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Abstract

We propose a discriminant analysis (DA) classifier that uses
online active learning to address the need for the frequent
training of myoelectric interfaces due to covariate shift. This
online classifier is initially trained using a small set of exam-
ples, and then updated over time using streaming data that are
interactively labeled by a user or pseudo-labeled by a soft-
labeling technique. We prove, theoretically, that this yields
the same model as training a DA classifier via full batch learn-
ing. We then provide experimental evidence that our approach
improves the performance of DA classifiers and is robust to
mislabeled data, and that our soft-labeling technique has bet-
ter performance than existing state-of-the-art methods. We ar-
gue that our proposal is suitable for real-time applications, as
its time complexity w.r.t. the streaming data remains constant.

1 Introduction
This work proposes a discriminant analysis (DA) classifier
(linear LDA or quadratic QDA) that uses online active learn-
ing applied to hand gesture recognition via myoelectric in-
terfaces. By updating its parameters over time using stream-
ing data that are interactively (pseudo-)labeled by a user or
soft-labeling technique, this classifier is able to better deal
with the frequent (and demanding) training effort inherent
in the domain arising from covariance shift.

Myoelectric interfaces use streaming data to develop
hand gesture recognition applications, for example, pros-
thesis control, sign language recognition, hand rehabilita-
tion, and virtual reality (Jaramillo-Yánez, Benalcázar, and
Mena-Maldonado 2020). By using surface electromyogra-
phy (sEMG) sensors, these interfaces provide a non-invasive
way to record the electrical activity from neurologically ac-
tivated skeletal muscles. While sEMG sensors do not suf-
fer from several common issues (e.g., measurement ac-
cumulated errors over time, movement constraints, occlu-
sion, illumination, and focus problems) of vision, flex, and
inertial sensors (Jaramillo-Yánez, Benalcázar, and Mena-
Maldonado 2020), the data acquired through such sEMG
sensors are user-dependent and non-stationary (Shwedyk,
Balasubramanian, and Scott 1977), as they are affected by
traits such as subcutaneous fat, skin impedance, and pat-
tern of muscle synergies (Matsubara and Morimoto 2013).
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Not surprisingly, some works have reported covariate shift,
a phenomenon that occurs when the probability distribution
of the input variables (sEMG data) changes with time (Kauf-
mann, Englehart, and Platzner 2010) and across different
users (Castellini, Fiorilla, and Sandini 2009). This phe-
nomenon, in turn, causes the performance of myoelectric in-
terfaces to deteriorate significantly over time (Patricia, Tom-
masit, and Caputo 2014). To minimize the covariate shift,
myoelectric interfaces based on pattern recognition (called
from now on myoelectric interfaces) must be re-trained ev-
ery time a user interacts with them (Sensinger, Lock, and
Kuiken 2009). For each training, a large set of examples
must be collected to achieve high performance, which is
a time-consuming and inconvenient task in terms of us-
ability. This demanding and frequent training has, conse-
quently, limited the adoption of myoelectric interfaces by
industry (Farina et al. 2014; Liu et al. 2014), even though
such interfaces have been investigated for several decades.

To reduce the training effort—both the training time
and the training set size—, we propose a DA classifier
(LDA/QDA) that is trained with a small set of examples
and expands its knowledge over time using online active
learning. Online active learning fits in streaming data ap-
plications as myoelectric interfaces, in which obtaining la-
beled data could be expensive. In this learning paradigm, a
learner (e.g., a classifier) interactively query a user or teacher
to label new data (Hoi et al. 2021). We use LDA, a classi-
fier widely researched in myoelectric interfaces, and QDA
because both demand low data and computational require-
ments at training, in which few parameters are estimated
with respect to data-hungry classifiers (e.g., convolutional
neural networks) (Huang et al. 2017; Jaramillo-Yánez, Be-
nalcázar, and Mena-Maldonado 2020).

Some works have proposed LDA for dimensionality re-
duction, both using online supervised (Pang, Ozawa, and
Kasabov 2005; Wang et al. 2017) and semi-supervised (Kim
et al. 2007, 2011; Nie et al. 2009; Dhamecha, Singh, and
Vatsa 2016; Wang et al. 2016) learning. These approaches
are based on Fisher’s linear discrimination rule (Fisher 1936;
Härdle and Simar 2019), in which the within-class, between-
class, and total scatter matrices are updated to compute a
linear projection that maps a sample into a low dimension
space. In contrast, our proposal focuses on classification,
using the Bayesian decision rule and the Gaussian assump-
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tion (Fukunaga 2013) so as to update the mean vectors and
covariance matrices per class and then calculate functions
that assign a class label to a given sample. Also while the
dimensionality reduction techniques are evaluated in con-
junction with a classifier (generally not a DA classifier), we
evaluate the performance of our online DA classifier. To the
best of our knowledge, LDA or QDA have not been inves-
tigated for online active learning, and our work aims to fill
this gap.

Concretely, our online classifier is initially trained (in a
supervised fashion) with a small dataset (one gesture per
class) from a user, and then expands its knowledge using
sEMG streaming data labeled by the user or pseudo-labeled
by soft-labeling technique that is able to determine the de-
gree in which the streaming data contribute to the classi-
fier. This proposal is user-friendly and fit for real-time appli-
cations, as the classifier’s parameters are continuously up-
dated with the user interaction with the myoelectric interface
and the time complexity remains constant (unlike with full
batch learning). We prove, theoretically, that our online clas-
sifier yields the same model as that obtained via full batch
learning—training with all data at once. Finally, we use five
publicly available datasets to experimentally demonstrate
that the technique proposed improves the performance of
DA classifiers and is robust to mislabeled data, and that the
soft-labeling mechanism used has better performance than
the state-of-the-art models.

2 DA Classifier using Online Active Learning
We propose a DA classifier (LDA/QDA) that updates its
parameters over time using streaming data that are inter-
actively labeled by a user or pseudo-labeled by a soft-
labeling technique. This classifier is initially trained over a
small (finite) labeled dataset I ⊂ {(x⃗, y) | x⃗ ∈ RF , y ∈
{1, · · · , C}} of C ∈ N classes and F ∈ N features.

Based on the Bayesian decision rule and the Gaus-
sian assumption (Fukunaga 2013), the LDA and QDA
classifiers w.r.t. a parameter configuration Θ =
⟨(µ⃗1,Σ1, π1), . . . , (µ⃗C ,ΣC , πC)⟩, where µ⃗c, Σc, and πc is
the mean vector, covariance matrix, and prior probability for
class c are functions defined as follows:

ŷΘL (x⃗) = argmax
c∈{1,...,C}

(
µ⃗T
c Σ

−1x⃗− 1

2
µ⃗T
c Σ

−1µ⃗c+lnπc

)
; (1)

ŷΘQ(x⃗) =

argmax
c∈{1,...,C}

(
−1

2
(x⃗−µ⃗c)

TΣ−1
c (x⃗−µ⃗c)−

1

2
ln |Σc|+lnπc

)
.

(2)

That is, the LDA (QDA) classifier ŷΘL (x⃗) (ŷΘQ(x⃗)) induced
by the parameter configuration Θ assigns a class label c ∈
{1, . . . , C} to a given sample x⃗. The parameters Θ will, in
our setup, be computed w.r.t. an initial dataset I containing
labeled samples (x⃗, c) ∈ R×{1, . . . , C}. Set Ic = {(x⃗, c) |
(x⃗, c) ∈ I} represents the initial dataset for a class c.

The pooled within-class covariance matrix Σ combines
the covariance matrices of all classes as follows:

Definition 1. A pooled within-class covariance matrix Σ
is the weighted average of the covariance matrices Σc per
class c, where:

Σ =
C∑

c=1

|Ic| − 1

|I| − C
Σc. (3)

We note that, when the pooled within-class covariance
matrix Σ or the covariance matrix Σc are singular, one uses
their pseudo-inverse matrices (Moore 1920) instead of their
inverse matrices Σ−1 and Σ−1

c in Equations (1) and (2).
For simplicity and w.l.o.g., we assume prior probabilities

to be equal among classes. Hence, terms lnπc in Equations
(1) and (2) can be dropped, and a parameter configuration Θ
is just a tuple of pairs (µ⃗c,Σc), one per class c ≤ C.

Next, we define the initial classifier as follows:

Definition 2. A initial classifier, trained over an initial
dataset I =

⋃C
i=1 Ic, is the DA classifier w.r.t. parameter

configuration Θ = ⟨(µ⃗c,Σc) | c ∈ {1, . . . , C}⟩, where:

µ⃗c =

∑
x⃗∈Ic

x⃗

|Ic|
;

(4)

Σc =

∑
x⃗∈Ic

(x⃗− µ⃗c)(x⃗− µ⃗c)
T

|Ic| − 1
.

(5)

Traditionally, a DA classifier is trained over the entire
data at once via full batch learning. In our approach, which
uses online active learning instead, the parameter tuple Θ =
⟨(µ⃗c,Σc) | c ∈ {1, . . . , C}⟩ of a DA online classifier is up-
dated using streaming data that is interactively labeled by a
user or by a soft-labeling technique (Hoi et al. 2021).

More concretely, the idea is to incrementally update
the parameter configuration Θ of the initial classifier
over time using streaming data represented by a sequence
X1, · · · , Xk, · · · , where Xt ⊆ {x | x ∈ RF }, with
t ≥ 1, is a set of samples collected at time t ≥ 1. Impor-
tantly, we assume that all samples of a set Xt belong to a
single class, as they are samples stemming from the same
gesture instance interaction. Then, the parameter configura-
tion Θt = ⟨(µ⃗(c,t),Σ(c,t)) | c ∈ {1, . . . , C}⟩ of the on-
line classifier at time t can be computed using a label yt
(when the set Xt is labeled) or a pseudo-label ω⃗t (when the
set Xt is unlabeled). Informally, a pseudo-label is a vector
ω⃗t = ⟨ω(c,t) | c ∈ {1, . . . , C}⟩ that specifies, for each class
c, the “contribution” of dataset Xt to the parameter tuple Θt,
and is meant to be calculated with a so-called soft-labeling
technique, as the on we will present in Section 3.

With the general setup in place, we show next, in detail,
our proposal on how to update the online classifier using
both labels and pseudo-labels.

2.1 Updating using Labeled Data
When the set Xt is labeled with yt, we propose to update
the parameter Θt = ⟨(µ⃗(c,t),Σ(c,t)) | c ∈ {1, . . . , C}⟩ of
the online classifier following the spirit of the online LDA
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techniques (Kim et al. 2007, 2011; Nie et al. 2009) or dimen-
sionality reduction, albeit some differences to suit the clas-
sification task. While these approaches update the between-
class and total scatter covariance matrices, under our ac-
count, which deals with classification, we update instead the
mean vectors µ⃗(c,t) and covariance matrices Σ(c,t) per class
c of the online classifier, as shown below in Definition 3.

Concretely, as set Xt becomes available, we incremen-
tally update µ⃗(c,t) and Σ(c,t) (Eq. (6) and (7), resp.) in Θt−1

using the mean vector µ⃗[Xt] and covariance matrix Σ[Xt]

computed using the samples in the set Xt, for c = yt (the
label associated to Xt). All other parameters in Θt−1 (for
classes different to yt) remain unchanged. We take Θ0 to be
the parameter configuration Θ of the initial classifier.
Definition 3. Let Θ0 be the parameter configuration of the
initial classifier when trained over dataset I =

⋃C
i=1 Ic.

The online classifier incrementally updated w.r.t. t ≥ 1 data
sets X1, · · · , Xt with corresponding labels y1, · · · , yt is de-
fined using parameter configuration Θt = ⟨(µ⃗(c,t),Σ(c,t)) |
c ∈ {1, . . . , C}⟩, where:

µ⃗(c,t) =


µ⃗c if t = 0
N(c,t−1)µ⃗(c,t−1)+|Xt|µ⃗[Xt]

N(c,t−1)+|Xt| if yt = c

µ⃗(c,t−1) otherwise;

(6)

Σ(c,t) =


Σc if t = 0

σB
(c,t)+σA

(c,t)

N(c,t−1)+|Xt|−1 if yt = c

Σ(c,t−1) otherwise,

(7)

where:

σA
(c,t) =

[
(N(c,t−1)|Xt|)
N(c,t−1) + |Xt|

× (µ⃗[Xt] − µ⃗(c,t−1))(µ⃗[Xt] − µ⃗(c,t−1))
T

]
;

σB
(c,t) = (N(c,t−1) − 1)Σ(c,t−1) + (|Xt| − 1)Σ[Xt]

N(c,t) =


|Ic| if t = 0

N(c,t−1) + |Xt| if yt = c

N(c,t−1) otherwise

The following result (Theorem 1) states that performing
incremental (small) updates on labeled data arising from se-
quential interactions (as per Definition 3) yields the same
classifier as the one obtained by full batch learning at once
(over all the data collected). In what follows, we denote Θ⋆

t
to the parameter configuration of the so-called batch classi-
fier obtained by training it over the full dataset I ∪{(x⃗, yk) |
x⃗ ∈ Xk, 1 ≤ k ≤ t} as per Definition 2, when yi is the
labeled of set Xi.
Theorem 1. Let Θt and Θ⋆

t be the parameter configura-
tions of the online classifier (as per Definition 3) and batch
classifier, resp., w.r.t. an initial dataset I and t ≥ 1 sets
X1, · · · , Xt with labels y1, · · · , yt. Then Θt = Θ⋆

t .
Therefore, the classification accuracy of these two classi-

fiers is the same. However, at each time t, the online classi-
fier only uses the data in the set Xt and its label yt, whereas
the batch classifier is trained with all the data.

2.2 Updating using Pseudo-Labeled Data
We now show the updating of the parameter configura-
tion Θt when the a set Xt is pseudo-labeled with a vector
ω⃗t = ⟨ω(c,t) | c ∈ {1, . . . , C}⟩ specifying the “contribu-
tion” of Xt to the specific parameters of each class. Techni-
cally, ω(c,t) ∈ [0, 1], where 1 means that the data in set Xt

belongs to class c and 0 means it does not belong to class c.
We first define a generalization of Definition 2 for full

batch classifiers in the context of pseudo-labeled data.

Definition 4. A weighted batch classifier trained over the
dataset I =

⋃C
i=1 Ic and t ≥ 1 sets X1, · · · , Xt with their

pseudo-labels ω⃗1, · · · , ω⃗t of the form ω⃗t = ⟨ω(c,t) | c ∈
{1, . . . , C}⟩ is defined using parameter configuration Θ′

t =

⟨(µ⃗′
(c,t),Σ

′
(c,t)) | c ∈ {1, . . . , C}⟩, where:

µ⃗′
(c,t) =

∑
x⃗∈Ic

x⃗+
∑
i≤t

( ∑
x⃗∈Xi

ω(c,i)x⃗

)
|Ic|+

∑
i≤t

|Xi|ω(c,i)

; (8)

Σ′
(c,t) =

1

|Ic|+
∑
i≤t

|Xi|ω(c,i) − 1

×
[ ∑
x⃗∈Ic

(x⃗− µ⃗c)(x⃗− µ⃗c)
T

+
∑
i≤t

( ∑
x⃗∈Xi

ω(c,i)(x⃗− µ⃗[Xi])(x⃗− µ⃗[Xi])
T

)]
.

(9)

Thus, a weighted batch classifier is trained, at once, over
both the initial labeled dataset I as well as the pseudo-
labeled data from X1, · · · , Xt.

We observe that whereas the covariance matrix Σ⋆
(c,t) of

the full batch classifier is calculated w.r.t. the mean vector of
all (labeled) data Ic∪

⋃t
i=1 Xi, the covariance matrix Σ′

(c,t)

of the weighted batch classifier (equation (9)) is calculated
w.r.t. the mean vectors of the sets Ic, X1, · · · , Xt. For exam-
ple, the weighted covariance of a sample x⃗ ∈ Xt in Σ′

(c,t)

is ω(c,i)(x⃗− µ⃗[Xt])(x⃗− µ⃗[Xt])
T , whereas the covariance of

such sample in Σ⋆
(c,t) is (x⃗− µ⃗(c,t))(x⃗− µ⃗(c,t))

T .
The reason why we calculate the covariance matrix

Σ′
(c,t) w.r.t. the mean vectors of each set Ic, X1, · · · , Xt

is to reduce the between-class overlapping of the covariance
matrices produced by mislabeled data. In Figure 1, we show
the geometric representation (using ellipses) of the covari-
ance matrices of the batch and modified batch classifiers
in a time t = 1 for a binary classification problem. These
covariance matrices are calculated using a set Xt=1 that is
mislabeled (while it actually belongs to class c = 2, it is la-
beled as class c = 1). The covariance matrices Σ⋆

(c=1,t=1)

and Σ⋆
(c=1=2,t=1) depicted in Figure 1.a and calculated w.r.t.

the mean vector µ⃗⋆
(c=1,t=1) overlap more the covariance ma-

trices Σ′
(c=1,t=1) and Σ′

(c=2,t=1) in Figure 1.b, which is
calculated w.r.t. the mean vectors µ⃗′

(c=1,t=0) and µ⃗[Xt=1].
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Figure 1: The geometric representation of the covariance
matrices of the batch (a) and modified batch (b) classifiers
in a time t = 1 for a binary classification problem using a
mislabeled set X1.

The fact is that this between-class overlapping can affect
the performance of the DA classifiers: it is difficult to estab-
lish linear (LDA) or quadratic (QDA) decision boundaries to
separate overlapped distributions (Duda, Hart et al. 2006).
Definition 5. Let Θ0 be the parameter configuration of the
initial classifier when trained over dataset I =

⋃C
i=1 Ic.

The online classifier incrementally updated w.r.t. t ≥ 1
data sets X1, · · · , Xt with corresponding pseudo-labels
ω⃗1, · · · , ω⃗t of the form ω⃗t = ⟨ω(c,t) | c ∈ {1, . . . , C}⟩ is de-
fined using parameter configuration Θt = ⟨(µ⃗(c,t),Σ(c,t)) |
c ∈ {1, . . . , C}⟩, where:

µ⃗(c,t)=

{
µ⃗c if t = 0
N(c,t−1)µ⃗(c,t−1)+|Xt|ω(c,t)µ⃗[Xt]

N(c,t−1)+|Xt|ω(c,t)
otherwise;

(10)

Σ(c,t) =

{
Σc if t = 0

σA
(c,t)

N(c,t−1)+|Xt|ω(c,t)−1 otherwise;
(11)

where:

σA
(c,t) = (N(c,t−1) − 1)Σ(c,t−1) + ω(c,t)(|Xt| − 1)Σ[Xt]

N(c,t) =

{
|Ic| if t = 0

N(c,t−1) + |Xt|ω(c,t) otherwise.

Similar to Section 2.1, the parameters µ⃗(c,t) and Σ(c,t)

(Equations (10) and (11)) are incrementally/sequentially up-
dated using the mean vector µ⃗[Xt], covariance matrix Σ[Xt],
and pseudo-label ω⃗t of the streaming set Xt.

It turns out that the Theorem 1 result for incremental up-
dates over labeled data can be carried out to updates over
pseudo-labeled data, as Theorem 2 demonstrates. The proofs
of these two theorems are in Appendix A.

Theorem 2. Let Θt and Θ′
t be the parameter configurations

corresponding to the online classifier (as per Definition 5)
and the weighted batch classifier (as per Definition 4), re-
spectively, over an initial dataset I and t ≥ 1 stream-
ing sets X1, · · · , Xt with their corresponding pseudo-labels
ω⃗1, · · · , ω⃗t. Then, Θt = Θ′

t.

That is, no accuracy is given up when the classifier is in-
crementally updated as streaming data is gathered.

We close this section by performing a complexity anal-
ysis on the calculations required for obtaining the parame-
ter configurations under the various settings above. As ex-
pected, the time complexity to compute the parameter con-
figurations Θ⋆

t (namely, |I ∪
⋃t

i=1 Xi|(F 2 + 2F )) and Θ′
t

(namely, |I ∪
⋃t

i=1 Xi|(F 2 + 2F + 1)) of the batch ap-
proaches increases with t, the number of streaming “steps.”
In contrast, the time complexity for computing the param-
eter configuration Θt of the online classifier using labeled
(namely, |Xt|C(F 2 +2F )+C(5F 2 +F +9)) and pseudo-
labeled (namely, |Xt|C(F 2+2F )+C(4F 2+6)) data depend
only on the number of samples |Xt| in the streaming set Xt.
Thus, provided the size of the streaming data at each step is
fixed, the time complexity of the online classifier is constant
(i.e., O(1)), and hence adequate for streaming applications
as hand gesture recognition via myoelectric interfaces.

With a method at hand to update the classifier using
pseudo-labeled data, what remains is an actual way of ob-
taining those labels. This is the focus of the next section.

3 A Soft-Labeling Technique
We present here a soft-labeling technique to pseudo-label a
set Xt, in which we calculate a weight ω(c,t) of the pseudo-
label ω⃗t = ⟨ω(c,t) | c ∈ {1, . . . , C}⟩, which determines the
contribution of the set Xt. This weight ω(c,t) is a weighted
average of a probability p(c,t), and a normalized Matthews
correlation coefficient (MCC) m(c,t). This weighted aver-
age uses Shannon entropy (Shannon 1948) to decrease the
contribution of the set Xt when the uncertainty of the prob-
ability p(c,t) and the coefficient m(c,t) increase.

This term p(c,t) is the posterior probability of the samples
x ∈ Xt belong to class c given the initial (LDA/QDA) clas-
sifier ŷΘ(x⃗) trained over I, as follows:

p(c,t) = P (ŷΘ(x⃗) = c | x⃗ ∈ Xt). (12)

MCC is a metric that determines the performance of a
classifier ŷ over a test dataset T (Matthews 1975), and it
is calculated with true positives TP , false positives FP ,
true negatives TN and false negatives FN . Their interval
is [−1,+1], where −1 means a total disagreement and +1
is a total agreement between prediction and observation. We
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will use 0 as the minimum value because negative values
mean the performance of the classifier is not better than a
random classifier, in this way:

mcc(ŷ, T ) = max{0,
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
}.

(13)

In our approach, MCC determines the performance of a
DA classifier ŷΘt

c (x⃗) over the re-labeled training set Īc that
is the set I (initial labeled dataset) by re-labeling every non-
c sample to a distinguished class 0, as follows:

Īc = {(x⃗, y) | (x⃗, y) ∈ Ic}∪{(x⃗, 0) | (x⃗, y) ∈ I∩Ic}.
(14)

The DA classifier ŷΘt
c (x⃗) is a variant of the initial classi-

fier ŷΘ(x⃗) at time t, where µ⃗c and Σc are replaced with the
mean vector ⃗µ[Xt] and covariance matrix Σ[Xt] from Xt re-
spectively. So, we calculate the normalize MCC m(c,t) using
the DA classifier ŷΘt

c (x⃗) and the re-labeled training set Īc,
in this way:

m(c,t) =
mcc(ŷΘt

c (x⃗), Īc)∑C
i=1 mcc(ŷΘt

i (x⃗), Īi)
. (15)

To determine the uncertainty of the probability p(c,t) and
the coefficient m(c,t), we calculate the two Shannon entropy
H(p(c,t)) and H(m(c,t)) as follows:

H(p(c,t)) = −
C∑

c=1

p(c,t) log p(c,t), (16)

H(m(c,t)) = −
C∑

c=1

m(c,t) logm(c,t). (17)

And, we calculate ω(c,t) as the pooled average of p(c,t)
and m(c,t) using their entropy, as follows:

ω(c,t) =
(1−H(p(c,t)))p(c,t) + (1−H(m(c,t)))m(c,t)

2
.

(18)

Note that when H(p(c,t)) or H(m(c,t)) are equal to one,
the uncertainty of the probability p(c,t) or of the coeffi-
cient m(c,t) are maximum, respectively. For example, if
H(p(c,t)) = 1, then the weight ω(c,t) is at most 0.5.

4 Empirical Analysis
We evaluate our online classifier through two experiments
to determine their performance (Section 4.2) and their ro-
bustness to mislabeled data (Section 4.3). In these experi-
ments, we use three feature sets and five publicly-available
datasets that contain hand gestures’ sEMG data. We make
publicly available the code1 (including all suplementary ma-
terial) of this empirical evaluation to easily compare our ap-
proach with future approaches in this field.

1https://github.com/andresjarami/OnlineDAclassifier

4.1 Datasets and Feature Sets
We use five sEMG datasets that are: NinaPro5 (Atzori
et al. 2014; Pizzolato et al. 2017), CapgMyo dbb (Du et al.
2017), MyoArmband (Côté-Allard et al. 2019), Long-Term
3DC (Cote-Allard et al. 2021), and EMG-EPN-120 (Chung
and Benalcázar 2019). We use one gesture per class for train-
ing and the other gestures for updating and testing of the pro-
posed model according to the description in Table 1, which
shows the characteristics of these datasets.

The data of these five datasets are pre-processed to sim-
ulate an online scenario. Based on that, we use the slid-
ing windowing technique (Jaramillo-Yánez, Benalcázar, and
Mena-Maldonado 2020) to segment the sEMG data acquired
by multiple channels in windows of 290ms with an overlap
of 280ms. For example, from a hand gesture that lasted 5
seconds, we get 942 windows with a sampling rate of 200Hz.

From each window observation, we get a feature vec-
tor. For this purpose, we used three feature sets, which are
suitable to develop real-time interfaces due to their low
calculation time (Jaramillo-Yánez, Benalcázar, and Mena-
Maldonado 2020). The first feature set (FS1) is proposed
by Hahne, Graimann, and Muller (2012), and is composed
only of one feature that is the logarithm of the data variance.
Hudgins, Parker, and Scott (1993) proposed the second set
(FS2), which has four features (mean absolute value, wave-
form length, zero crossing, and slope sign change) and is
widely used to develop myoelectric interfaces. Phinyomark,
N Khushaba, and Scheme (2018) proposed the third set
(FS3), which has four features (L-scale, maximum fractal
length, mean of the square root, and Willison amplitude).
For example, when the feature set has 4 functions and the
sEMG has 8 channels, we get a feature vector of 32 ele-
ments.

Note that the sEMG data of a gesture can be represented
as a set of feature vectors (one per window). So, we selected
randomly (with a uniform distribution) a sequence of sets
(gestures) to update the online classifier simulating stream-
ing data from users. All the results reported in this paper are
an average of 20 runs per user in each dataset.

4.2 EXP1: Online Classifier Performance
To evaluate the performance of our approach, we define five
DA classifiers (LDA/QDA): initial (baseline), online classi-
fier using labels and pseudo-labels through our soft-labeling,
Nigam’s soft-labeling (Nigam et al. 2000), and thresholding
(Van Engelen and Hoos 2020; Triguero, Garcı́a, and Herrera
2015) techniques.

The initial classifier is a DA classifier trained over a
dataset I that has one gesture per class. The online classi-
fier using labels and pseudo-labels is a DA classifier initially
trained over the set I and sequentially updated with labeled
gestures (shown in section 2.1) and with pseudo-labeled ges-
tures by our soft-labeling technique (shown in sections 2.2
and 3), respectively. The Nigam-based classifier is the on-
line classifier updated with pseudo-labeled gestures using
Nigam’s soft-labeling technique (Nigam et al. 2000). In this
technique, a gesture is pseudo-labeled using the conditional
posterior probability p(c,t) (shown in equation (12)) multi-
plied by a parameter λ that decreases the contribution of
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Dataset Number of channels Number of users Number of classes Gesture per class
NinaPro5 16 10 18 1(train), 3(update), 2(test)
Côté-Allard db 8 19 7 1(train), 8(update), 3(test)
EMG-EPN-612 8 612 6 1(train), 24(update), 25(test)
CapgMyo dbb 128 10 8 1(train), 6(update), 3(test)
LongTermEMG dbb 10 20 11 1(train), 1(update), 1(test)

Table 1: Datasets used in the Experiments

DA classifier Nigam Thresholding Ours
LDA 2.1 2.0* 2.0*
QDA 2.1 2.2 1.7*
* Best ranked classifier at pvalue < 0.5.

Table 2: Friedman test’s average ranks of the accuracy of the
DA classifiers (LDA/QDA) that use pseudo-labeled gestures
over the five datasets.

this probability to minimize the error of gestures incorrectly
pseudo-labeled. The parameter λ is in the interval [0, 1]. The
thresholding-based classifier is also the online classifier up-
dated with pseudo-labeled gestures using the thresholding
technique that is commonly used in self-training learning
(Van Engelen and Hoos 2020; Triguero, Garcı́a, and Herrera
2015). In this technique, a gesture is labeled based on the
probability p(c,t). If this probability is greater than a thresh-
old τ , then this pseudo-labeled gesture is used to update the
classifier. In this experiment, we determine the best param-
eters λ and τ (shown in Appendix B) for each dataset and
feature set from the set {0, 0.1, · · · , 1} using grid search op-
timization.

For the five DA classifiers, Figure 2 shows the average
classification accuracy of the users in the five datasets using
the three feature sets described above. To determine if the
accuracy differences between the methods tested are statisti-
cally significant, we use the 2-tailed Wilcoxon signed ranks
test at pvalue < 0.5 (Demšar 2006). We use black arrows
to indicate that the accuracy come from the same distribu-
tion (there is no statistical difference). As we excepted, the
accuracy of the online classifier using labels is higher than
the accuracy of the other classifiers that use pseudo-labeled
gestures. Note that this accuracy is equal to the accuracy of
a DA classifier trained with all data (the initial set I and
all labeled gestures) in full batch fashion, as we established
in Theorem 1. The accuracies of the online classifier using
labels and pseudo-labels are higher than the accuracy of the
initial classifier, so the updating proposed in sections 2.1 and
2.2 improves the performance of a DA classifier trained with
few samples (one gesture per class). In contrast, the Nigam-
based and thresholding-based classifiers perform worse than
the initial classifier when the DA classifier is QDA as we
can see, for example, in NinaPro5 and Long-Term 3DC us-
ing the feature sets FS2 and FS3, and in Capgmyo dbb using
the feature set FS2.

To evaluate the classifiers that are updated with pseudo-
labeled gestures (the online classifier using pseudo-labels
and the Nigam-based and thresholding-based classifiers),

Figure 2: The classification accuracy average of the five DA
classifiers in the five datasets using the three feature sets.

we rank their accuracy in the five datasets using the Fried-
man rank test and the Holm post-hoc test at pvalue <
0.5 (Demšar 2006). Table 2 shows the Friedman test’s av-
erage ranks of the accuracies of these three classifiers,
where the online classifier using pseudo-labels and the
thresholding-based classifier are best ranked for LDA, and
our online classifier is also best ranked for QDA.

4.3 EXP2: Robustness to Mislabeled Data
In this experiment, we show the robustness to mislabeled
data of our online classifier through a new way of calculating
the covariance matrix (COV). Traditionally, the COV of DA
classifiers is calculated w.r.t. the mean vector of all gestures,
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Figure 3: The accuracy difference of the two batch classifiers
(traditional and weighted classifiers).

whereas we calculate w.r.t. the mean vectors of each gesture
(equation (9)). Concretely, we compare the performance of
the weighted batch classifier (shown in definition 4) and a
version of this weighted classifier (from now on called tra-
ditional classifier), in which the covariance matrix (COV) is
calculated w.r.t. the mean vector of all gestures. Note that
our online classifier using pseudo-labeled gestures has the
same performance as the weighted batch classifier, as shown
Theorem 2.

We show the accuracy difference of these two compared
batch classifiers w.r.t. the initial classifier using labeled and
pseudo-labeled gestures as shown in Figure 3. When the ac-
curacy of any of these classifiers is higher than the initial
classifier, the accuracy difference is positive; otherwise, it is
negative. We use the 2-tailed Wilcoxon signed ranks test at
pvalue < 0.5 to determine if the accuracy differences are sta-
tistically significant (Demšar 2006). When these two batch
classifiers use labeled gestures, their performance is simi-
lar for LDA and QDA. In contrast, when they use pseudo-
labeled gestures, the performance of the weighted batch
classifier is significantly higher than the difference of the
traditional classifier. In fact, the performance of the tradi-
tional classifier is worse than the performance of the initial
classifier in several cases.

We also rank the accuracy differences of these two batch
classifiers (with labeled and pseudo-labeled gestures) in the

Gestures DA Classifier
Traditional Weighted

labeled LDA 1.5* 1.5*
QDA 1.5* 1.5*

pseudo-labeled LDA 1.2 1.9*
QDA 1.2 1.8*

* Best ranked classifier at pvalue < 0.5.

Table 3: Friedman test’s average ranks of the two batch clas-
sifiers’ accuracy using labeled and pseudo-labeled gestures.

five datasets using the Friedman rank test and the Holm post-
hoc test at pvalue < 0.5 (Demšar 2006). Table 3 shows the
Friedman test’s average ranks of these two classifiers, where
there is not a statistical difference between these two batch
classifiers using labels for both LDA and QDA. However,
using pseudo-labeled gestures, the weighted batch classifier
is best-ranked than the traditional classifier. As we shown in
Section 2.2, the performance of the traditional classifier is
affected by the between-class overlapping of the covariance
matrices due to mislabeled data (Figure 1). Consequently,
the weighted batch classifier and the online classifier us-
ing pseudo-labels (that has the same performance as the
weighted batch classifier) are robust to mislabeled gestures.

5 Conclusions
We proposed a DA classifier that uses online active learn-
ing and a soft-labeling technique. The account aims to deal
with the frequent and demanding training of myoelectric in-
terfaces due to covariate shift. Specifically, we proposed to
initially train an classifier with a small dataset and then use
labeled/pseudo-labeled streaming data to update its parame-
ters over time. Besides proposing an update mechanism, we
also developed a soft-labeling technique. We proved, the-
oretically, that our online classifier yields the same model
as training a DA classifier via full batch learning, that is,
by training with all data at once. Importantly, unlike with
full batch learning, the time complexity of our online incre-
mental approach remains constant (provided the streaming
size is fixed). Thus, we argue the approach is suitable to be
implemented in streaming data applications like myoelec-
tric interfaces. Through five publicly available datasets, we
demonstrated experimentally that our proposal improves the
performance of DA classifiers and reduces the updating error
due to mislabeled data, and that our soft-labeling technique
yields better performance than the state-of-the-art models.

Up to our knowledge, this is the first DA classifier that
uses online active learning. While we evaluated the tech-
nique in the context of hand gesture classification using
sEMG, we conjecture it could also be used effectively in
other applications of myoelectric interfaces, and leave that
for further work. Other further work remains interesting
to pursue. First, an analysis of our online classifier using
imbalance-class streaming data. Second, a limitation of our
approach also worth investigating involves cases in which
the small training data collected from the user is of poor
quality (e.g., data from amputees).
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