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Abstract

In online recommendation, customers arrive in a sequential
and stochastic manner from an underlying distribution and the
online decision model recommends a chosen item for each
arriving individual based on some strategy. We study how to
recommend an item at each step to maximize the expected
reward while achieving user-side fairness for customers, i.e.,
customers who share similar profiles will receive a similar
reward regardless of their sensitive attributes and items being
recommended. By incorporating causal inference into bandits
and adopting soft intervention to model the arm selection strat-
egy, we first propose the d-separation based UCB algorithm
(D-UCB) to explore the utilization of the d-separation set in
reducing the amount of exploration needed to achieve low cu-
mulative regret. Based on that, we then propose the fair causal
bandit (F-UCB) for achieving the counterfactual individual
fairness. Both theoretical analysis and empirical evaluation
demonstrate effectiveness of our algorithms.

Introduction
Fairness in machine learning has been a research subject with
rapid growth recently. Although there are many works focus-
ing on fairness in personalized recommendation (Celis et al.
2018; Liu et al. 2017; Zhu, Hu, and Caverlee 2018), how to
achieve individual fairness in bandit recommendation still
remains a challenging task. We focus on online recommen-
dation, e.g., customers are being recommended items, and
consider the setting where customers arrive in a sequential
and stochastic manner from an underlying distribution and
the online decision model recommends a chosen item for
each arriving individual based on some strategy. The chal-
lenge here is how to choose the arm at each step to maximize
the expected reward while achieving user-side fairness for
customers, i.e., customers who share similar profiles will
receive similar rewards regardless of their sensitive attributes
and items being recommended.

Recently researchers have started taking fairness and dis-
crimination into consideration in the design of personalized
recommendation algorithms (Celis et al. 2018; Liu et al. 2017;
Zhu, Hu, and Caverlee 2018; Joseph et al. 2016, 2018; Jab-
bari et al. 2017; Burke 2017; Burke, Sonboli, and Ordonez-
Gauger 2018; Ekstrand et al. 2018). Among them, Joseph
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et al. (2016) was the first paper of studying fairness in clas-
sic and contextual bandits. It defined fairness with respect
to one-step rewards and introduced a notion of meritocratic
fairness, i.e., the algorithm should never place higher selec-
tion probability on a less qualified arm (e.g., job applicant)
than on a more qualified arm. The following works along
this direction include (Joseph et al. 2018) for infinite and
contextual bandits, (Jabbari et al. 2017) for reinforcement
learning, (Liu et al. 2017) for the simple stochastic bandit
setting with calibration based fairness. However, all existing
works require some fairness constraint on arms at every round
of the learning process, which is different from our user-side
fairness setting. One recent work (Huang et al. 2020) focused
on achieving user-side fairness in bandit setting, but it only
purposed a heuristic way to achieve correlation based group
level fairness and didn’t incorporate causal inference and
counterfactual fairness into bandits.

By incorporating causal inference into bandits, we first
propose the d-separation based upper confidence bound ban-
dit algorithm (D-UCB), based on which we then propose the
fair causal bandit (F-UCB) for achieving the counterfactual
individual fairness. Our work is inspired by recent research
on causal bandits (Lattimore, Lattimore, and Reid 2016; Sen
et al. 2017; Lee and Bareinboim 2018, 2019; Lu et al. 2020),
which studied how to learn optimal interventions sequentially
by representing the relationship between interventions and
outcomes as a causal graph along with associated conditional
distributions. For example, Lu et al. (2020) developed the
causal UCB (C-UCB) that exploits the causal relationships
between the reward and its direct parents. However, different
from previous works, our algorithms adopt soft intervention
(Correa and Bareinboim 2020) to model the arm selection
strategy and leverage the d-separation set identified from the
underlying causal graph, thus greatly reducing the amount
of exploration needed to achieve low cumulative regret. We
show that our D-UCB achieves Õ(

√
|W| · T ) regret bound

where T is the number of iterations and W is a set that d-
separates arm/user features and reward R in the causal graph.
As a comparison, the C-UCB achieves Õ(

√
|Pa(R)| · T )

where Pa(R) is the parental variables of R that is a trivial
solution of the d-separation set. In our F-UCB, we further
achieve counterfactual fairness in each round of exploration.
Counterfactual fairness requires the expected reward an in-
dividual would receive keeps the same if the individual’s
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sensitive attribute were changed to its counterpart. The intro-
duced counterfactual reward combines two interventions, a
soft intervention on the arm selection and a hard intervention
on the sensitive attribute. The F-UCB achieves counterfactual
fairness in online recommendation by picking arms from a
subset of arms at each round in which all the arms satisfy
counterfactual fairness constraint. Our theoretical analysis

shows F-UCB achieves Õ(

√
|W|T

τ−∆π0
) cumulative regret bound

where τ is the fairness threshold and ∆π0
denotes the maxi-

mum fairness discrepancy of a safe policy π0, i.e., a policy
that is fair across all rounds.

We conduct experiments on the Email Campaign data (Lu
et al. 2020) whose results show the benefit of using the d-
separation set from the causal graph. Our D-UCB incurs less
regrets than two baselines, the classic UCB which does not
leverage any causal information as well as the C-UCB. In
addition, we validate numerically that our F-UCB maintains
good performance while satisfying counterfactual individual
fairness in each round. On the contrary, the baselines fail to
achieve fairness with significant percentages of recommenda-
tions violating fairness constraint. We further conduct experi-
ments on the Adult-Video dataset and compare our F-UCB
with another user-side fair bandit algorithm Fair-LinUCB
(Huang et al. 2020). The results demonstrate the advantage of
our causal based fair bandit algorithm on achieving individual
level fairness in online recommendation.

Background
Our work is based on structural causal models (Pearl 2009)
which describe the causal mechanisms of a system as a set of
structural equations.

Definition 1 (Structural Causal Model (SCM) (Pearl 2009)).
A causal modelM is a tripleM = 〈U,V,F〉 where 1) U
is a set of hidden contextual variables that are determined by
factors outside the model; 2) V is a set of observed variables
that are determined by variables in U ∪ V; 3) F is a set
of equations mapping from U × V to V. Specifically, for
each V ∈ V, there is an equation fV ∈ F mapping from
U×(V\V ) to V , i.e., v = fV (Pa(V ),uV ), where Pa(V ) is
a realization of a set of observed variables called the parents
of V , and uV is a realization of a set of hidden variables.

Quantitatively measuring causal effects is facilitated with
the do-operator (Pearl 2009), which simulates the physical
interventions that force some variable to take certain values.
Formally, the intervention that sets the value of X to x is
denoted by do(x). In a SCM, intervention do(x) is defined
as the substitution of equation x = fX(Pa(X),uX) with
constant X = x. For an observed variable Y other than X ,
its variant under intervention do(x) is denoted by Y (x). The
distribution of Y (x), also referred to as the post-intervention
distribution of Y , is denoted by P (Y (x)). The soft interven-
tion (also known as the conditional action, policy interven-
tion) extends the hard intervention such that it forces variable
X to take a new functional relationship in responding to some
other variables (Correa and Bareinboim 2020). Denoting the
soft intervention by π, the post-interventional distribution of
X given its parents is denoted by Pπ(X|Pa(X)). More gen-

erally, the new function could receive as inputs the variables
other than the original parents Pa(X), as long as they are not
the descendants of X . The distribution of Y after performing
the soft intervention is denoted by P (Y (π)).

With intervention, the counterfactual effect measures the
causal effect while the intervention is performed conditioning
on only certain individuals or groups specified by a subset
of observed variables O = o. Given a context O = o, the
counterfactual effect of the value change of X from x1 to x2

on Y is given by E[Y (x2)|o]− E[Y (x1)|o].
Each causal modelM is associated with a causal graph

G = 〈V,E〉, where V is a set of nodes and E is a set of
directed edges. Each node in G corresponds to a variable V
inM. Each edge, denoted by an arrow→, points from each
member of Pa(V ) toward V to represent the direct causal
relationship specified by equation fV (·). The well-known
d-separation criterion (Spirtes, Glymour, and Scheines 2000)
connects the causal graph with conditional independence.

Definition 2 (d-Separation (Spirtes, Glymour, and Scheines
2000)). Consider a causal graph G. X, Y and W are disjoint
sets of attributes. X and Y are d-separated by W in G, if
and only if W blocks all paths from every node in X to every
node in Y. A path p is said to be blocked by W if and only if:
1) p contains a chain i→ m→ j or a fork i← m→ j such
that the middle node m is in W, or 2) p contains an collider
i→ m← j such that the middle node m is not in W and no
descendant of m is in W.

Achieving Counterfactual Fairness in Bandit
In this section, we present our D-UCB and F-UCB bandit
algorithms. The online recommendation is commonly mod-
eled as a contextual multi-armed bandit problem, where each
customer is a “bandit player”, each potential item a has a
feature vector a ∈ A and there are a total number of k items1.
For each customer arrived at time t ∈ [T ] with feature vector
xt ∈ X , the algorithm recommends an item with features
a based on vector xt,a which represents the concatenation
of the user and the item feature vectors (xt, a), observes the
reward rt (e.g., purchase), and then updates its recommenda-
tion strategy with the new observation. There may also exist
some intermediate features (denoted by I) that are affected
by the recommended item and influence the reward, such as
the user feedback about relevance and quality.

Modeling Arm Selection via Soft Intervention
In bandit algorithms, we often choose an arm that max-
imizes the expectation of the conditional reward, at =
arg maxa E[R|xt,a]. The arm selection strategy could be im-
plemented by a functional mapping from X to A, and after
each round the parameters in the function get updated with
the newest observation tuple.

We advocate the use of the causal graph and soft interven-
tions as a general representation of any bandit algorithm. We
consider the causal graph G, e.g., as shown in Figure 1, where
A represents the arm features, X represents the user features,

1We use a to represent the feature vector of item/arm a, and they
may be used interchangeably when the context is unambiguous.
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Figure 1: Graph structure for contextual bandit. Node π de-
notes the soft intervention conducted on arm selection.

R represents the reward, and I represents some intermediate
features between A and R. Since the arm selection process
could be regarded as the structural equation of X on A, we
treat X as A’s parents. Then, the reward R is influenced
by the arm selection, the contextual user features, as well as
some intermediate features, so all the three factors are parents
of R. In this setting, it is natural to treat the update of the arm
selection policy as a soft intervention π performed on the
arm features A. Each time when an arm selection strategy
is learned, the corresponding soft intervention is considered
to be conducted on A while user features X and all other
relationships in the causal graph are unchanged.

There are several advantages of modeling arm selection
learning using the soft intervention. First, it can capture the
complex causal relationships between context and reward
without introducing strong assumptions, e.g., linear reward
function, or Gaussian/Bernoulli prior distribution, which are
often not held in practice. Second, it is flexible in terms of
the functional form. For example, it can be of any function
type, and it can be independent or dependent upon the target
variable’s existing parents and can also include new variables
that are not the target variable’s parents. Third, the soft in-
tervention can be either deterministic, i.e., fixing the target
variable to a particular constant, or stochastic, i.e., assigns
to the target variable a distribution with probabilities over
multiple states. As a result, most existing and predominant
bandit algorithms could be described using this framework.
Moreover, based on this framework we could propose new
bandit algorithms by adopting different soft interventions.

Formally, let Πt be the arm selection policy space at time
t ∈ [T ], and π ∈ Πt be a specific policy. The implementation
of policy π is modeled by a soft intervention. Denoting by
R(π) the post-interventional value of the reward after per-
forming the intervention, the expected reward under policy
π, denoted by µπ, is given by E[R(π)|xt]. According to the
σ-calculus (Correa and Bareinboim 2020), it can be further
decomposed as follows:

µπ = E[R(π)|xt] =
∑
a

Pπ(a|xt) · E[R(a)|xt]

= Ea∼π [E[R(a)|xt]]
(1)

where Pπ(a|xt) is a distribution defined by policy π. As can
be seen, once a policy is given, the estimation of µπ depends
on the estimation of E[R(a)|xt] (denoted by µa). Note that
µa represents the expected reward when selecting an arm
a, which is still a post-intervention quantity and needs to
be expressed using observational distributions in order to
be computable. In the following, we propose a d-separation
based estimation method and based on which we develop
our D-UCB algorithm. For the ease of representation, our

discussions in the following subsections assume deterministic
policies, in principle the above framework could be applied
to stochastic policies as well.

D-UCB Algorithm
Let W ⊆ A ∪X ∪ I be a subset of nodes that d-separates
reward R from features (A ∪ X)\W in the causal graph.
Such set always exists since A ∪X and Pa(R) are trivial
solutions. Let Z = W\(A∪X). Using the do-calculus (Pearl
2009), we can decompose µa as follows.

µa = E[R|do(a),xt] =
∑
Z

E[R|z, do(a),xt]P (z|do(a),xt)

=
∑
Z

E[R|z,a,xt]P (z|a,xt) =
∑
Z

E[R|z,a,xt]P (z|xt,a)

=
∑
Z

E[R|w]P (z|xt,a) (2)

where the last step is due to the d-separation. Similar to (Lu
et al. 2020), we assume that distribution P (z|xt,a) is known
based on previous knowledge used to build the causal graph.
Then, by using a sample mean estimator (denoted by µ̂w(t))
to estimate E[R|w] based on the observational data up to
time t, the estimated reward mean is given by

µ̂π(t) = Ea∼π

[∑
Z

µ̂w(t) · P (z|xt,a)

]
(3)

Subsequently, we propose a causal bandit algorithm based
on d-separation, called D-UCB. Since there is always un-
certainty on the reward given a specific policy, in order to
balance exploration and exploitation we follow the rule of
optimistic in the face of uncertainty (OFU) in D-UCB algo-
rithm. The policy taken at time twill lead to the highest upper
confidence bound of the expected reward, which is given by

πt = arg max
π∈Πt

Ea∼π[UCBa(t)] (4)

UCBa(t) =
∑
Z

UCBw(t)P (z|xt,a) (5)

Since µ̂w(t) is an unbiased estimator and the error term of
the reward is assumed to be sub-Gaussian distributed, the
1− δ upper confidence bound of µw(t) is given by

UCBw(t) = µ̂w(t) +

√
2 log(1/δ)

1 ∨Nw(t)
(6)

After taking the policy, we will have new observations on rt
and wt. The sample mean estimator is then updated accord-
ingly:

µ̂w(t) =
1

Tw(t)

t∑
k=1

rt1wk=w where Tw(t) =

t∑
k=1

1wk=w

(7)
We hypothesize that the choice of d-separation set W

would significantly affect the regret of the D-UCB. To this
end, we analyze the upper bound of the cumulative regretRT .
The following theorem shows that, the regret upper bound
depends on the domain size of d-separation set W.
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Algorithm 1: D-UCB: Causal Bandit based on d-separation
1: Input: Policy space Π, confidence level parameter δ, original

causal Graph G with domain knowledge
2: Find the d-separation set W with minimum subset Z in terms

of domain space.
3: for t = 1, 2, 3, ..., T do
4: Obtain the optimal policy πt following Eq. (4).
5: Take action at ∼ πt and observe a real-valued payoff rt and

a d-separation set value wt.
6: Update µ̂w(t) for all w ∈W following Eq. (7).
7: end for

Theorem 1 (Regret bound of D-UCB). Given a causal graph
G, with probability at least 1−2δT |W|−exp(− |W| log3(T )

32 log(1/δ) ),
the regret of D-UCB is bounded by

RT ≤
√
|W|T log(T )log(T ) +

√
32|W|T log(1/δ)

where |W| is the domain space of set W.

Proof Sketch. 2 The proof of Theorem 1 follows the general
regret analysis framework of the UCB algorithm (Auer, Cesa-
Bianchi, and Fischer 2002). By leveraging d-separation de-
composition of the expected reward, we split the cumulative
regret into two terms and bound them separately. Since there
are less terms to traverse when summing up and bounding the
uncertainty caused by exploration-exploitation strategy, D-
UCB is supposed to obtain lower regret than the original UCB
algorithm and C-UCB algorithm. By setting δ = 1/T 2, it is
easy to show that D-UCB algorithm achieves Õ(

√
|W| · T )

regret bound.

Algorithm 1 shows the pseudo code of the D-UCB.
In Line 2, according to Theorem 1, we first determine
the d-separation set W with the minimum domain space.
In Line 4 we leverage causal graph and the observa-
tional data up to time t to find the optimal policy πt =
arg maxπ∈Πt Ea∼π[UCBa(t)]. In Line 5, we take action
at ∼ πt and observe a real-valued payoff rt, and in Line
6, we update the observational data with at and rt.
Remark. Determining the minimum d-separation set has
been well studied in causal inference (Geiger, Verma, and
Pearl 1990). We leverage the algorithm of finding a minimum
cost separator (Tian, Paz, and Pearl 1998) to identify W. The
discovery procedure usually requires the complete knowl-
edge of the causal graph. However, in the situation where the
d-separation set to be used as well as the associated condi-
tional distributions P (z|xt,a) are given, the remaining part
of the algorithm will work just fine without the causal graph
information. Moreover, the assumption of knowing P (z|xt,a)
follows recent research works on causal bandit. Generalizing
the causal bandit framework to partially/completely unknown
causal graph setting is a much more challenging but impor-
tant task. A recent work (Lu, Meisami, and Tewari 2021)
tries to generalize causal bandit algorithm based on causal
trees/forests structure.

2Due to space limits, we only include proof sketches. Refer to
the appendix in (Huang, Zhang, and Wu 2021) for proof details of
all theorems.

To better illustrate the long-term regret of causal bandit al-
gorithm, suppose the set A∪U∪ I includes N variables that
are related to the reward and the d-separation set W includes
n variables. If each of the variable takes on 2 distinct values,
the number of deterministic policies can be as large as 2N for
traditional bandit algorithm, leading to a O(

√
2NT ) regret

bound. On the other hand, our proposed causal algorithms
exploit the knowledge of the d-separation set W and achieves
O(
√

2nT ) regret, which implies a significant reduction re-
garding to the regret bound if n << N . If the number of arm
candidates is much smaller than the domain space of W, our
bound analysis could be easily adjusted to this case using a
subspace of W that corresponds to the arm candidates.

Counterfactual Fairness

Now, we are ready to present our fair UCB algorithm. Rather
than focusing on the fairness of the item being recom-
mended (e.g., items produced by small companies have simi-
lar chances of being recommended as those from big compa-
nies), we focus on the user-side fairness in terms of reward,
i.e., individual users who share similar profiles will receive
similar rewards regardless of their sensitive attributes and
items being recommended such that they both benefit from
the recommendations equally. To this end, we adopt counter-
factual fairness as our fairness notion.

Consider a sensitive attribute S ∈ X in the user’s profile.
Counterfactual fairness concerns the expected reward an indi-
vidual would receive assuming that this individual were in dif-
ferent sensitive groups. In our context, this can be formulated
as the counterfactual reward E[R(π, s∗)|xt] where two inter-
ventions are performed simultaneously: soft intervention π
on the arm selection and hard intervention do(s∗) on the sen-
sitive attribute S, while conditioning on individual features
xt. Denoting by ∆π = E[R(π, s+)|xt] − E[R(π, s−)|xt]
the counterfactual effect of S on the reward, a policy that is
counterfactually fair is defined as follows.

Definition 3. A policy π is counterfactually fair for an indi-
vidual arrived if ∆π = 0. The policy is τ - counterfactually
fair if |∆π| ≤ τ where τ is the predefined fairness threshold.

To achieve counterfactual fairness in online recommen-
dation, at round t, we can only pick arms from a subset of
arms for the customer (with feature xt), in which all the arms
satisfy counterfactual fairness constraint. The fair policy sub-
space Φt ⊆ Πt is thus given by Φt = {π : ∆π ≤ τ}.

However, the counterfactual fairness is a causal quan-
tity that is not necessarily unidentifiable from observational
data without the knowledge of structure equations (Sh-
pitser and Pearl 2008). Wu, Zhang, and Wu (2019) stud-
ied the criterion of identification of counterfactual fairness
given a causal graph and provided the bounds for uniden-
tifiable counterfactual fairness. According to Proposition
1 in (Wu, Zhang, and Wu 2019), our counterfactual fair-
ness is identifiable if X\{S} are not descendants of S. In
this case, similar to Eq. (1), we have that E[R(π, s∗)|xt] =
Ea∼π [E[R(a, s∗)|xt]] where s∗ ∈ {s+, s−}. Similar to
Eq. (2), we denote µa,s∗ = E[R(a, s∗)|xt], which can be
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decomposed using the do-calculus as

µa,s∗ = E[R(a, s∗)|xt]

=
∑
Z

E[R|s∗,w\st] · P (z|s∗,xt,a\st) (8)

where w\st and xt,a\st represent all values in w and xt,a
except st respectively. Note that s∗ is the sensitive attribute
value in the counterfactual world which could be different
from the observational value st. The estimated counterfactual
reward can be calculated as

µ̂a,s∗(t) =
∑
Z

µ̂w∗(t) · P (z|s∗,xt,a\st)

where w∗ = {s∗,w\st} and µ̂w∗(t) is again the sample
mean estimator based on the observational data up to time t.
The estimated counterfactual discrepancy of a policy is

∆̂π(t) =
∣∣Ea∼π[µ̂a,s+(t)]− Ea∼π[µ̂a,s−(t)]

∣∣ (9)

In the case where µa,s∗ is not identifiable, based on Propo-
sition 2 in (Wu, Zhang, and Wu 2019) we derive the lower and
upper bounds of µa,s∗ as presented in the following theorem.
Theorem 2. Given a causal graph as shown in Figure 1, if
there exists a non-empty set B ⊆ X\{S} which are descen-
dants of S, then µa,s∗ = E[R(a, s∗)|xt] is bounded by

µa,s∗ ≤
∑
Z

max
b
{E[R|s∗,w\st]} · P (z|xt,a) ,

µa,s∗ ≥
∑
Z

min
b
{E[R|s∗,w\st]} · P (z|xt,a)

F-UCB Algorithm
Taking the estimation error of the counterfactual discrepancy
into consideration, we could also use the high probability up-
per confidence bound of the counterfactual effect to build the
conservative fair policy subspace Φ̄t = {π : UCB∆π

(t) ≤
τ} where

UCB∆π
(t) = ∆̂π(t) +

∑
Z

√
8 log(1/δ)

1 ∨Nw(t)
P (z|xt,a) (10)

which is derived based on the fact that the sum of two inde-
pendent sub-Gaussian random variables is still sub-Gaussian
distributed. Thus, the learning problem can be formulated as
the following constrained optimization problem:

minRT =
T∑
t=1

(
Ea∼π∗

t
[µa]− Ea∼πt [µa]

)
s.t. ∀t, πt ∈ Φ̄t

where π∗t is defined as the optimal policy in the policy
space Πt at each round, which is the same in D-UCB setting.
The Assumption 3 in Appendix gives the definition of a
safe policy π0, which refers to a feasible solution under the
fair policy subspace at each round, i.e., π0 ∈ Πt such that
∆π0

≤ τ for each t ∈ [T ].
This optimization can be solved similarly by following the

rule of OFU. Algorithm 2 depicts our fair bandit algorithm
called the F-UCB. Different from the D-UCB algorithm,

Algorithm 2: F-UCB: Fair Causal Bandit
1: Input: Policy space Π, fairness threshold τ , confidence level

parameter δ, original causal Graph G with domain knowledge
2: Find the d-separation set W with minimum subset Z in terms

of domain space.
3: for t = 1, 2, 3, ..., T do
4: for π ∈ Πt do
5: Compute the estimated reward mean using Eq. (3) and the

estimated fairness discrepancy using Eq. (9).
6: end for
7: Determine the conservative fair policy subspace Φ̄t.
8: Find the optimal policy following Eq. (4) within Φ̄t.
9: Take action at ∼ πt and observe a real-valued payoff rt and

a d-separation set value wt.
10: Update µ̂w(t) for all w ∈W.
11: end for

F-UCB only picks arm from Φ̄t at each time t. In Line 5,
we compute the estimated reward mean and the estimated
fairness discrepancy. In Line 6, we determine the fair policy
subspace Φ̄t, and in Line 7, we find the optimal policy πt =
arg maxπ∈Φ̄t Ea∼π[UCBa(t)].

The following regret analysis shows that, the regret bound
of F-UCB is larger than that of D-UCB as expected, and it is
still influenced by the domain size of set W.

Theorem 3 (Regret bound of fair causal bandit). Given a
causal graph G, let δE = 4|W|Tδ and ∆π0

denote the max-
imum fairness discrepancy of a safe policy π0 across all
rounds. Setting αc = 1 and αr = 2

τ−∆π0
, with probability at

least 1− δE , the cumulative regret of F-UCB is bounded by:

RT ≤ (
2

τ −∆π0

+ 1) ×(
2
√

2T |W| log(1/δE) + 4
√
T log(2/δE) log(1/δE)

)

Proof Sketch. Our derivation of the regret upper bound of F-
UCB follows the proof idea of bandits with linear constraints
(Pacchiano et al. 2021), where we treat counterfactual fairness
as a linear constraint. By leveraging the knowledge of a
feasible fair policy at each round and properly designing the
numerical relation of the scale parameters αc and αr, we
are able to synchronously bound the cumulative regret of
reward and fairness discrepancy term. Merging these two
parts of regret analysis together leads to a unified bound of
the F-UCB algorithm. By setting δE to 1/T 2 we can show

F-UCB achieves Õ(

√
|W|T

τ−∆π0
) long-term regret.

Remark. In Theorem 3, αc and αr refer to the scale param-
eters that control the magnitude of the confidence interval
for sample mean estimators related to reward and fairness
term respectively. In the appendix of (Huang, Zhang, and Wu
2021) we show the numerical relation αc and αr should sat-
isfy in order to synchronously bound the uncertainty caused
by the error terms. The values taken in Theorem 3 is one
feasible solution with αc taking the minimum value under
the constraint domain space.
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The general framework we proposed (Eq. (1)) can be ap-
plied to any policy/function class. However, the D-UCB and
F-UCB algorithms we proposed still adopt the determinis-
tic policy following the classic UCB algorithm. Thus, the
construction of Φ̄t = {π : UCB∆π

(t) ≤ τ} can be easily
achieved as the total number of policies are finite. In this
paper we also assume discrete variables, but in principle the
proposed algorithms can also be extended to continuous vari-
ables by employing certain approximation approaches, e.g.,
neural networks for estimating probabilities and sampling ap-
proaches for estimating integrals. However, the regret bound
analysis may not apply as |W| will become infinite in the
continuous space.

Experiment
In this section, we conduct experiments on two datasets and
compare the performance of D-UCB and F-UCB with UCB,
C-UCB and Fair-LinUCB in terms of the cumulative regret.
We also demonstrate the fairness conformance of F-UCB and
the violations of other algorithms.

Email Campaign Dataset
We adopt the Email Campaign data as used in previous
works (Lu et al. 2020). The dataset is constructed based
on the online advertising process. Its goal is to determine
the best advertisement recommendation strategy for diverse
user groups to improve their click through ratio (CTR), thus
optimize the revenue generated through advertisements. Fig-
ure 2 shows the topology of the causal graph. We use X1,
X2, X3 to denote three user profile attributes, gender, age
and occupation; A1, A2, A3 to denote three arm features,
product, purpose, send-time that could be intervened; I1, I2,
I3, I4 to denote Email body template, fitness, subject length,
and user query; and R to denote the reward that indicates
whether users click the advertisement. The reward function is
R = 1/12(I1 +I2 +I3 +A3)+N (0, σ2), where σ = 0.1. In
our experiment, we set δ = 1/t2 for each t ∈ [T ]. In the ap-
pendix of (Huang, Zhang, and Wu 2021) we show the domain
values of all 11 attributes and their conditional probability
tables.

Figure 2: Graph structure under Email Campaign data. Nodes
with blue frame denote the variables that can be intervened.
The node with red frame is the sensitive attribute. Light
shaded nodes denote the minimal d-separation set.

Figure 3: Comparison of bandit algorithms (τ = 0.3 for
F-UCB).

τ
Cumulative Regret

of F-UCB
Unfair Decisions

UCB C-UCB D-UCB F-UCB
0.1 392.12 3030 3176 3473 0
0.2 363.55 1383 1487 1818 0
0.3 355.21 482 594 739 0
0.4 317.80 141 185 234 0
0.5 313.89 18 27 47 0

Table 1: Comparison results for Email Campaign data

Figure 3 plots the cumulative regrets of different bandit
algorithms along T . For each bandit algorithm, the online
learning process starts from initialization with no previous
observation. Figure 3 shows clearly all three causal bandit
algorithms perform better than UCB. This demonstrates the
advantage of applying causal inference in bandits. Moreover,
our D-UCB and F-UCB outperform C-UCB, showing the ad-
vantage of using d-separation set in our algorithms. The iden-
tified d-separation set W (send time, fitness, and template)
and the domain space of Z (fitness and template) significantly
reduce the exploration cost in D-UCB and F-UCB.
Remark. Note that in Figure 3, for the first 2000 rounds,
F-UCB has lower cumulative regret than D-UCB. A possible
explanation is that fair constraint may lead to a policy sub-
space that contains many policies with high reward. As the
number of explorations increase, D-UCB gains more accurate
reward estimations for each policy in the whole policy space
and eventually outperforms F-UCB.

Table 1 shows how the cumulative regret of F-UCB
(T = 5000 rounds) varies with the fairness threshold τ . The
values in Table 1 (and Table 2) are obtained by averaging the
results over 5 trials. The larger the τ , the smaller the cumula-
tive regret. In the right block of Table 1, we further report the
number of fairness violations of the other three algorithms
during the exploration of T = 5000 rounds, which demon-
strates the need of fairness aware bandits. In comparison, our
F-UCB achieves strict counterfactual fairness in every round.

Adult-Video Dataset
We further compare the performance of F-UCB algorithm
with Fair-LinUCB (Huang et al. 2020) on Adult-Video
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Figure 4: Graph structure for Adult-Video data

τ
Regret Unfair Decisions
F-UCB F-UCB Fair-LinUCB

0.1 361.43 0 2053
0.2 332.10 0 1221
0.3 323.12 0 602
0.4 303.32 0 82
0.5 296.19 0 6

Table 2: Comparison results for Adult-Video data.

dataset. We follow the settings of (Huang et al. 2020) by
combining two publicly available datasets: Adult dataset
and Youtube video dataset. We include in the appendix of
(Huang, Zhang, and Wu 2021) detailed information about
datasets and experiment. We select 10,000 instances and
use half of the data as the offline data to construct causal
graph and adopt the other half to be user sequence and arm
candidates for online recommendation. The causal graph
constructed from the training data is shown in Figure 4,
where X = {age, sex, race, income} denote user fea-
tures, A = {length, ratings, views, comments} denote
video features. Bold nodes denote direct parents of the re-
ward and red nodes denote the sensitive attribute. The min-
imum d-separation set for this graph topology is W =
{age, income, ratings, views}. The reward function is set as
R = 1/5(age + income + ratings + views) +N (0, σ2),
where σ = 0.1. We set δ = 1/t2 for each t ∈ [T ]. The
cumulative regret is added up through 5000 rounds.

We observe from Table 2 a high volume of unfair decisions
made by Fair-LinUCB under strict fairness threshold (nearly
forty percent of the users are unfairly treated when τ = 0.1).
This implies Fair-LinUCB algorithm can not achieve individ-
ual level fairness when conducting online recommendation
compared to F-UCB. On the other hand, the cumulative regret
for Fair-LinUCB is around 250 over 5000 rounds, which is
slightly better than F-UCB. This is because we use the same
linear reward setting as (Huang et al. 2020) in our experiment
and Lin-UCB based algorithm will better catch the reward
distribution under this setting.

Related Work
Causal Bandits. There have been a few works of studying
how to learn optimal interventions sequentially by represent-
ing the relationship between interventions and outcomes as a
causal graph along with associated conditional distributions.
Lattimore, Lattimore, and Reid (2016) introduced the causal

bandit problems in which interventions are treated as arms in
a bandit problem but their influence on the reward, along with
any other observations, is assumed to conform to a known
causal graph. Specifically they focus on the setting that ob-
servations are only revealed after selecting an intervention
(and hence the observed features cannot be used as context)
and the distribution of the parents of the reward is known
under those interventions. Lee and Bareinboim (2018) devel-
oped a way to choose an intervention subset based on the
causal graph structure as a brute-force way to apply standard
bandit algorithms on all interventions can suffer huge regret.
Lee and Bareinboim (2019) studied a relaxed version of the
structural causal bandit problem when not all variables are
manipulable. Sen et al. (2017) considered best intervention
identification via importance sampling. Instead of forcing
a node to take a specific value, they adopted soft interven-
tion that changes the conditional distribution of a node given
its parent nodes. Lu et al. (2020) proposed two algorithms,
causal upper confidence bound (C-UCB) and causal Thomp-
son Sampling (C-TS), and showed that they have improved
cumulative regret bounds compared with algorithms that do
not use causal information. They focus on causal relations
among interventions and use causal graphs to capture the de-
pendence among reward distribution of these interventions.
Fair Machine Learning. Fairness in machine learning has
been a research subject with rapid growth and attention re-
cently. Related but different from our work include long term
fairness (e.g., (Liu et al. 2018)), which concerns for how
decisions affect the long-term well-being of disadvantaged
groups measured in terms of a temporal variable of inter-
est, fair pipeline or multi-stage learning (Bower et al. 2017;
Emelianov et al. 2019; Dwork and Ilvento 2019; Dwork, Il-
vento, and Jagadeesan 2020), which primarily consider the
combination of multiple non-adaptive sequential decisions
and evaluate fairness at the end of the pipeline, and fair se-
quential learning (Joseph et al. 2016), which sequentially
considers each individual and makes decision for them. Liu
et al. (2018) proposed the study of delayed impact of fair
machine learning and introduced a one-step feedback model
of decision-making to quantify the long-term impact of clas-
sification on different groups in the population. Hu and Rang-
wala (2020) developed a metric-free individual fairness and
a cooperative contextual bandits (CCB) algorithm. The CCB
algorithm utilizes fairness as a reward and attempts to max-
imize it. It tries to achieve individual fairness unlimited to
problem-specific similarity metrics using multiple gradient
contextual bandits.

Conclusions
In our paper, we studied how to learn optimal interventions
sequentially by incorporating causal inference in bandits. We
developed D-UCB and F-UCB algorithms which leverage the
d-separation set identified from the underlying causal graph
and adopt soft intervention to model the arm selection strat-
egy. Our F-UCB further achieves counterfactual individual
fairness in each round of exploration by choosing arms from
a subset of arms satisfying counterfactual fairness constraint.
Our theoretical analysis and empirical evaluation show the
effectiveness of our algorithms against baselines.
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