Benchmarks
Table 2 compares our method, Label-Halluc, against the
state-of-the-art on the two CIFAR-based few-shot bench-
marks. On CIFAR-FS, the improvements over SKD-GEN1
(our implementation) for 1-shot and 5-shot are 0.7% and
0.9%, respectively. Note that these gains derive exclusively
from the addition of the distillation over pseudo-labeled base
examples. When using IER-distill as embedding learning,
our method improves the baseline by 0.4% and 0.8% in the
1-shot and the 5-shot settings, respectively. On FC100, our
method achieves improves over the best reported numbers
by 0.8% and 3.0% in the 1-shot and 5-shot setting, respec-
tively, when pretrained with SKD. The improvements are
1.0% and 3.0% when pretrained with IER.

Ablations
The ablation studies are performed to validate improved
transfer performances via the use of pseudo-labeled base
examples, the use of distillation loss on soft-labels over
one-hot encoding labels and finetuning the whole network
over learning only the classifier. We further study the ef-
fect of different embedding learning methods. Finally, we
make an apple-to-apple experimental comparison to As-
soAlign (Afrasiyabi, Lalonde, and Gagné 2020), which also
exploits the use of the base dataset during finetuning.

Unless otherwise stated, all the experiments in this section
(Ablations) use ResNet-12 and the embedding training by
SKD-GEN1 (Rajasegaran et al. 2020).

Benefits of the Pseudo-Labeled Base Dataset In Table 3
we ablate on different strategies to transfer the base knowl-
edge to the novel-class recognition. Transfer w/ frozen back-
bone (LR) is the traditional transfer learning procedure of us-
ing the few-shot examples to train a linear regression model
on top of the frozen backbone learned from the base dataset.
Transfer w/ finetuning uses the support set only to finetune
the entire model (backbone and classifier). Hard LabelHal-
luc + finetuning is a variant of our approach where the base
dataset is pseudo-labeled with one-hot hard novel-class la-
bels and the entire model is subsequently finetuned using
cross-entropy over the base and support set. Finally, Soft
LabelHalluc + finetuning is our method using soft pseudo-
labels. Note that we train Transfer w/ finetuning and Hard
LabelHalluc + finetuning for 300 steps only for both 1-shot
and 5-shot, since we find that training longer in these two
settings leads to worse results. From the results in this Table
we can infer several findings. First of all, we can observe
that Transfer w/ frozen backbone performs much better than
Transfer w/ finetuning. This confirms the findings of previ-
ous works (Tian et al. 2020; Afrasiyabi, Lalonde, and Gagné
2020; Chen et al. 2019) which observed that learning a re-
gression model with the fixed embedding leads to better per-
formance over finetuning the whole network (Dhillon et al.
2020). This happens because finetuning the entire network
only with the support set results in overfitting. With the com-
bination of distillation loss on the soft-labeled base dataset,
our method (Soft LabelHalluc + finetuning) eliminates the
overfitting problem yielding 5-shot gains of 5.57%, 3.8%
and 5.3% on miniImageNet, CIFAR-FS, and FC100, respec-
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miniImageNet 5-way tieredImageNet 5-way
Model Net 1-shot 5-shot 1-shot 5-shot
ProtoNet (Snell, Swersky, and Zemel 2017) R-12 60.37 ± 0.83 78.02 ± 0.57 65.65 ± 0.92 83.40 ± 0.65
TapNet (Yoon, Seo, and Moon 2019) R-12 61.65 ± 0.15 76.36 ± 0.10 63.08 ± 0.15 80.26 ± 0.12
MetaOptNet (Lee et al. 2019) R-12 62.64 ± 0.61 78.63 ± 0.46 65.99 ± 0.72 81.56 ± 0.53
MTL (Sun et al. 2019) R-12 61.20 ± 1.80 75.50 ± 0.80 65.62 ± 1.80 80.61 ± 0.90
DSN-MR (Simon et al. 2020) R-12 64.60 ± 0.72 79.51 ± 0.50 67.39 ± 0.83 82.85 ± 0.56
DeepEMD (Zhang et al. 2020) R-12 65.91 ± 0.82 82.41 ± 0.56 71.16 ± 0.87 86.03 ± 0.58
FEAT (Ye et al. 2020) R-12 66.78 ± 0.20 82.05 ± 0.14 70.80 ± 0.23 84.79 ± 0.16
Neg-Cosine (Liu et al. 2020) R-12 63.85 ± 0.81 81.57 ± 0.56 - -
RFS-simple (Tian et al. 2020) R-12 62.02 ± 0.63 79.64 ± 0.44 69.74 ± 0.72 84.41 ± 0.55
RFS-distill (Tian et al. 2020) R-12 64.82 ± 0.82 82.41 ± 0.43 71.52 ± 0.69 86.03 ± 0.49
AssoAlign (Afrasiyabi et al. 2020) R-18† 59.88 ± 0.67 80.35 ± 0.73 69.29 ± 0.56 85.97 ± 0.49
AssoAlign (Afrasiyabi et al. 2020) W-28‡ 65.92 ± 0.60 82.85 ± 0.55 74.40 ± 0.68 86.61 ± 0.59
SKD-GEN1 (Rajasegaran et al. 2020) R-12 66.54± 0.97§ 83.18± 0.54§ 72.35± 1.23§ 85.97± 0.63§

P-Transfer (Shen et al. 2021) R-12 64.21 ± 0.77 80.38 ± 0.59 - -
InfoPatch (Gao et al. 2021) R-12 67.67 ± 0.45 82.44 ± 0.31 71.51 ± 0.52 85.44 ± 0.35
MELR (Fei et al. 2021) R-12 67.40 ± 0.43 83.40 ± 0.28 72.14 ± 0.51 87.01 ± 0.35
IEPT (Zhang et al. 2021) R-12 67.05 ± 0.44 82.90 ± 0.30 72.24 ± 0.50 86.73 ± 0.34
IER-distill (Rizve et al. 2021) R-12 66.85± 0.76§ 84.50± 0.53§ 72.74± 1.25§ 86.57± 0.81§

Label-Halluc (pretrained w/ SKD-GEN1) R-12 67.50 ± 1.01 85.60 ± 0.52 72.80 ± 1.20 86.93 ± 0.60
Label-Halluc (pretrained w/ IER-distill) R-12 68.28 ± 0.77 86.54 ± 0.46 73.34 ± 1.25 87.68 ± 0.83

Table 1: Comparison of our method (Label-Halluc) against the state-of-the-art on miniImageNet and tieredImageNet. We report
our results with 95% confidence intervals on meta-testing split of miniImageNet and tieredImageNet. Training is done on the
training split only. † indicates using a higher resolution of training images. ‡ indicates a larger model than ResNet-12. § indicates
our implementations. This makes the fairest comparisons to ours by allowing that those methods are evaluated on exact same
episodes.

CIFAR-FS 5-way FC-100 5-way
Model Net 1-shot 5-shot 1-shot 5-shot
ProtoNet (Snell, Swersky, and Zemel 2017) R-12 72.2 ± 0.7 83.5 ± 0.5 37.5 ± 0.6 52.5 ± 0.6
MetaOptNet (Lee et al. 2019) R-12 72.6 ± 0.7 84.3 ± 0.5 41.1 ± 0.6 55.5 ± 0.6
MTL (Sun et al. 2019) R-12 - - 45.1 ± 1.8 57.6 ± 0.9
DSN-MR (Simon et al. 2020) R-12 75.6 ± 0.9 86.2 ± 0.6 - -
DeepEMD (Zhang et al. 2020) R-12 - - 46.5 ± 0.8 63.2 ± 0.7
RFS-simple (Tian et al. 2020) R-12 71.5 ± 0.8 86.0 ± 0.5 42.6 ± 0.7 59.1 ± 0.6
RFS-distill (Tian et al. 2020) R-12 73.9 ± 0.8 86.9 ± 0.5 44.6 ± 0.7 60.9 ± 0.6
AssoAlign (Afrasiyabi et al. 2020) R-18‡ - - 45.8 ± 0.5 59.7 ± 0.6
SKD-GEN1 (Rajasegaran et al. 2020) R-12 76.6± 0.9§ 88.6± 0.5§ 46.5± 0.8§ 64.2± 0.8§

InfoPatch (Gao et al. 2021) R-12 - - 43.8 ± 0.4 58.0 ± 0.4
IER-distill (Rizve et al. 2021) R-12 77.6± 1.0§ 89.7± 0.6§ 48.1± 0.8§ 65.0± 0.7§

Label-Halluc (pretrained w/ SKD-GEN1) R-12 77.3 ± 0.9 89.5 ± 0.5 47.3 ± 0.8 67.2 ± 0.8
Label-Halluc (pretrained w/ IER-distill) R-12 78.0 ± 1.0 90.5 ± 0.6 49.1 ± 0.8 68.0 ± 0.7

Table 2: Comparison of Label-Halluc (ours) to prior works on CIFAR-FS and FC-100. We report our results with 95% confi-
dence intervals on meta-testing split of CIFAR-FS and FC-100. Training is done on the training split only. ‡ indicates a different
model. § indicates our implementations.

tively, over finetuning with the episode examples only. It can
be observed that our improves also over the simple strategy
of Transfer w/ frozen backbone since it provides the advan-
tage of adapting the backbone representation to the specific

characteristics of the novel classes.

Soft or Hard Labels The distillation loss on the pseudo-
labeled base dataset is the KL-divergence between the pre-
dictions of the linear classifier (soft-labels) and the predic-
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mini-IN CIFAR-FS FC100
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Frozen (LR) 66.54 83.18 76.6 88.6 46.5 64.2
Finetuning 61.43 80.03 68.8 85.7 43.1 61.9
Hard-halluc 65.04 80.68 75.3 85.3 44.6 62.4
Soft-halluc 67.50 85.60 77.3 89.5 47.3 67.2

Table 3: Ablation study on different strategy to transfer
the base knowledge to the novel-class recognition. Our ap-
proach in its complete form (Soft-halluc) achieves gains over
traditional transfer learning (Frozen (LR) and Finetuning) as
well as a variant of our label hallucination method using hard
pseudo-labeling (Hard-hallluc).

Support Base miniImageNet
Net Clf Net Clf 1-shot 5-shot

X X 61.43 80.03
X X X 63.59 81.53
X X X 66.18 84.36
X X X X 67.50 85.60

Table 4: Ablation study on gradients from base examples.
We study which part of the model (the embedding or the lin-
ear classifier) benefits from the use of pseudo-labeled base
examples. Having no gradient on either Net or Clf is equal
to finetuning with the novel support set only. And Having
gradients on both parts is the default setting of our method.

miniImageNet CIFAR-FS FC100
LR ours LR ours LR ours

RFS0 79.33 81.75 86.6 87.3 58.1 61.2
RFS1 81.15 82.74 86.5 87.1 61.0 63.9
SKD0 82.31 84.14 87.8 88.8 62.8 66.5
SKD1 83.18 85.60 88.6 89.5 64.2 67.2
IER0 83.88 85.86 89.5 90.2 63.8 67.2
IER1 84.50 86.54 89.7 90.5 65.0 68.0

+2.05 +0.8 +3.2

Table 5: Ablation study on different embedding learning
methods in 5-shot classification. LR is Linear Regression
with a fixed embedding. RFS0 denotes RFS-simple model
and RFS1 is RFS-distill, etc.

tions of the current model. We adopt soft-labeling because
hard-labeling examples with novel categories that are not
truly represented in those images has a negative effect. This
can be clearly observed by the poor performance of Hard
LabelHalluc + finetuning in Table 3. The use of soft labels
over hard labels contributes 5-shot classification gains of
4.92% in miniImageNet, 4.2% in CIFAR-FS, and 4.8% in
FC100. Using the distillation loss with soft-labels is crucial
for the success of our method.

Finetuning the Backbone vs the Classifier with Halluci-
nated Pseudo-Labels In this section, we aim at studying

mini FS FC
CA Sub KD 5-shot 5-shot 5-shot

finetune 80.03 85.7 61.9
Asso † X 81.21 85.3 60.6
Asso † X X 82.38 86.3 62.6
Asso X X 83.47 87.6 63.6
Ours X X 85.18 89.3 66.8
Ours X 85.60 89.5 67.2

Table 6: We compare our method to AssoAlign (Asso) on
ResNet-12 in miniImageNet (mini) with 84×84 image reso-
lution, CIFAR-FS (FS) and FC100 (FC). CA is the centroid
alignment introduced by AssoAlign. Sub indicates the use
of the scoring matrix in AssoAlign for selection of base ex-
amples. KD is our method which uses distillation loss on
pseudo-labeled base dataset. † indicates using arcMax acti-
vation over softMax.

whether it is beneficial to finetune the whole network with
the hallucinated pseudo-labels, as opposed to just the classi-
fier. We expect that training only the linear classifier (which
has few parameters) would not reap the full benefits of the
extended re-labeling of the large-scale base dataset, whereas
unfreezing the high capacity backbone network may yield
further gains. Table 4 shows the comparisons between 1) ap-
plying no gradient from hallucinated pseudo-labels, 2) ap-
plying gradients from hallucinated pseudo-labels to the fi-
nal classifier only, 3) applying gradients from hallucinated
pseudo-labels to the backbone feature network only and 4)
applying gradients from hallucinated pseudo-labels to the
whole network, which is our default setting. As we can see,
applying gradients from hallucinated pseudo-labels to the fi-
nal classifier only leads to small grains (2.16% and 1.50% in
1-shot and 5-shot respectively). While learning the backbone
feature network with gradients from hallucinated pseudo-
labels solely already increases by 4.65% and 4.33% in 1-
shot and 5-shot. Most of the improvements of our method
are coming from learning the backbone feature network with
pseudo-labeled base examples.

Different Embedding Learning Methods Our finetun-
ing approach can be used with different embedding learning
strategies for pretraining the backbone from the base dataset.
We experiment with six different pretraining methods pro-
posed in RFS (Tian et al. 2020), SKD (Rajasegaran et al.
2020) and IER (Rizve et al. 2021). Table 5 shows that our
approach constantly improves the classification accuracies
over the linear regression (LR) with fixed embeddings. In
miniImageNet 5-shot classification, our method has an aver-
age 2.05% improvement over LR. In CIFAR-FS and FC100
5-shot, the average improvement are 0.8% and 3.2% respec-
tively.

Comparing to AssoAlign AssoAlign (Afrasiyabi,
Lalonde, and Gagné 2020) also exploits examples from the
base dataset to extend the finetuning dataset. The key dif-
ferences to our method are: 1) AssoAlign experiments with
both arcMax and softMax cross-entropy loss; 2) AssoAlign
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uses a similarity matrix for selecting a subset of base dataset
(this requires searching another hyper-parameter to control
how many examples to select), while our method uses the
entire base dataset; 3) AssoAlign uses centroid alignments
on feature space between novel examples and the selected
base examples, while our approach uses a distillation loss
on the pseudo-labeled base dataset.

The original AssoAlign is implemented with a differ-
ent optimizer (Adam) and a different image resolution
(224×224 in miniImageNet with ResNet-18). Its backbones
(Conv4×4, RestNet-18 or WRN-28-10) differ from those
used in recent works (84×84 resolution with ResNet-12).
The published results of AssoAlign can be found in table 1
and table 2. However, in order to assess AssoAlign and our
method on equal ground, we apply the public implementa-
tion of AssoAlign to our setting. Starting from the same data
augmentations and the same learning policy of ours with
their suggested hyper-parameters for ResNet. We report re-
sults for AssoAlign finetuned for 100 steps with SGD, since
we found this to be the optimal number of steps and the op-
timizer for this method (we tried both SGD and Adam with
50, 100, 150, 200 250, 300, 350 and 400 steps). Both our
method and AssoAlign here use the same embedding model
pretrained with SKD-GEN1 (Rajasegaran et al. 2020).

As shown in table 6, AssoAlign alleviates the overfitting
issue of finetuning on the support set only (first row) for
all three benchmarks. But our method achieves superior re-
sults over AssoAlign in all three datasets by only using a
simple distillation loss with pseudo-labeled base examples.
Though using the arcMax alone yieds an improvement of
1.18% over finetune in miniImageNet, we find that combin-
ing arcMax with centroid alignment leads to inferior results
in our experimental setup based on ResNet-12 and SGD. As-
soAlign with softMax and centroid alignment outperforms
finetune by 3.44%, 1.9% and 2.7%, whereas our method out-
performs AssoAlign by 2.13%, 1.9% and 3.6% in miniIma-
geNet, CIFAR-FS and FC100 respectively.

Computational Cost Finetuning methods have a high la-
tency, due to the fact that it requires optimizing all param-
eters in a large deep neural network for each episode. This
is true for our method, AssoAlign and prior works (Dhillon
et al. 2020; Liu et al. 2019). However, due to the simplicity
of our method, the average running time for each training
step is 0.35 second only (a total of 105 seconds for each
episode), compared to AssoAlign’s 0.87 second (87 seconds
for each episode) in miniImageNet 5-shot. Furthermore, we
invite the reader to review the section ”Speeding up the train-
ing” in the Technical Appendix, where we present and quan-
titatively evaluate strategies to lower the total training cost of
our approach by more than 66% while still maintaining sig-
nificantly higher accuracy compared to the state-of-the-art.

Additional Experiments
We refer the reader to the Technical Appendix for several
additional experiments, including:

• Several visualizations of label hallucination providing
useful insights into the effectiveness of our system.

• Discussion and evaluation of strategies to reduce the
computational cost of the training procedure.

• Performance as a function of the base dataset size.
• Stochastic finetuning using random mini-batches of the

support set.
• Results for large number of novel classes (10-way and

20-way experiments) in each episode.
• Results when the base classes and the novel categories

are far apart.
• Experiments with imbalanced base classes.
• Simultaneous recognition of base and novel classes.
• Ablation on knowledge distillation.
• Experiment with feature distillation.

Conclusion
We propose the simple strategy of label hallucination to
enable effective finetuning of large-capacity models from
few-shot examples of the novel classes. Results on four
well-established few-shot classification benchmarks show
that even in the extreme scenario where the labels of the
base dataset and the labels of the novel examples are com-
pletely disjoint, our procedure achieves state-of-the-art ac-
curacy and consistently improves over popular strategies of
transfer learning via finetuning or methods that perform lin-
ear classification on top of pretrained representations.
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