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Abstract

The fairness in machine learning is getting increasing atten-
tion, as its applications in different fields continue to expand
and diversify. To mitigate the discriminated model behav-
iors between different demographic groups, we introduce a
novel post-processing method to optimize over multiple fair-
ness constraints through group-aware threshold adaptation.
We propose to learn adaptive classification thresholds for
each demographic group by optimizing the confusion ma-
trix estimated from the probability distribution of a classifi-
cation model output. As we only need an estimated proba-
bility distribution of model output instead of the classifica-
tion model structure, our post-processing model can be ap-
plied to a wide range of classification models and improve
fairness in a model-agnostic manner and ensure privacy. This
even allows us to post-process existing fairness methods to
further improve the trade-off between accuracy and fairness.
Moreover, our model has low computational cost. We pro-
vide rigorous theoretical analysis on the convergence of our
optimization algorithm and the trade-off between accuracy
and fairness. Our method theoretically enables a better up-
per bound in near optimality than previous method under the
same condition. Experimental results demonstrate that our
method outperforms state-of-the-art methods and obtains the
result that is closest to the theoretical accuracy-fairness trade-
off boundary.

Introduction
Machine learning is broadening its impact in various fields
including credit analysis, job screening and etc. Conse-
quently, the importance of fairness in machine learning is
emerging. However, recent models have been found to be-
have differently between demographic groups in favorable
predictions. For example, it has been discovered that COM-
PAS, the criminal risk assessment software currently used
to help pretrial release decisions, has biases between dif-
ferent races (Dressel and Farid 2018). Specifically, blacks
got higher risk scores predicted from the model than whites
with similar profiles. Therefore, discrimination truly exists
and resolving it is critical as its direct and potential impact
is growing tremendously.
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However, obtaining fairness is not a trivial problem, as
the dataset itself will be biased when it is accumulated ar-
tificially (Jang, Zheng, and Wang 2021). Simply modify-
ing sensitive features (such as race, gender) from the data
does not solve the bias, because there is indirect discrimi-
nation (Pedreshi, Ruggieri, and Turini 2008) caused by the
feature relevance, which means sensitive information can be
inferred from other features.

In order to alleviate discrimination from different per-
spectives, various quantitative measurements of group eq-
uity (Hardt, Price, and Srebro 2016; Kleinberg, Mul-
lainathan, and Raghavan 2016; Chouldechova 2017) have
been proposed. It has been proven that the pursuit of fair-
ness is subject to a trade-off between fairness and accuracy
(Liu et al. (2019), Kim et al. (2020)).

Moreover, Pleiss et al. (2017) studied the trade-offs be-
tween fairness notions that cannot be satisfied at the same
time. Therefore, recent works (Feldman et al. 2015; Zhang,
Lemoine, and Mitchell 2018; Hardt, Price, and Srebro 2016)
usually target at a certain fairness notion. However, these
approaches suffer from the lack of flexibility, i.e., target fair-
ness cannot be adjusted to meet the needs. If the fairness
constraints change under some circumstances, traditional
fairness models need to be re-trained from scratch, which
is computationally demanding and sometimes inapplicable
due to model settings.

To overcome the limitations, we propose a novel post-
processing method to improve fairness in a model-agnostic
manner i.e., we only need the prediction of an unknown
model. Our GSTAR (Group Specific Threshold Adapta-
tion for faiR classification) model learns adaptive classifi-
cation thresholds for each demographic group in classifica-
tion task to improve the trade-off between fairness and ac-
curacy. Given an existing classification model, GSTAR ap-
proximates the probability distribution of the model output
and utilizes confusion matrix to quantify accuracy and fair-
ness w.r.t. the group-aware classification thresholds. This al-
lows us to: 1) prevent from burdening additional complexity
or deteriorate the stability of the training process of the clas-
sifier; 2) integrate different fairness notions into one unified
objective function; 3) easily adapt one pre-trained model to
other fairness constraints.

We summarize our contributions of this paper as follows:

1. We propose a novel post-processing method, named
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GSTAR, which can learn group-aware thresholds to opti-
mize the fairness-accuracy trade-off in classification. We
empirically show that GSTAR outperforms state-of-the-
art methods.

2. With GSTAR, we can simultaneously optimize over mul-
tiple fairness constraints with a low computational cost.
GSTAR does not require multiple iterations over data, in-
stead, it takes at most one pass of data in training for fast
computation.

3. We conduct extensive rigorous theoretical analysis on our
method, in terms of convergence analysis and fairness-
accuracy trade-off. We introduce theoretical improve-
ment in terms of near optimality.

4. We derive Pareto frontiers of our model for the fairness-
accuracy trade-offs that contextualize the quality of fair
classification.

Related Works
In order to achieve group fairness, which quantifies the dis-
crimination among different sensitive groups, a diverse no-
tion of fairness has been introduced. Equalized odds (Hardt,
Price, and Srebro 2016) enforce equality of true positive
rates and false positive rates between different demographic
groups. Pleiss et al. (2017) relaxed equalized odds to sat-
isfy group-wise calibration. Demographic parity or disparate
impact (Barocas and Selbst 2016) suggests that a model is
unbiased if the model prediction is independent of the pro-
tected attribute.

Among different fairness methods, post-processing tech-
niques propose to improve fairness by modifying the out-
put of a given classifier. Hardt et al. (2016) propose to en-
sure equalized odds by constraining the model output. Kim
et al. (2020) utilize confusion matrix and propose least-
square accuracy-fairness optimization problem. Kamiran et
al. (2012) propose to give a favorable outcome to unprivi-
leged and an unfavorable outcome to the privileged group
when the confidence of the prediction is in a certain range.
However, such static confidence window keeps the same re-
gardless of the demographic group and is determined by grid
search, so it is less efficient.

Threshold adjustment (a.k.a. thresholding) was intro-
duced to improve the performance of static thresholds. In
the literature, Menon et al. (2018) prove that instance-
dependent thresholding of the predictive probability func-
tion is the optimal classifier in cost-sensitive fairness mea-
sures. Also, when considering immediate utility, Corbett-
Davies et al. (2017) show that optimal algorithm is achieved
from group-specific threshold which is determined by group
statistics. However, to the best of our knowledge, the thresh-
old adjustment approach has not been deeply studied that
neither encompasses broad group fairness metrics nor de-
scribes an explicit method to achieve the threshold.

Trade-off between fairness and accuracy exists when
we impose fairness constraint to a model. Recent stud-
ies (Chouldechova 2017; Zhao and Gordon 2019) prove that
models targeting at such fairness notions conform to an in-
formation theoretic lower bound on the joint error across dif-
ferent sensitive groups. Therefore, our work presents a prac-

tical upper bound of the best achievable accuracy given the
fairness constraints.

Here, our work is the most related to the post-processing
methods (Hardt, Price, and Srebro 2016; Kim, Chen, and
Talwalkar 2020). However, ours differ from theirs in several
aspects. First, we theoretically prove that GSTAR achieves
a better upper bound of near optimality than Hardt et
al. (2016) as we directly operate on ROC curve instead of
linear intersections in Hardt et al. (2016). Also, GSTAR cor-
rects the predicted label by the confidence of the prediction
from a given model instead of randomly flipping the output
to achieve equalized odds, which is more reliable in post-
processing. FACT (Kim, Chen, and Talwalkar 2020) utilizes
a single point (static) from the classifier to be post-processed
as a reference which does not fully utilize the classifier for
the post-processing. In contrast, by approximating the dis-
tribution of the continuous predicted logits, GSTAR model
enables a larger feasible region than Kim et al. (2020) with a
better fairness-accuracy trade-off. We validate the improve-
ment in this trade-off via both theoretical and empirical re-
sults. It is notable that these related methods can be consid-
ered as a special case of GSTAR.

GSTAR for Fair Classification
Motivation
Consider a binary classification problem with a binary sensi-
tive feature, such that the sensitive featureA ∈ {0, 1} and la-
bel Y ∈ {0, 1}. In general, for a given dataX , a binary clas-
sification model outputs an unnormalized logit h(X) ∈ R
with the class label probability R(X) = σ(h(X)) ∈ [0, 1],
where σ is an activation function (e.g., sigmoid function). It
is not necessary to calculateR in a classification model, e.g.,
support vector machines directly use the positiveness/nega-
tiveness of logit h(X) to determine classification outcome.

For traditional models, we use a cut-off threshold θh = 0
for h(X) (i.e., θR = σ(0) = 0.5 for R(X)) in clas-
sification, such that the predicted label is determined by
Ŷ = I{h(X) ≥ θh}. In the following context, unless oth-
erwise mentioned, we use θ to refer to the threshold θh on
logit h since it is applicable to a wider range of classification
models, and the corresponding threshold on label probabil-
ity θR can be easily inferred from the threshold on logit h.
Traditional models use the same cut-off threshold θ for dif-
ferent demographic groups. However, since the distribution
of logits h in different demographic groups can be different,
using the same threshold θ brings biased classification.

In Fig. 1, we use a real-world example of image classi-
fication on CelebA dataset with ResNet50 (He et al. 2016)
to show that the default setting of classification thresholds
affects both accuracy and fairness in classification. The goal
is to predict whether the image of a person is attractive or
not, and consider sensitive attribute as gender. This can be
generalized to different sensitive attributes in image classifi-
cation task, e.g., age or race (Lokhande et al. 2020). We can
observe an obvious difference in the distribution of logit h
between two gender groups. If we use a unified classifica-
tion threshold θ1 = θ0 = 0, it naturally brings a difference
in the true positive rate and true negative rate between two
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Figure 1: Histograms of logit h distribution from logistic re-
gression on CelebA data, where θ is the threshold to assign
predicted label based on h. The top and bottom plot is for
positive samples (Y = 1, attractive), and negative samples
(Y = 0, unattractive). Bars represent the distributions of
logit h of sensitive groups, and curves are estimated proba-
bility density functions of logit h of sensitive groups as in the
legend. θ = 0 (black dashed line) is the default classification
thresholds. The default thresholds result in biased prediction
towards the unprivileged group (A = 0) due to the different
logit h distributions in different sensitive groups. (θ∗0 , θ

∗
1)

(colored dashed line) are group-aware thresholds for each
sensitive group achieved by GSTAR.

gender groups, thus it behaves as a biased classification. In-
stead, we observe that the optimal group-specific threshold
obtained from GSTAR (θ∗1 > θ1, and θ∗0 < θ0) can adapt to
such discrepancy in distribution between two demographic
groups to improve both fairness and accuracy.

Group-Aware Classification Thresholds
Given an existing classification model and a sensitive at-
tribute a, we can denote true positive rate (TPa), false posi-
tive rate (FPa), true negative rate (TNa), and false negative
rate (FNa) in the confusion matrix. Most fairness notions
can be represented with entries in the confusion matrix. For
instance, Equal Opportunity (EOp) (Hardt, Price, and Sre-
bro 2016) requires TP0 = TP1, and Demographic Parity
(DP) (Barocas and Selbst 2016) requires

TP1n11 + FP1n01
N1

=
TP0n10 + FP0n00

N0
,

where nya denotes the number of samples in the subset
{Y = y,A = a}, Na =

∑
y nya denotes the number of

samples in {Y = y}, andN =
∑
y,a nya is the total number

of samples.
Consider the group-aware classification threshold θ =

(θ1, θ0)T, where θa is the classification threshold for sen-
sitive group A = a. We can formulate the entries in the

confusion matrix w.r.t. θ as below:

TPa(θa) ≈ 1−
∫ θa

−∞
f1a(x)dx, FNa(θa) ≈ 1− TPa(θa)

FPa(θa) ≈ 1−
∫ θa

−∞
f0a(x)dx, TNa(θa) ≈ 1− FPa(θa)

(1)

where fya(x) is an estimated probability density function of
the distribution of output logit h in the subset {Y = y,A =
a}.

Then, we formulate the fairness-constrained classification
problem with the objective of minimizing classification er-
ror into a least-squared optimization problem. We denote
our objective function as L(θ) which consists of the per-
formance loss Lper(θ) and fairness loss Lfair(θ) that are
represented with the entries of the confusion matrix. In other
words, our goal is to minimize the objective function L(θ)
as below:

L(θ) = Lper(θ) + λLfair(θ), (2)
where λ is a hyperparameter that determines how much fair-
ness is enforced in the optimization. The performance error
Lper(θ) can be written as

Lper(θ) =
(n01
N

FP1(θ1) +
n11
N

FN1(θ1)

+
n00
N

FP0(θ0) +
n10
N

FN0(θ0)
)2
.

As for Lfair(θ), it can be formulated to any fairness met-
rics that are expressible with confusion matrix. For instance,
when we impose EOp (TP1 = TP0) and predictive equal-
ity (PE) (FP1 = FP0) (Chouldechova 2017), we can get the
corresponding Lfair(θ) by summing over the least squared
form of each constraint. Also, satisfying EOp and PP is
equivalent to satisfying Equalized Odds (EOd) (Hardt, Price,
and Srebro 2016), This can be formulated in our Lfair as

LEOdfair (θ) = LEOpfair (θ) + LPPfair(θ)

=
(
TP1(θ1)− TP0(θ0)

)2
+
(
FP1(θ1)− FP0(θ0)

)2
.

(3)

Note that a lower Lfair value indicates a fairer threshold.
When LEODfair (θ) = 0, we can interpret as the θ satisfies the
perfect EOd fairness. Similar to (3), we can enforce multi-
ple fairness constraints by summing over the least square of
each metric with different weight constant λ to each fairness
constraints if needed.

Also, it is notable that compared to FACT (Kim, Chen,
and Talwalkar 2020) that enforces fairness through confu-
sion tensor, our formulation of fairness in Lfair(θ) repre-
sents a direct notion of fairness metrics and improves the
measures that allows us to achieve better performance and
Pareto frontiers that is shown in Section and Fig. 2. For ex-
ample, FACT integrates multiple constraints as a weighted
sum with the weights being the number of samples in each
class. In this expression, the imbalance between the two fair-
ness criteria will grow as the degree of imbalance in the data
increases. In contrast, our formulation expresses the con-
straints as the exact notion of each metric that is not bi-
ased by the statistics of the datset and we observe improved
Pareto frontier as in Fig. 2.
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Optimization of GSTAR
Our GSTAR objective in (2) lies in the family of Non-
linear Least Squares Problem (NLSP) (Gratton, Lawless,
and Nichols 2007). To optimize objective (2) and find the
threshold θ, we adopt the Gaussian-Netwon optimization
method (Gratton, Lawless, and Nichols 2007). Here we take
EOp constraint as an example to show the alternating opti-
mization steps, then Lfair(θ) can be written as

LEOpfair (θ) = (TP1(θ1)− TP0(θ0))
2
. (4)

To solve NLSP with the Gauss-Newton method, we first
convert the nonlinear optimization problem to a linear least
square problem using Taylor expansion. That is, the param-
eter values are calculated in an iterative fashion with

θa ≈ θk+1
a = θka + ∆a, (5)

in the k-th iteration number, with the vector of increments
∆ = {∆a} = {θk+1

a − θka} (also known as the shift vector).
We rewrite our objective function as a real vector func-

tion r(θ) =
(
r1(θ), r2(θ)

)
= (Lper, λLfair). We linearize

each component in the loss function to a first-order Taylor
polynomial expansion as

ri(θ) ≈ ri(θk) +
∑
a

∂ri(θ
k)

∂θa
∆a (6)

with θk = (θk0 , θ
k
1 ). Plugging this linearized equation into

the objective function, we get the usual least square problem.
Then, the optimal solution can be obtained as

∆ = −(JTJ)−1JT f(θk), (7)

where J = {Jia} with Jia = {∂ri(θ)∂θa
} is the Jacobian. Each

entry of the jacobian can be expressed with linear combina-
tion of pdf and cdf of fya for i, a, y ∈ {0, 1}. we can finalize
the alternating optimization as

θτ0 = θτ−10 + ∆τ
0 , θτ1 = θτ−11 + ∆τ

1 . (8)
It is notable that in each iteration we derive the optimal up-
date step ∆a, which eliminates the burden of tuning hyper-
parameter (such as learning rate) in iterative algorithm. See
the supplementary for detailed optimization process.

The alternating optimization of GSTAR model is of low
computational cost. We take at most one pass of the data
for learning the estimated probability density functions fya
in (1) (we do not even need to traverse the data if the param-
eters (such mean and variance in Gaussian distribution) for
the estimated probability density functions fya can be pro-
vided). The optimization of θ with alternating optimization
is efficient since we only need fya. Therefore, we need a
constant time for each update. Overall, the time complexity
of GSTAR is O(n+ T ), where n is the number of samples,
and T is the number of iterations in alternating optimization.

Besides, if a unified threshold is necessary (Corbett-
Davies et al. 2017), i.e., θ1 = θ0, the optimization algorithm
also applies and we only have one scalar variable in (2).
When we have a unified threshold, we do not require sen-
sitive information in the testing phase that we can conform
more strict privacy regulations than group-aware threshold-
ing. However, we have to sacrifice both fairness and accu-
racy as the thresholding is less flexible.

Theoretical Analysis
Upper Bounds on FPR/FNR Gap between Groups We
first state the assumptions we need to make for Theorem 1
and 2.
Assumption 1 For any given classier h and its induced
PDF fya and CDF Fya, we assume the following holds:
• The PDF fya(x) is uniformly bounded, i.e., there is an
f̂ya(x) = maxx fya(x).
• The inverse CDF F−1ya (x) is Lipschitz continuous with

Lipschitz constant Mya.
• The difference in the CDF between two groups is uni-

formly bounded, i.e.,

|Fy1(x)− Fy0(x)| ≤ uy, ∀x.
Theorem 1 For any given classifier that satisfies Assump-
tion 1 and any given pair of thresholds (θ0, θ1) that satisfies
the perfect EOp condition, the gap between false-positive
rates of the two group is upper bounded by

|ε1| =
∣∣FP0(θ0)− FP1(θ1)

∣∣ ≤ u0 + C1u1, (9)

where C1 = f̂01M10.
Theorem 2 For any given classifier that satisfies Assump-
tion 1 and any given pair of thresholds (θ0, θ1) that satis-
fies the perfect PE condition, the gap between false-negative
rates of the two group is upper bounded by

|ε2| =
∣∣FN0(θ0)− FN1(θ1)

∣∣ ≤ u1 + C0u0, (10)

where C0 = f̂11M00.
Theorem 1 and 2 characterize the upper bound of false

positive/negative rate gap between two groups when the
false negative/positive rate gap is 0. At the same time, it cap-
tures the upper bound of additional accuracy loss due to the
two different thresholds for different groups under a perfect
fairness (EOp or PE) condition.

Trade-off between Accuracy and Fairness Now we
prove a theorem to characterize the trade-off between ac-
curacy and fairness. Let θ∗a = argminθa Lper(θa), and its
perturbed value θ̃a as

|FN1(θ1
∗)− FN1(θ̃1)| ≤ γ/2,

|FN0(θ0
∗)− FN0(θ̃0)| ≤ γ/2,

(11)

for some perturbation coefficient γ. Then for optimal per-
turbed version θ̃∗a = argminθ̃a Lper(θ̃a), we state the theo-
rem below:
Theorem 3 Under Assumption 1 and condition (11),

Lper(θ∗1)− Lper(θ̃∗1) ≤ Cγ,

where

C = 2L∗
(
r1
2

+r0
f̂01M11

2
+
n00
N

(
f̂00M10+

ε̂′1M11

2

)
+
n10
N

)
and ε̂′1 = max ε̃′1 is the maximum of the derivative of ε̃1.

Theorem 3 quantifies the decrease in accuracy loss (i.e.,
the improvement in accuracy) when we allow a gap of true
positive rates between two groups, i.e., relaxation from the
perfect fairness cases in Theorem 1 and 2.
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Convergence Analysis of GSTAR Our objective function
and the optimization solution algorithm belong to the family
of Gauss-Newton algorithm. Given the assumptions A1 and
A2 below,

• A1. There exists θ∗ such that JT (θ∗)r(θ∗) = 0,
• A2. The Jacobian at θ∗ has full rank,

we state the following theorem of convergence:

Theorem 4 Assume that the estimated density function f(·)
satisfy assumptions A1 and A2. Further, f(·) satisfies that

||Q(θk)(JTJ)−1(θk)||2 ≤ η

for some constant η ∈ [0, 1) for each iteration k, whereQ(θ)
denotes the second order terms

∑
i ri(θ)∇2ri(θ). Then as

long as the initial solution is sufficiently close to the true
optimal with ||θ0−θ∗||2 ≤ ε, the sequence of Gauss-Newton
iterates {θk} converges to θ∗.

Near Optimality of GSTAR Following the proof of The-
orem 5.6 of Hardt et al. (2016), we provide the following
near optimality theorem for our GSTAR model.

Theorem 5 With a bounded loss function ` and a given es-
timated density function f(x), let R̂h ∈ [0, 1] be the induced
random variable from the density f(x) of logit h(x). Then
the equalized odds predictor Ŷh derived from (R̂h, A) using
the method in our paper can achieve near optimality in the
following sense:

E[`(Ŷh, Y )] ≤ E[`(Y ∗, Y )] + 2dK(R̂h, R
∗).

Here, Y is the true label, Y ∗ is the optimal equalized odds
predictor derived from the Bayes optimal regressor R∗ as
given in Hardt et al. (Hardt, Price, and Srebro 2016), and
dK(R̂h, R

∗) is the conditional Kolmogorov distance.

Theorem 5 provides that GSTAR has tighter bound of near
optimality than Hardt et al. (2016) under the same condition.
See the supplementary for the proof of Theorem 1 - 5.

Experiments
In this section, we validate GSTAR model on four well-
known fairness datasets and compare with other state-of-the-
art methods.

Experimental Setup
We compare with multiple fairness approaches in the ex-
periments. For clear demonstration of results, we use differ-
ent shapes of marker for each comparing methods in Fig. 2
and Fig. 4. The comparing methods include: FGP (Tan et al.
2020), FACT (Kim, Chen, and Talwalkar 2020), DIR (Feld-
man et al. 2015), AdvDeb (Zhang, Lemoine, and Mitchell
2018), CEOPost (Pleiss et al. 2017), Eq.Odds (Hardt, Price,
and Srebro 2016), LAFTR (Madras et al. 2018), and Base-
line: For CelebA dataset, we use ResNet50 (He et al. 2016)
as a reference, and logistic regression for all other datasets.

We choose broadly used fairness metrics in evaluation in-
cluding: equal opportunity difference (EOp) and equalized
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Figure 2: Pareto frontiers of equalized odds to show the up-
per bound of best achievable accuracy under different fair-
ness constraints. Upper right region under the boundary is
desired. The variations of GSTAR generally achieve the best
trade-offs as they are the closest to the Pareto frontier.

odds difference (EOd) (Hardt, Price, and Srebro 2016); 1-
disparate impact (1-DIMP) (Barocas and Selbst 2016); bal-
anced accuracy difference (BD). We use balanced accuracy
(BA) and accuracy (ACC) as performance metrics.

We evaluate the methods on four fairness datasets:
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Figure 3: Evaluation on fairness and performance metrics. The bar plots indicate fairness measures of each model. The line
plots indicate the performance measure of each model. Lower fairness values (left y-axis) and higher performance values (right
y-axis) show better fairness and performance respectively. We consider three variations of GSTAR models (DP, EOd, DP+EOd).
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Figure 4: Illustration of post-processing (magenta colored points) on existing fairness models (blue colored points). Given the
outputs of each model, GSTAR efficiently improves most existing fairness models with optimized group-aware thresholds.

CelebA dataset (Liu et al. 2015), Adult dataset (Kohavi
1996), COMPAS1 dataset, and German dataset (Dua and
Graff 2019). More details of the comparing methods, evalua-
tion metrics, and datasets are provided in the Supplementary.

Performance and Fairness-Accuracy Trade-Offs
In this subsection, we look into the performance evaluation
of GSTAR comparing with other state-of-the-art methods.
We consider Pareto frontier to visualize the trade-offs be-
tween fairness and accuracy to demonstrate the measure of

1https://github.com/propublica/compas-analysis

performance.
In Fig. 2, we plot Pareto frontier, which is the upper bound

for the accuracy-fairness trade-offs, desired output locates
at the upper right region under the boundary which cor-
responds to higher values in accuracy and lower values in
fairness discrepancy. With the same fairness constraints are
given, we achieve a better frontier than the FACT (Kim,
Chen, and Talwalkar 2020) as we equally weigh on demo-
graphic statistics and have a better feasible region. To ob-
tain our results (star points), we first estimate the logit dis-
tribution from the output of the baseline model, and then we
get optimal adaptive thresholds with corresponding fairness
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metric by updating w.r.t. the objective function in (2). Here
we have three combinations of fairness imposed to GSTAR:
demographic parity (DP), equalized odds (EOd), and with
both constraints (DP+EOd). By post-processing on a simple
baseline, we achieved significantly better fairness with small
or no sacrifice in accuracy. In all datasets, GSATR got com-
petitive or better results than other state-of-the-art methods
on both fairness and accuracy.

For example, we got θ∗EOd = (1.570,−0.525)T for the
CelebA dataset. This shows that we have a higher thresh-
old for the privileged group and a lower threshold for the
unprivileged group. This optimal thresholding from GSTAR
allows more samples from the privileged group to be cor-
rectly predicted as unattractive that would compensate for
the discrimination of the original model. In other words, this
improves false positive rate difference (also known as pre-
dictive equality (Chouldechova 2017)) with a huge amount
from 0.235 to 0.014. Also, true positive rate difference (also
known as equality of opportunity (Hardt, Price, and Srebro
2016)) got reduced from 0.282 to 0.018. It is notable that
GSTAR only sacrificed 2.2% of accuracy to bring the big
improvement in fairness.

Since the objective function of our model is independent
to data dimensionality, our model is much more efficient
especially for high dimensional data. We mostly outper-
form the computational cost comparing to the other meth-
ods. The comparison of computational time and auxiliary
experiments can be found in the Supplementary material.

Flexibility and Multiple Fairness Constraints
Since each fairness metric has different interests, it has been
theoretically proven that they cannot be perfectly satisfied all
together (Pleiss et al. 2017; Chouldechova 2017; Kleinberg,
Mullainathan, and Raghavan 2016). Because of this inher-
ent trade-offs between fairness metrics, most of the recent
works focus on a single metric at a time to achieve fairness.
However with GSTAR, we have the flexibility to optimize
on multiple fairness constraints that can be represented in
the confusion matrix format. Moreover, given the estimated
distribution fya of a arbitrary classification model, we can
adjust the optimal θ based on the needs by accommodating
different fairness criteria.

Fig. 3 demonstrates the result of the methods with fair-
ness metrics and accuracy trade-off evaluations. Overall, the
variations of GSTAR achieve the best fairness on each tar-
get fairness while preserving the performance. For exam-
ple in Fig. 3(a), GSTAR with EOd constraint has good per-
formance in most fairness metrics with comparable accu-
racy (80.3%). Comparing with GSTAR (EOd), when we in-
troduce EOd and DP together (DP+EOd), we achieve sig-
nificantly better w.r.t. DP fairness with sacrificing a small
amount of accuracy and EOd.

In general, by sacrificing individual fairness performance,
we could introduce multiple constraints. Also, we observe
that the more fairness constraints are introduced, the more
accuracy is sacrificed. We empirically found that in some
cases (e.g., Fig. 3(c)), introducing multiple fairness is com-
plementary to each other that improves both conditions.

Post-Processing on an Existing Fair Model

For a binary classifier that has a single fixed classification
threshold (0 for out logit, and 0.5 for label probability),
we can provide better trade-off between fairness and accu-
racy with GSTAR. Given the logit/probability in the model-
agnostic manner, we can improve the fairness as illustrated
in Fig. 4. In most cases, we observe improvement in fairness
after GSTAR post-processing. It is also interesting to note
that by optimizing the different thresholds for each protected
group, we even obtain better performance on both fairness
and accuracy, which indicates that the threshold optimiza-
tion can not only improve fairness but also accuracy.

However, when the distribution of the logits/probability
is highly extreme (such as the results of using GSTAR to
post-process CEOPost), it is difficult to estimate the distribu-
tion and thus causes erroneous optimization in GSTAR. We
empirically found that when the dataset is extremely imbal-
anced such that we do not have enough samples to estimate
the logit/probability distribution, or the given classification
model is too certain to the prediction that samples are con-
centrated to certain output, this problem arises.

Conclusion and Discussion
In this paper, we propose a group-aware threshold adaptation
method (GSTAR) to post-process in model-agnostic manner
and optimize over multiple fairness constraints.We directly
optimize the classification threshold for each demographic
group w.r.t. the classification error and multiple fairness con-
straints in a unified objective function, such that we can
practically achieve an optimal trade-off between accuracy
and fairness in fair classification. Our method is applicable
to diverse notions of group fairness as the majority of fair-
ness notions can be expressed as a linear or quadratic equa-
tion through confusion matrix. We empirically show that
GSTAR is flexible with fairness regularization, efficient with
low computational cost. We also notice that the adaptive
thresholds benefit accuracy in some cases. GSTAR agrees to
protect privacy such as article 17 of EU’s GDPR (Regulation
2016). We only require the estimated distribution of the out-
put from a given model i.e., our post-processing method is
oblivious to features. Thus training data is no longer needed
and allowed to be discarded after training the model that to
be post-processed. Thus, GSTAR can be applied to relaxed
scenarios where practitioners cannot access individual-level
sensitive information but have estimated distributions of log-
its for each sensitive group.

Further, we empirically find that GSTAR is not applicable
to post-process some classification models in the following
situations: 1) the model does not provide logit/probability
as the outcome; 2) The model provides an extreme distribu-
tion of the output logit/probability. For example, when the
model is too certain about its prediction, it will be difficult to
perform probability density estimation. In our future work,
we will study possible strategies to solve the above limi-
tations, and extend GSTAR to multi-class, multi-sensitive
group problems and improve the fairness-accuracy trade-off
in a more general scheme.

6994



Acknowledgements
This work was partially supported by NSF IIS #1955890,
Purdue’s Elmore ECE Emerging Frontiers Center.

References
Barocas, S.; and Selbst, A. D. 2016. Big data’s disparate
impact. Calif. L. Rev., 104: 671.
Chouldechova, A. 2017. Fair prediction with disparate im-
pact: A study of bias in recidivism prediction instruments.
Big data, 5(2): 153–163.
Corbett-Davies, S.; Pierson, E.; Feller, A.; Goel, S.; and
Huq, A. 2017. Algorithmic decision making and the cost
of fairness. In KDD, 797–806.
Dressel, J.; and Farid, H. 2018. The accuracy, fairness, and
limits of predicting recidivism. Sci. Adv, 4(eaao5580): 1–5.
Dua, D.; and Graff, C. 2019. UCI Machine Learning Repos-
itory. University of California, Irvine, School of Information
and Computer Sciences.
Feldman, M.; Friedler, S. A.; Moeller, J.; Scheidegger, C.;
and Venkatasubramanian, S. 2015. Certifying and removing
disparate impact. In KDD, 259–268.
Gratton, S.; Lawless, A. S.; and Nichols, N. K. 2007.
Approximate Gauss–Newton methods for nonlinear least
squares problems. SIAM, 18(1): 106–132.
Hardt, M.; Price, E.; and Srebro, N. 2016. Equality of op-
portunity in supervised learning. In NIPS, 3315–3323.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In CVPR, 770–778.
Jang, T.; Zheng, F.; and Wang, X. 2021. Constructing a
fair classifier with generated fair data. In AAAI, volume 35,
7908–7916.
Kamiran, F.; Karim, A.; and Zhang, X. 2012. Decision the-
ory for discrimination-aware classification. In ICDM, 924–
929. IEEE.
Kim, J. S.; Chen, J.; and Talwalkar, A. 2020. Model-
Agnostic Characterization of Fairness Trade-offs. arXiv
preprint arXiv:2004.03424.
Kleinberg, J.; Mullainathan, S.; and Raghavan, M. 2016.
Inherent trade-offs in the fair determination of risk scores.
arXiv preprint arXiv:1609.05807.
Kohavi, R. 1996. Scaling up the accuracy of naive-bayes
classifiers: A decision-tree hybrid. In KDD, volume 96,
202–207.
Liu, L. T.; Simchowitz, M.; and Hardt, M. 2019. The im-
plicit fairness criterion of unconstrained learning. In ICML,
4051–4060.
Liu, Z.; Luo, P.; Wang, X.; and Tang, X. 2015. Deep learning
face attributes in the wild. In ICCV, 3730–3738.
Lokhande, V. S.; Akash, A. K.; Ravi, S. N.; and Singh, V.
2020. FairALM: Augmented Lagrangian Method for Train-
ing Fair Models with Little Regret. In ECCV, 365–381.
Springer.
Madras, D.; Creager, E.; Pitassi, T.; and Zemel, R. 2018.
Learning adversarially fair and transferable representations.
arXiv preprint arXiv:1802.06309.

Menon, A. K.; and Williamson, R. C. 2018. The cost of
fairness in binary classification. In ACM FAccT, 107–118.
Pedreshi, D.; Ruggieri, S.; and Turini, F. 2008.
Discrimination-aware data mining. In KDD, 560–568.
Pleiss, G.; Raghavan, M.; Wu, F.; Kleinberg, J.; and Wein-
berger, K. Q. 2017. On fairness and calibration. In NIPS,
5680–5689.
Regulation, G. D. P. 2016. Regulation EU 2016/679 of the
European Parliament and of the Council of 27 April 2016.
OJEU, 43–44.
Tan, Z.; Yeom, S.; Fredrikson, M.; and Talwalkar, A. 2020.
Learning fair representations for kernel models. In AISTATS,
155–166.
Zhang, B. H.; Lemoine, B.; and Mitchell, M. 2018. Miti-
gating unwanted biases with adversarial learning. In AIES,
335–340.
Zhao, H.; and Gordon, G. 2019. Inherent tradeoffs in learn-
ing fair representations. In NeurIPS, 15675–15685.

6995


