
Globally Optimal Hierarchical Reinforcement Learning for Linearly-Solvable
Markov Decision Processes

Guillermo Infante, Anders Jonsson, Vicenç Gómez
Dept. Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona (Spain)

{guillermo.infante,anders.jonsson,vicen.gomez}@upf.edu

Abstract

We present a novel approach to hierarchical reinforcement
learning for linearly-solvable Markov decision processes.
Our approach assumes that the state space is partitioned, and
defines subtasks for moving between the partitions. We rep-
resent value functions on several levels of abstraction, and
use the compositionality of subtasks to estimate the optimal
values of the states in each partition. The policy is implicitly
defined on these optimal value estimates, rather than being
decomposed among the subtasks. As a consequence, our ap-
proach can learn the globally optimal policy, and does not suf-
fer from non-stationarities induced by high-level decisions. If
several partitions have equivalent dynamics, the subtasks of
those partitions can be shared. We show that our approach is
significantly more sample efficient than that of a flat learner
and similar hierarchical approaches when the set of boundary
states is smaller than the entire state space.

Introduction
A major challenge in reinforcement learning is to design
agents that are able to learn efficiently and to adapt their
existing knowledge to solve new tasks.

One way to reduce the complexity of learning is hierarchi-
cal reinforcement learning (Sutton, Precup, and Singh 1999;
Dietterich 2000; Barto and Mahadevan 2003). By decom-
posing a task into subtasks, each of which can be solved
independently, a solution to the original task can then be
composed of the solutions to the subtasks. If each subtask is
easier to solve than the original task, this may significantly
reduce the learning effort of an agent that is learning to per-
form the task.

We consider Linearly-solvable Markov decision pro-
cesses (LMDPs), a class of control problems whose Bellman
optimality equations are linear in the (exponentiated) value
function (Kappen 2005; Todorov 2006). Because of this, so-
lution methods for LMDPs are more efficient than those for
general Markov decision processes (MDPs). Though not as
expressive as MDPs, LMDPs can nevertheless model a wide
range of decision problems, and there exist methods for ap-
proximating MDPs with LMDPs (Todorov 2006).

LMDPs frequently appear under the names of path-
integral or Kullback-Leibler control in the context of opti-

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

mal control as probabilistic inference (Kappen, Gómez, and
Opper 2012; Dvijotham and Todorov 2013; Kappen 2013).
LMDPs are also strongly related to maximum-entropy re-
inforcement learning, which is known to have favorable
properties and is quickly becoming the state-of-the-art for
reinforcement learning (Ziebart 2010; Mnih et al. 2016;
Haarnoja et al. 2018b; Levine 2018; Vieillard, Pietquin, and
Geist 2020; Bas-Serrano et al. 2021).

One of the computational advantages of LMDPs is com-
positionality, which allows for zero-shot learning of new
skills by linearly combining previously learned base skills
which only differ in their cost or reward at boundary
states (Todorov 2009; da Silva, Durand, and Popović 2009).

In this paper we propose a novel approach to hierarchical
reinforcement learning in LMDPs that takes advantage of
the compositionality of LMDPs. Our approach assumes that
the state space is partitioned into subsets, and the subtasks
consist in moving between these partitions. The subtasks are
parameterized on the current value estimates of boundary
states. Instead of solving the subtasks each time the value
estimates change, we take advantage of compositionality to
express the solution to an arbitrary subtask as a linear com-
bination of a set of base LMDPs. The result is a form of
value function decomposition which allows us to express an
estimate of the optimal value of an arbitrary state as a com-
bination of multiple value functions with smaller domains.

Concretely, our work makes the following contributions:

• We define a novel scheme based on compositionality for
solving subtasks, defining local rewards that constitute a
convenient basis for composite rewards.

• The subtask decomposition is at the level of the value
function, not of the actual policy. Hence our approach
does not suffer from non-stationarity in the online set-
ting, unlike approaches that select among subtasks whose
associated policies are being learned.

• Even though the subtasks have local reward functions,
under mild assumptions our approach converges to the
globally optimal value function.

• We analyze experimentally our proposed learning algo-
rithm and show in two classical domains that it is more
sample efficient compared to a flat learner and similar hi-
erarchical approaches when the set of boundary states is
smaller than the entire state space.

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

6970

Related Work
Several authors have recently exploited concurrent com-
positionality of tasks in the context of transfer learn-
ing. Van Niekerk et al. (2019) use the linear composition-
ality of LMDPs to solve new tasks that can be expressed as
combinations of a series of existing base tasks. They show
that, while disjunctions of base tasks (OR-compositionality)
can be performed exactly, the AND composition (when the
goals of base tasks partially overlap) can only be performed
approximately.

Haarnoja et al. (2018a) exploit a similar idea to transfer
knowledge from existing tasks to new tasks by averaging
their reward functions. Hunt et al. (2019) further extended
this by introducing the so-called compositional optimism,
and apply divergence correction in case compositionality
does not transfer well.

More recently, Nangue Tasse, James, and Rosman (2020)
derive a formal characterization of union and intersection
of tasks in terms of Boolean algebra. They show that learn-
ing (extended) value functions that account for all achievable
goals, exact zero-shot transfer learning using both AND- and
OR- compositionality is possible, achieving an exponential
increase in skills compared to the previous works.

All the aforementioned results are derived for general
MDPs with deterministic dynamics and, possibly, entropy
regularization. This setting is no more general than the class
of LMDPs or path-integral control.

In this work, we aim to integrate both concurrent task
composition, as done in the above approaches, together with
hierarchical composition, where skills are chained in a tem-
poral sequence, under the framework of LMDPs.

Several authors have proposed hierarchical versions of
LMDPs. Jonsson and Gómez (2016) extend MAXQ (Diet-
terich 2000) to LMDPs by defining subtasks that represent
high-level decisions. The top-level policy chooses multi-step
transitions, which introduces non-stationarity in the high-
level decision process if subtasks are learned concurrently,
and also prevents global optimality. The authors discuss the
idea of compositionality, but do not explore the concept fur-
ther. Saxe, Earle, and Rosman (2017) propose a hierarchical
multi-task architecture that does exploit compositionality.
Their Multitask LMDP maintains a parallel distributed rep-
resentation of tasks, reducing the complexity through stack-
ing. However, the approach requires to augment the state
space with many additional boundary (subtask) states. Fur-
ther, the stacking introduces additional costs (cf. their Equa-
tion 10), and does not provide global optimality.

The Options Keyboard (Barreto et al. 2019) combines a
successor feature representation with generalized policy im-
provement to obtain subtask policies from a set of base sub-
tasks without learning, similar to our use of subtask compo-
sitionality. However, unlike in our approach, the composi-
tion weights have to be set manually, and although the com-
posed policy is guaranteed to be better than the individual
base policies, it is not guaranteed to be optimal.

Our work is similar to that of Wen et al. (2020) in that
we define a hierarchical decomposition based on a partition
of the state space, and exploit the equivalence of subtasks to
reduce the learning effort. Unlike previous work, however,

our approach is not restricted to single initial states, does not
suffer from non-stationarity in the online setting, proposes a
more general definition of equivalence that captures more
structure, and guarantees convergence to the optimal value
function for stochastic dynamics.

The concept of equivalent subtasks is strongly related
to factored (L)MDPs, which capture conditional indepen-
dence among a set of state variables (Boutilier, Dearden, and
Goldszmidt 1995; Koller and Parr 2000). Equivalence arises
whenever a subset of state variables are conditionally inde-
pendent of another subset. Several authors have shown how
to automatically discover the structure of factored MDPs
from experience (Strehl, Diuk, and Littman 2007; Kolobov,
Mausam, and Weld 2012), which in turn could be used to
define equivalence classes of subtasks.

Background
Given a finite set X , let ∆(X) = {p ∈ RX :

∑
x p(x) = 1,

p(x) ≥ 0 (∀x)} denote the probability simplex on X . Given
a probability distribution p ∈ ∆(X), let B(p) = {x ∈ X :
p(x) > 0} ⊆ X denote the support of p.

Linearly-Solvable Markov Decision Processes
A linearly-solvable Markov decision process, or
LMDP (Kappen 2005; Todorov 2006), can be defined as a
tuple L = ⟨S, T ,P,R,J ⟩, where S is a set of non-terminal
states, T is a set of terminal states, P : S → ∆(S+) is an
uncontrolled transition function, R : S → R is a reward
function for non-terminal states, and J : T → R is a
reward function for terminal states. We use S+ = S ∪ T to
denote the full set of states, and S+ = |S+| (resp. S = |S|)
to denote the number of (non-terminal) states. We also use
B = maxs∈S |B(P(·|s))| to denote an upper bound on the
support of P .

The learning agent follows a policy π : S → ∆(S+)
that, for each non-terminal state s ∈ S , chooses a proba-
bility distribution over next states in the support of P(·|s),
i.e. π(·|s) ∈ ∆(B(P(·|s)). In each round t, the learning
agent observes a state st ∈ S+. If st is non-terminal, the
agent transitions to a new state st+1 ∼ π(·|st) and receives
an immediate reward

R(st, π) = R(st)− λ ·KL(π(·|st)∥P(·|st)),
where R(st) is the reward associated with state st,
KL(π(·|st)∥P(·|st)) is the Kullback-Leibler divergence be-
tween π(·|st) and P(·|st), and λ is a temperature parameter.
Hence the agent can set the probability distribution π(·|st)
freely, but gets penalized for deviating from the uncontrolled
distribution P(·|st). On the other hand, if st is terminal, the
agent receives reward J (st) and then the current episode
ends. The aim of the agent is to compute a policy π that
maximizes the expected future reward (i.e. value), defined
in each non-terminal state s ∈ S as

vπ(s) = E

[
T−1∑
t=1

R(St, π) + J (ST)

∣∣∣∣∣ S1 = s

]
.

Here, T is a random variable representing the time at which
the current episode ends, and St is a random variable rep-
resenting the state at time t. The expectation is over the

6971

stochastic choice of next state St+1 ∼ π(·|St) at each
time t, and the time T it takes for the episode to end. We
assume that the reward of all non-terminal states is nega-
tive, i.e. R(s) < 0 for each s ∈ S . As a consequence,
R(s, π) < 0 holds for any policy π, and the value vπ(s)
has a well-defined upper bound.

We are interested in computing the optimal value func-
tion v∗ : S → R, i.e. the maximum expected future reward
among all policies. For simplicity, in what follows we omit
the asterisks and refer to the optimal value function simply
as the value function. We extend the value function to each
terminal state t ∈ T by defining v(t) ≡ J (t). The value
function v satisfies the Bellman equations
1

λ
v(s) =

1

λ
max
π

[
R(s, π) + Es′∼π(·|s)v(s

′)
]

=
1

λ
R(s) + max

π
Es′∼π(·|s)

[
1

λ
v(s′)− log

π(s′|s)
P(s′|s)

]
∀s.

We introduce the notation z(s) = ev(s)/λ for each s ∈ S+,
and often abuse notation by referring to z(s) as the (opti-
mal) value of s. The maximization in the Bellman equations
can be resolved analytically, yielding the following Bellman
equations that are linear in z:

z(s) = eR(s)/λ
∑
s′

P(s′|s)z(s′). (1)

We can express the Bellman equation in matrix form by
defining an S×S diagonal reward matrix R = diag(eR(·)/λ)
and an S × S+ stochastic transition matrix P whose entries
(s, s′) equal P(s′|s). We also define a vector z that stores
the values z(s) for each non-terminal state s ∈ S , and a vec-
tor z+ extended to all states in S+. We can now write the
Bellman equations in matrix form:

z = RPz+. (2)

Given z, the optimal policy π is given by the following ex-
pression for each pair of states (s, s′):

π(s′|s) = P(s′|s)z(s′)∑
s′′ P(s′′|s)z(s′′)

. (3)

The solution for z corresponds to the largest eigenvec-
tor of RP . If the dynamics P and R are known, we can
iterate (2) (Todorov 2006). Alternatively, we can incremen-
tally learn an estimate ẑ using stochastic updates based on
state transitions sampled from the uncontrolled dynamics
(st, rt, st+1)

ẑ(st)← (1− αt)ẑ(st) + αte
rt/λẑ(st+1),

where αt is a learning rate. The above update rule is called
Z-learning (Todorov 2006) and suffers from slow conver-
gence in very large state spaces and when the optimal pol-
icy differs substantially from the uncontrolled dynamics P .
A better choice is importance sampling, which uses sam-
ples from the estimated policy π̂ derived from the estimated
values ẑ and (3) and updates ẑ according to the following
update

ẑ(st)← (1− αt)ẑ(st) + αte
rt/λẑ(st+1)

P(st+1|st)
π̂(st+1|st)

. (4)

However, this requires local knowledge of P(·|st) to correct
for the different sampling distribution. Though this seems
like a strong assumption, in practice P usually has a sim-
ple form, e.g. a random walk. Further, as shown in Jonsson
and Gómez (2016), the corrected update rule in (4) can also
be used to perform off-policy updates in case transitions are
sampled using a policy different from π̂,

Compositionality
Todorov (2009) introduced the concept of compositionality
for LMDPs. Consider a set of LMDPs {L1, . . . ,Ln}, where
each LMDP Li = ⟨S, T ,P,R,Ji⟩ has the same compo-
nents S, T ,P,R and only differ in the reward Ji(t) of each
terminal state t ∈ T , as well as its exponentiated value
zi(t) = eJi(t)/λ.

Now consider a new LMDP L = ⟨S, T ,P,R,J ⟩ with
the same components as the n LMDPs above, except for J .
Assume that there exist weights w1, . . . , wn such that the
exponentiated value of each terminal state t ∈ T can be
written as

eJ (t)/λ = z(t) = w1z1(t) + . . .+ wnzn(t) =
n∑

k=1

wkzk(t).

Since the Bellman optimality equation of each non-terminal
state s ∈ S is linear in z, the optimal value of s satisfies the
same equation:

z(s) =

n∑
k=1

wkzk(s).

Consequently, if we previously compute the optimal val-
ues z1, . . . , zn of the n LMDPs and know the weights
w1, . . . , wn, we immediately obtain the optimal values of
the new LMDP L without learning.

Hierarchical LMDPs
In this section we describe our novel approach to hierarchi-
cal LMDPs. We first describe the particular form of hier-
archical decomposition that we consider, and then present
algorithms for solving a decomposed LMDP.

Hierarchical Decomposition
Our hierarchical decomposition is similar to that
of Wen et al. (2020). Formally, given an LMDP
L = ⟨S, T ,P,R,J ⟩, the set of non-terminal states S
is partitioned into L subsets {Si}Li=1. For each such subset
Si, we define an induced subtask Li = ⟨Si, Ti,Pi,Ri,Ji⟩,
i.e. an LMDP whose components are defined as follows:

• The set of non-terminal states is Si.
• The set of terminal states Ti = {τ ∈ S+ \ Si : ∃s ∈
Si s.t. τ ∈ B(P(·|s))} includes all states in S+ \ Si
(terminal or non-terminal) that are reachable in one step
from a state in Si.

• Pi : Si → ∆(S+i) and Ri : Si → R are the restrictions
of P and R to Si, where S+i = Si ∪ Ti denotes the full
set of subtask states.

6972

• The reward of a terminal state τ ∈ Ti equals Ji(τ) =
J (τ) if τ ∈ T , and Ji(τ) = v̂(τ) otherwise, where v̂(τ)
is the estimated value in L of the non-terminal state in
τ ∈ S \ Si.

Intuitively, if the reward Ji(τ) of each terminal state τ ∈
Ti equals its optimal value v(τ) for the original LMDP L,
then solving the subtask Li yields the optimal values of the
states in Si. In practice, however, we only have access to
an estimate v̂(τ) of the optimal value. In this case, the sub-
task Li is parameterized on the value estimate v̂ of terminal
states in Ti, and each time the value estimate changes, we
can solve Li to obtain a new value estimate v̂(s) for each
state s ∈ Si.

We define a set of exit states E = ∪Li=1Ti, i.e. the union
of the terminal states of each subtask in {L1, . . . ,LL}. For
convenience, we use Ei = E ∩ Si to denote the set of (non-
terminal) exit states in the subtask Li. We also introduce the
notation K = maxLi=1 |Si|, N = maxLi=1 |Ti| and E = |E|.

Just like Wen et al. (2020), we define a notion of equiva-
lent subtasks.

Definition 0.1 Two subtasks Li and Lj are equivalent if
there exists a bijection f : Si → Sj such that the tran-
sition probabilities and rewards of non-terminal states are
equivalent through f .

Unlike Wen et al. (2020), we do not require the sets of ter-
minal states Ti and Tj to be equivalent. Instead, for each
class of equivalent subtasks, our approach is to define a sin-
gle subtask whose set of terminal states is the union of the
sets of terminal states of subtasks in the class.

Formally, we define a set of equivalence classes C =
{C1, . . . , CC}, C ≤ L, i.e. a partition of the set of sub-
tasks {L1, . . . ,LL} such that all subtasks in a given par-
tition are equivalent. We represent a single subtask Lj =
⟨Sj , Tj ,Pj ,Rj ,Jj⟩ per equivalence class Cj ∈ C. The
components Sj ,Pj ,Rj are shared by all subtasks in the
equivalence class, while the set of terminal states is Tj =⋃

Li∈Cj
Ti, where the union is taken w.r.t. the bijection f re-

lating all equivalent subtasks. As before, the reward Jj of
terminal states is parameterized on a given value estimate v̂.
We assume that each non-terminal state s ∈ S can be easily
mapped to its subtask Li and equivalence class Cj .

Example 1: Figure 1a) shows an example 4-room LMDP
with a single terminal state marked F , separate from the
room but reachable in one step from the highlighted location.
The rooms are only connected via a single doorway; hence
if we partition the states by room, the subtask corresponding
to each room has two terminal states in other rooms, plus the
terminal state F for the top right room. The 9 exit states in
E are highlighted and correspond to states next to doorways,
plus F . Figure 1b) shows a single subtask that is equivalent
to all four room subtasks, since dynamics is shared inside
rooms and the set of terminal states is the union of those
of the subtasks. Hence the number of equivalent subtasks is
C = 1, the number of non-terminal and terminal states of
subtasks is K = 25 and N = 5, respectively, and the num-
ber of exit states is E = 9.

F

3T

1B
4T

2B

2L

4L

1R

3R

F

L R

B

T

a) b)

Figure 1: a) A 4-room LMDP, with a terminal state F
and 8 other exit states; b) a single subtask with 5 terminal
states F,L,R, T,B that is equivalent to all 4 room subtasks.
Rooms are numbered 1 through 4, left-to-right, then top-to-
bottom, and exit state 1B refers to the exit B of room 1, etc.

Subtask Compositionality
During learning, the value estimate v̂ changes frequently,
and it is inefficient to solve all subtasks after each change.
Instead, our approach is to use compositionality to obtain
solutions to the subtasks without learning. The idea is to in-
troduce several base LMDPs for each subtask Lj such that
any reward function Jj can be expressed as a combination
of the reward functions of the base LMDPs.

Given a subtask Lj = ⟨Sj , Tj ,Pj ,Rj ,Jj⟩ as defined
above, assume that the set Tj contains n states, i.e. Tj =
{τ1, . . . , τn}. We define n base LMDPs L1

j , . . . ,Ln
j , where

each base LMDP is given by Lk
j = ⟨Sj , Tj ,Pj ,Rj ,J k

j ⟩.
Hence the base LMDPs only differ in the reward of termi-
nal states. Concretely, we define the exponentiated reward as
zkj (τ) = 1 if τ = τk, and zkj (τ) = 0 otherwise. This corre-
sponds to an actual reward of J k

j (τ) = 0 for τ = τk, and
J k
j (τ) = −∞ otherwise.
Even though the exit reward J k

j (τ) equals negative infin-
ity for terminal states different from τk, this does not cause
computational issues in the exponentiated space, since the
value zkj (τ) = 0 is well-defined in (2) and (3). Moreover,
there are two good reasons for defining the rewards in this
way. The first is that the rewards form a convenient basis
that allows us to express any value estimate on the terminal
states in Tj as a linear combination of z1j , . . . , z

n
j . The sec-

ond is that a value estimate ẑ(τ) = 0 can be used to turn off
terminal state τ , since the definition of the optimal policy in
(3) assigns probability 0 to any transition that leads to a state
τ with ẑ(τ) = 0. This is the reason that we do not need the
sets of terminal states to be equal for equivalent subtasks.

Now assume that we solve the base LMDPs to obtain
the optimal value functions z1j , . . . , z

n
j . Also assume a given

value estimate v̂ for the terminal states in Tj , i.e. Jj(τ) =
v̂(τ) for each τ ∈ Tj . Then we can write the exponentiated
reward ẑ(τ) = ev̂(τ)/λ of each terminal state as

ẑ(τ) =
n∑

k=1

wkz
k
j (τ) =

n∑
k=1

ẑ(τk)z
k
j (τ), (5)

where each weight is simply given by wk = ẑ(τk). This

6973

is because for a given terminal state τℓ ∈ Tj , the value
zkj (τℓ) equals 0 for k ̸= ℓ, so the weighted sum simplifies
to wℓz

ℓ
j(τℓ) = wℓ · 1 = ẑ(τℓ).

Due to compositionality, we can now write the estimated
value of each non-terminal state s ∈ Si as

ẑ(s) =
n∑

k=1

ẑ(τk)z
k
j (s) ∀s ∈ Si, ∀Li ∈ Cj . (6)

Here, the terminal states τ1, . . . , τn are by definition exit
states in E . If we have access to a value estimate ẑE : E → R
on exit states, as well as the value functions z1j , . . . , z

n
j of

all base LMDPs, we can thus use (6) to express the value
estimate of each other state without learning. Hence (6)
is a form of value function decomposition, allowing us
to express the values of arbitrary states in S in terms of
value functions with smaller domains. Concretely, there are
O(CN) base LMDPs, each with O(M) values, so in total
we need O(CMN + E) values for the decomposition.

Example 1: In the 4-room example, there are five base
LMDPs with value functions zF , zL, zR, zT and zB ,
respectively. Given an initial value estimate ẑE for each exit
state in E , a value estimate of any state in the top left room
is given by ẑ(s) = ẑE(1

B)zB(s) + ẑE(1
R)zR(s), where

we use ẑE(F) = ẑE(L) = ẑE(T) = 0 to indicate that the
terminal states F , L and T are not present in the top left
room. We need CMN = 125 values to store the value
functions of the 5 base LMDPs, and E = 9 values to store
the value estimates of all exit states. Although this is more
than the 100 states of the original LMDP, if we increase the
number of rooms to X ×Y , the term CMN is a constant as
long as all rooms have equivalent dynamics, and the number
of exit states is E = (2X − 1)(2Y − 1), which is much
smaller than the 25XY total states. For 10 × 10 rooms,
the value function decomposition requires 486 values to
represent the values of 2,500 states.

The 4-room example is limited in the sense that chang-
ing the configuration and size of the rooms may break the
assumption of equivalence, which in turn makes the hi-
erarchical approach less powerful. However, the notion of
equivalence is naturally associated with factored (L)MDPs,
in which the state is factored into a set of variables V =
{v1, . . . , vm}, i.e. S = D(v1)× · · · × D(vm), where D(vi)
is the domain of variable vi, 1 ≤ i ≤ m. Concretely, if
there is a subset of variables U ⊂ V such that the transitions
among U are independent of the variables in V \ U , then it
is natural to partition the states based on their assignment to
the variables in V\U . Consequently, there is a single equiva-
lent subtask whose set of states is ×v∈UD(v), i.e. all partial
states on the variables in U .

Example 2: The Taxi domain (Dietterich 2000) is de-
scribed by three variables: the location of the taxi (v1), and
the location and destination of the passenger (v2 and v3).
Since the location of the taxi is independent of the other two,
it is natural to partition the states according to the location
and destination of the passenger. Each partition consists of

the possible locations of the taxi, defining a unique equiva-
lent subtask whose terminal states are the locations at which
the taxi can pick up or drop off passengers. Since there are
16 valid combinations of passenger location and destina-
tion, there are 16 such equivalent subtasks. Dietterich (2000)
calls this condition max node irrelevance, where “max node”
refers to a given subtask.

Eigenvector Approach
If the dynamics P and the state costs R,J are known, we
can use the power method to solve the original LMDP L by
composing individual solutions of the subtask LMDPs Li.
In this case, we define Bellman equations in (2) to solve the
base LMDPs of all equivalence classes. To compute the val-
ues of the original LMDP L for the exit states in E , the com-
positionality relation in (6) provides us with an additional
system of linear equations, one for each non-terminal exit
state. We can reformulate this additional system of equations
in matrix form defined for the exit states zE :

zE = GzE . (7)

Here, the matrix G contains the values of the base LMDPs
according to (6). We can thus use the power method on this
system of linear equations to obtain the values of all exit
states in E .

Example 1: In the 4-room example, the row in G cor-
responding to ẑE(2

L) contains the element zB(2L) in the
column for ẑE(1B), and the element zR(2L) in the column
for ẑE(1

R), while all other elements equal 0. While the
flat approach requires one run of the power method on a
large matrix, our hierachical approach needs five runs of
the power method on significantly reduced matrices (these
runs can be parallelized), and one additional run on a 8 × 8
matrix, corresponding to (7).

We remark that we do not explicitly represent the values
of states in S \ E since they are given by (6). Since we can
now obtain the value z(s) of each state s ∈ S , we can define
the optimal policy directly in terms of the values z and (3).
Hence unlike most approaches to hierarchical reinforcement
learning, the policy does not select among subtasks, but in-
stead depends directly on the decomposed value estimates.

Online and Intra-task Learning
In the online learning case, we need to maintain estimates
ẑ1j , . . . , ẑ

n
j of the value functions of the base LMDPs asso-

ciated with each equivalent subtask Lj . These estimates can
be updated using the Z-learning rule (4) after each transi-
tion. But to make learning more efficient, we can use a sin-
gle transition (st, rt, st+1) with st ∈ Sj to update the values
of all base LMDPs associated with Lj simultaneously. This
is known in the literature as intra-task learning (Kaelbling
1993; Jonsson and Gómez 2016).

Given the estimates ẑ1j , . . . , ẑ
n
j , we could then formulate

and solve the same system of linear equations in (6) to ob-
tain the value estimates of exit states. However, it is imprac-
tical to solve this system of equations every time we update
ẑ1j , . . . , ẑ

n
j . Instead, we explicitly maintain estimates ẑE of

6974

the values of exit states in the set E , and update these values
incrementally. For that, we turn (6) into an update rule:

ẑE(s)←(1− αℓ)ẑE(s) + αℓ

n∑
k=1

ẑkj (s)ẑE(τk). (8)

The question is when to update the value of an exit state. We
propose several alternatives:
V1: Update the value of an exit state s ∈ Ei each time we

take a transition from s.
V2: When we reach a terminal state of the subtask Li, up-

date the values of all exit states in Ei.
V3: When we reach a terminal state of the subtask Li, up-

date the values of all exit states in Ei and all exit states
of subtasks in the equivalence class Cj of Li.

Again, the estimated policy π is defined directly by the value
estimates ẑ and (3), and thus does not select among subtasks.
Below is the pseudo-code of the proposed algorithm.

Algorithm Online and Intra-Task Learning Algorithm

1: Input: An LMDP L = ⟨S, T ,P,R,J ⟩ and a partition
{Si}Li=1 of S
A set {C1, . . . , CC} of equivalent subtasks and related
base LMDPs Lk

j = ⟨Sj , Tj ,Pj ,Rj ,J k
j ⟩

2: Initialization:
ẑE(s) := 1 (∀s ∈ E) {high-level Z function approxi-
mation}
ẑkj (s) := 1 {base LMDPs 1 . . . |Tj | for each equivalent
subtask Lj}

3: while termination condition is not met do
4: observe transition st, rt, st+1 ∼ π̂(·|st), where st ∈

Si and Li ∈ Cj
5: update lower-level estimations ẑkj (st) using (4)
6: if st ∈ E or st+1 ∈ Tj then {st is an exit or st+1 is

terminal for current subtask Lj}
7: apply (8) to update ẑE using variant V1, V2 or V3

8: end if
9: end while

Analysis
Let L = ⟨S, T ,P,R,J ⟩ be an LMDP, and let Li =
⟨Si, Ti,Pi,Ri,Ji⟩ be a subtask associated with the parti-
tion Si ⊆ S . Let z denote the optimal value of L, and let zi
denote the optimal value of Li.
Lemma 0.2 If the reward of each terminal state τ ∈ Ti
equals its optimal value in L, i.e. zi(τ) = z(τ), the optimal
value of each non-terminal state s ∈ Si equals its optimal
value in L, i.e. zi(s) = z(s).
Proof Since Pi and Ri are the restriction of P and R onto
Si, for each s ∈ Si we have

zi(s) = eRi(s)/λ
∑
s′

Pi(s
′|s)zi(s′)

= eR(s)/λ
∑
s′

P(s′|s)zi(s′),

which is the same Bellman equation as for z(s). Since
zi(τ) = z(τ) for each terminal state τ ∈ Ti, we immediately
obtain zi(s) = z(s) for each non-terminal state s ∈ Si.

As an consequence of Lemma 0.2, assigning the optimal
value z(τ) to each exit state τ ∈ E yields a solution to (7),
which is thus guaranteed to have a solution with eigen-
value 1. Lemma 0.2 also guarantees that we can use (6) to
compute the optimal value of any arbitrary state given opti-
mal values of the base LMDPs and the exit states. The only
necessary conditions needed for convergence to the optimal
value function is that (i) {Si}Li=1 is a proper partition of the
state space; and (ii) the set of terminal states Ti of each sub-
task Li includes all states reachable in one step from Si.

Lemma 0.3 The solution to (7) is unique.

Proof By contradiction. Assume that there exists a solution
z′E which is different from the optimal values zE . We can
extend z and z′ to all states in S by applying (6). Due to
the same argument as in the proof of Lemma 0.2, the solu-
tion z′ satisfies the Bellman optimality equation of all states
in S . Hence z′ is an optimal value function for the original
LMDP L, which contradicts that z′ is different from z since
the Bellman optimality equations have a unique solution.

Lemma 0.4 For each subtask Li and state s ∈ S+i , it holds
that z1i (s) + · · ·+ zni (s) ≤ 1.

Proof By induction. The base case is given by terminal
states tℓ ∈ Ti, in which case z1i (tℓ)+· · ·+zni (tℓ) = zℓi (tℓ) =
1. For s ∈ Si, the Bellman equation for each base LMDP
yields

n∑
k=1

zki (s) = eRi(s)/λ
∑
s′

P(s′|s)
n∑

k=1

zki (s
′).

Since Ri(s) = R(s) < 0 holds by assumption, and since
z1i (s

′)+ · · ·+ zni (s
′) ≤ 1 holds for each s′ by hypothesis of

induction, it follows that z1i (s) + · · ·+ zni (s) ≤ 1.

As a consequence, just like the matrix RP in (2), the matrix
G in (7) has spectral radius at most 1, and hence the power
method is guaranteed to converge to the unique solution with
largest eigenvalue 1, corresponding to the optimal values of
the exit states.

The convergence rate of the power method is exponen-
tial in γ < 1, the eigenvalue of RP or G with second
largest value and independent of the state space. The aver-
age running time scales linearly with the number of non-
zero elements in RP or G (Todorov 2006), which is dras-
tically reduced compared to the non-hierarchical approach.
More precisely, given an upper bound B on the support
of P and a sparse representation, the matrix multiplication
in (2) has complexity O(BS). In comparison, the matrix
multiplication of the O(CN) base LMDPs has complexity
O(BK), while the matrix multiplication in (7) has complex-
ity O(NE). Hence the hierarchical approach is competitive
whenever O(CNBK + NE) is smaller than O(BS). In a
10 × 10 room example, CNBK + NE = 500 + 1,805 =
2,305, while BS = 10,000.

6975

Figure 2: Results for 3× 3 rooms of size 5× 5 (left); 5× 5 rooms of size 3× 3 (center); 8× 8 rooms of size 5× 5 (right).

Experiments
We now evaluate the proposed learning algorithm in the two
previous examples.1 The objective of this evaluation is to
analyze empirically the different update alternatives (V1, V2,
and V3), and to compare against a flat approach which ex-
ploits the benefits of LMDPs without the hierarchy (Z-IS),
and the hierarchical approach based on options (Qo) (Sutton,
Precup, and Singh 1999). Our main objective is to empiri-
cally show that our approach is more sample efficient than
the other algorithms. We run each algorithm with four differ-
ent random seeds to analyze the average MAE (mean abso-
lute error) against the optimal value function (computed sep-
arately) and its standard deviation over the number of sam-
ples. Since the value functions are different for Q-learning
and LMDP methods, we present the self-normalized MAE
(Figures 2 and 3) for different configurations and domains.
Further, for a fair comparison between approaches, we only
use the exit set for calculating the MAE.

In all experiments, the learning rates for each abstraction
level is αℓ(t) = cℓ/(cℓ + n) where n represents the episode
each sample t belongs to. We empirically optimize the con-
stant cℓ for each domain. For LMDPs, we use a temperature
λ = 1, which provides good results. Qo solves an equiva-
lent MDP with deterministic actions, which should actually
give it an advantage. For fairness, Qo obtains the same per-
step negative reward, exploits the same equivalence classes,
learns the same subtasks (i.e. reach a terminal state), and has
knowledge of which options are available in each state.

Rooms Domain. We analyze the performance for differ-
ent room sizes and number of rooms (Figure 2). In all config-
urations the proposed hierarchical approach outperfoms Z-
IS and Qo. Concretely, Qo suffers from non-stationarity: ini-
tial option executions will incur more negative reward than
later executions, which causes high-level Q-learning updates
to be incorrect, and it takes the learner significant time to re-
cover from this.

Figure 2 (left) shows results for 3× 3 rooms of size 5× 5
and Figure 2 (center) shows results for 5 × 5 rooms of size
3×3. Both scenarios have 225 interior states. The difference
between variants V1, V2 and V3 is more pronounced in the
second case, when the number of subtasks increases (more
rooms) and the partition for each subtask is smaller (smaller
rooms). Figure 2 (right) shows how the method scales with
the number of rooms of size 5 × 5. Again, variant V3 has
the best performance, in this case by a larger margin than
before.

1Code available at https://github.com/guillermoim/HRL LMDP

Taxi Domain. To allow comparison between all the meth-
ods, we adapted the Taxi domain as follows: when the taxi
is at the correct pickup location, it can transition to a state
with the passenger in the taxi. In a wrong pickup location, it
can instead transition to a terminal state with large negative
reward (simulating an unsuccessful pick-up). When the pas-
senger is in the taxi, it can be dropped off at any pickup lo-
cation, successfully completing the task whenever dropped
at the correct destination.

Figure 3: Results for Taxi for 5×5 and 10×10 (resp.) grids.

Figure 3 shows results in two instances of size 5× 5 (408
states) and 10× 10 (1608 states). Again, the proposed hier-
archical approach outperforms Z-IS and Qo. In this case, the
difference between V1, V2 and V3 is less pronounced, even
when the grid size increases. One possible explanation is the
small number of exit states in this problem.

Discussion and Conclusion
In this paper we have introduced a novel approach to hier-
archical reinforcement learning that focuses on the class of
linearly-solvable Markov decision processes. Using subtask
compositionality, we can decompose the value function and
derive algorithms that converge to the optimal value func-
tion. To the best of our knowledge, our approach is the first
to exploit both the concurrent compositionality enabled by
LMDPs together with hierarchies and intra-task learning to
obtain globally optimal policies efficiently.

The proposed hierarchical decomposition leads to a new
form of zero-shot learning that allows to incorporate sub-
tasks that belong to an existing equivalent class without ad-
ditional learning effort. For example, adding new rooms in
our example. This is in contrast with existing methods that
only exploit linear compositionality of tasks.

Our approach is limited to OR compositionality of sub-
tasks, but there is no fundamental limitation that prevents
arbitrary compositions. The benefits of hierarchies can be
combined for example, with the extended value functions
proposed in Nangue Tasse, James, and Rosman (2020).

6976

References
Barreto, A.; Borsa, D.; Hou, S.; Comanici, G.; Aygün, E.;
Hamel, P.; Toyama, D.; Hunt, J.; Mourad, S.; Silver, D.; and
Precup, D. 2019. The Option Keyboard: Combining Skills
in Reinforcement Learning. In Advances in Neural Informa-
tion Processing Systems 32, 13031–13041.

Barto, A. G.; and Mahadevan, S. 2003. Recent Advances in
Hierarchical Reinforcement Learning. Discrete Event Dy-
namic Systems, 13(1–2): 41–77.

Bas-Serrano, J.; Curi, S.; Krause, A.; and Neu, G. 2021. Lo-
gistic Q-Learning . In Proceedings of The 24th International
Conference on Artificial Intelligence and Statistics, volume
130, 3610–3618. PMLR.

Boutilier, C.; Dearden, R.; and Goldszmidt, M. 1995. Ex-
ploiting Structure in Policy Construction. In Proceedings of
The 14th International Joint Conference on Artificial Intel-
ligence.

da Silva, M.; Durand, F.; and Popović, J. 2009. Linear Bell-
man Combination for Control of Character Animation. ACM
Trans. Graph., 28(3).

Dietterich, T. G. 2000. Hierarchical reinforcement learning
with the MAXQ value function decomposition. J. Artif. In-
tell. Res., 13: 227–303.

Dvijotham, K.; and Todorov, E. 2013. Linearly Solvable Op-
timal Control. In Lewis, F. L.; and Liu, D., eds., Reinforce-
ment Learning and Approximate Dynamic Programming for
Feedback Control, chapter 6, 119–141. John Wiley & Sons.

Haarnoja, T.; Pong, V.; Zhou, A.; Dalal, M.; Abbeel, P.; and
Levine, S. 2018a. Composable deep reinforcement learn-
ing for robotic manipulation. In 2018 IEEE international
conference on robotics and automation (ICRA), 6244–6251.
IEEE.

Haarnoja, T.; Zhou, A.; Abbeel, P.; and Levine, S. 2018b.
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Rein-
forcement Learning with a Stochastic Actor. In Proceedings
of the 35th International Conference on Machine Learning,
volume 80, 1861–1870. PMLR.

Hunt, J.; Barreto, A.; Lillicrap, T.; and Heess, N. 2019.
Composing entropic policies using divergence correction.
In International Conference on Machine Learning, 2911–
2920. PMLR.

Jonsson, A.; and Gómez, V. 2016. Hierarchical Linearly-
Solvable Markov Decision Problems. In Proceedings of the
26th International Conference on Automated Planning and
Scheduling (ICAPS).

Kaelbling, L. P. 1993. Learning to Achieve Goals. In Pro-
ceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), 1094–1099.

Kappen, H. J. 2005. Linear Theory for Control of Nonlinear
Stochastic Systems. Phys. Rev. Lett., 95: 200–201.

Kappen, H. J. 2013. Optimal control theory and the lin-
ear Bellman equation. In D. Barber, S. C., A. Taylan, ed.,
Bayesian Time Series Models, chapter 17, 363–387. Cam-
bridge University Press.

Kappen, H. J.; Gómez, V.; and Opper, M. 2012. Optimal
control as a graphical model inference problem. Machine
Learning, 87(2): 159–182.
Koller, D.; and Parr, R. 2000. Policy Iteration for Factored
MDPs. In Proceedings of the 16th Conference in Uncer-
tainty in Artificial Intelligence, 326–334.
Kolobov, A.; Mausam; and Weld, D. S. 2012. Discovering
hidden structure in factored MDPs. Artificial Intelligence,
189: 19–47.
Levine, S. 2018. Reinforcement learning and control as
probabilistic inference: Tutorial and review. arXiv preprint
arXiv:1805.00909.
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T.;
Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016. Asyn-
chronous Methods for Deep Reinforcement Learning. In
Proceedings of The 33rd International Conference on Ma-
chine Learning, volume 48, 1928–1937. PMLR.
Nangue Tasse, G.; James, S.; and Rosman, B. 2020. A
Boolean Task Algebra for Reinforcement Learning. In
Advances in Neural Information Processing Systems, vol-
ume 33, 9497–9507.
Saxe, A. M.; Earle, A. C.; and Rosman, B. 2017. Hier-
archy through composition with multitask LMDPs. In In-
ternational Conference on Machine Learning, 3017–3026.
PMLR.
Strehl, A. L.; Diuk, C.; and Littman, M. L. 2007. Efficient
Structure Learning in Factored-State MDPs. In Proceedings
of the Twenty-Second AAAI Conference on Artificial Intelli-
gence, 645–650.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between
MDPs and semi-MDPs: A framework for temporal ab-
straction in reinforcement learning. Artificial intelligence,
112(1): 181–211.
Todorov, E. 2006. Linearly-solvable Markov decision prob-
lems. Advances in Neural Information Processing Systems
(NIPS), 1369–1376.
Todorov, E. 2009. Compositionality of optimal control laws.
Advances in Neural Information Processing Systems (NIPS),
1856–1864.
Van Niekerk, B.; James, S.; Earle, A.; and Rosman, B. 2019.
Composing value functions in reinforcement learning. In In-
ternational Conference on Machine Learning, 6401–6409.
PMLR.
Vieillard, N.; Pietquin, O.; and Geist, M. 2020. Munchausen
Reinforcement Learning. In Advances in Neural Informa-
tion Processing Systems, volume 33, 4235–4246.
Wen, Z.; Precup, D.; Ibrahimi, M.; Barreto, A.; Van Roy,
B.; and Singh, S. 2020. On Efficiency in Hierarchical Rein-
forcement Learning. In Proceedings of the 34th Conference
on Neural Information Processing Systems (NeurIPS).
Ziebart, B. D. 2010. Modeling Purposeful Adaptive Behav-
ior with the Principle of Maximum Causal Entropy. Ph.D.
thesis, USA.

6977

