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Abstract

Traditional subspace clustering aims to cluster data points ly-
ing in a union of vector subspaces. The vectorization of multi-
dimensional data to perform clustering disregards much of
the structure intrinsic to such data. To capture said struc-
ture, in this work we perform clustering in a high-order ten-
sor space rather than a vector space. We develop a novel
low-tensor-rank representation (LTRR) for unfolded matri-
ces of tensor data lying in a low-rank tensor space. The
representation coefficient matrix of an unfolding matrix is
tensorized to a 3-order tensor, and a low-tensor-rank con-
straint is imposed on the resulting coefficient tensor to exploit
the self-expressiveness property. Then, inspired by the multi-
view clustering framework, we develop a multi-mode tensor
space clustering algorithm (MMTSC) that can deal with ten-
sor space clustering with or without missing entries. The ten-
sor is unfolded along each mode, and the coefficient matri-
ces are obtained for each unfolded matrix. The low-tensor-
rank constraint is imposed on a tensor constructed from trans-
formed coefficient tensors for each mode, thereby simultane-
ously capturing the low rank property of the data within each
tensor space and maintaining cluster consistency across dif-
ferent modes. Experimental results demonstrate that the pro-
posed MMTSC algorithm can in many cases outperform ex-
isting clustering algorithms.

Introduction
Subspace clustering has received strong interest in recent
years due to its wide applicability in diverse domains, in-
cluding computer vision (Zhang, Jiang, and Davis 2013;
Wang et al. 2018a), image processing (Hong et al. 2006;
Zhang et al. 2016), and bioinformatics (Zheng et al. 2019;
Peignier, Rigotti, and Beslon 2015). The theoretical under-
pinning of subspace clustering is that high-dimensional data
points lie in a union of low-dimensional subspaces (Vidal
2011), which has led to numerous successful clustering al-
gorithms in the last decades (Parsons, Haque, and Liu 2004;
Elhamifar and Vidal 2013; Gao et al. 2015). Spectral cluster-
ing, in which points are clustered by partitioning a similarity
graph derived from the data (Von Luxburg 2007), is the basis
for some of the most popular and modern clustering meth-
ods, such as sparse spectral clustering (SSC) (Elhamifar and
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Vidal 2013), low rank representation (LRR) (Liu et al. 2010)
and least squares regression (LSR) (Lu et al. 2012).

In traditional subspace clustering, the data is assumed
to lie close to linear (vector) subspaces. To cluster multi-
dimensional data, a common approach is to first map it to
vectors (vectorization), then apply subspace clustering to
cluster the points into groups that belong to the same sub-
space (e.g., see (Vidal 2011) for a survey.) A drawback of
this approach, however, is that it does not fully exploit multi-
way correlations intrinsic to such data (Piao et al. 2016; Fu
et al. 2016). For example, in video sequences, frames could
have strong correlations in the temporal domain, and vector-
ization often falls short of capturing the spatial and temporal
correlations among the adjacent pixels.

Recently, (Ashraphijuo and Wang 2020) presented a the-
oretical study of the problem of clustering tensors drawn
from a union of low-rank tensor spaces. This work brought
to the fore the utility of employing multi-dimensional data
structures when performing clustering, since the number of
data points and the sampling rate requirements to guarantee
correct clustering based on tensor analysis were shown to
be significantly lower than with matrix analysis applied to
unfoldings of the tensor data. However, (Ashraphijuo and
Wang 2020) did not develop actual algorithms for tensor
space clustering, which is the primary focus of our work.

In this paper, we develop a novel low-tensor-rank repre-
sentation (LTRR) and a multi-mode tensor space clustering
(MMTSC) algorithm to cluster data lying in a union of ten-
sor spaces with or without missing entries. By leveraging a
tensor circular unfolding scheme (Yu et al. 2018, 2019), the
tensor can be unfolded into several matrices along differ-
ent modes and the corresponding representation coefficient
matrices are obtained. In sharp contrast to SSC and LRR
which impose a sparse and low rank constraint on the repre-
sentation coefficient matrices, we impose a low-tensor-rank
constraint on the transformed coefficient tensors to capture
the self-expressiveness property of the tensor data. Then, a
multi-mode clustering algorithm is proposed, which simul-
taneously captures the low-tensor-rank property for each co-
efficient tensor and the consistency of clustering across the
different modes. The main contributions of this paper are
summarized as follows:

• We propose a novel low-tensor-rank representation for
unfolding matrices of high-dimensional data lying in a
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Figure 1: Generation of the transformed coefficient tensor. For the (1,1)-mode, every 2 columns of the OTCU matrix represent
a subtensor. Each 2 × 2 block in the representation coefficient matrix is vectorized to a 4 × 1 vector, such that the matrix is
tensorized to a transformed coefficient tensor of size 4× 4× 4. For the (1,2)-mode, every column represents a subtensor, such
that the representation matrix itself can be directly treated as a 4× 4× 1 transformed coefficient tensor. Finally, the coefficient
tensors corresponding to the different modes can be concatenated along the 3-rd dimension.

low-rank tensor space, and prove that the representative
coefficient tensor will be of low tensor rank.

• We develop a multi-mode tensor space clustering algo-
rithm for data lying in a union of tensor spaces. The algo-
rithm finds a low-tensor-rank self-representation across
different modes of unfolding matrices and imposes clus-
ter consistency across all modes. Further, the algorithm
can handle tensors with missing entries.

• We conduct experiments on both synthetic and real data
demonstrating that the proposed clustering algorithm
outperforms existing algorithms.

Related Work
Multi-way data clustering. Some clustering algorithms that
take advantage of the intrinsic structure of multi-way data
were developed in recent years. The ordered subspace clus-
tering (OSC) algorithm (Tierney, Gao, and Guo 2014) and
the ordered sparse clustering with block-diagonal prior (BD-
OSC) (Wu et al. 2015) assume the data is obtained se-
quentially in time or space. Several algorithms model 3-
order tensor data by a union of free submodules, including
the sparse submodule clustering method (SSmC) (Kernfeld,
Aeron, and Kilmer 2014), sparse and low-rank submodule
clustering (SLRSmC) (Piao et al. 2016) and t-SVD-based
tensor low-rank representation (t-SVD-TLRR) (Zhou et al.
2019). By directly enforcing low Tucker rank on the tensor
data, a tensor low-rank representation (Tucker-TLRR) and a
sparse coding-based (Tucker-TLRRSC) subspace clustering
method were proposed in (Fu et al. 2016). Further, (Jegelka,
Sra, and Banerjee 2009) developed a combination tensor
clustering (CoTeC) algorithm, which clusters data along
each dimension. In sharp contrast to the foregoing methods,
here we assume that the data lies in a tensor space and define
a new representation coefficient for tensor unfolding matri-
ces of each mode. As this is a different formulation, it ne-
cessitates entirely different algorithm design.

Multi-view subspace clustering (MVSC). In this frame-
work, multiple feature sets are integrated to perform clus-
tering (Gao et al. 2015). By exploiting both the consistency
and complementarity of information across multi-view data,
MVSC was shown to yield better clustering performance
than single view clustering, which was demonstrated in nu-
merous recent works including (Cao et al. 2015; Zhang et al.
2017; Xie et al. 2018; Gao et al. 2020; Wang et al. 2018b).
Our work shares some similarity with MVSC in that it lever-
ages cluster consistency across different ‘views’ to improve
performance, but also addresses a different problem and uses
an altogether different methodology. In particular, unlike
MVSC where each view has a different feature set, in our
setting, the data from the different modes originates and is
mapped from the same tensor, which calls for alternative
means to capture existing correlations across the different
modes to yield accurate clustering.
Subspace clustering with missing data (SCMD). Many
algorithms with different underlying principles were de-
veloped to address SCMD when some of the data entries
are missing (Lane et al. 2019; Yang, Robinson, and Vidal
2015; Elhamifar 2016; Fan and Chow 2017; Li and Vidal
2016; Pimentel-Alarcón et al. 2016). Incomplete multi-view
clustering (IMC) extends SCMD to the multi-view domain,
where the feature sets may have some missing views and
missing entries. Several methods were proposed for solving
the IMC problem, such as (Tao et al. 2019; Li, Jiang, and
Zhou 2014; Shao, He, and Philip 2015; Xu, Tao, and Xu
2015; Zhao, Liu, and Fu 2016). Our work extends SCMD
by modeling data in tensor spaces.

Preliminaries
Notation. Uppercase script letters are used to denote ten-
sors (e.g., X ), and boldface letters to denote matrices (e.g.,
X). An N -order tensor is defined as X ∈ RI1×...×IN ,
where Ii, i ∈ [N ] := {1, . . . , N}, is the dimension
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Tensor model r∗⟨l,d⟩ for X⟨l,d⟩

CP r(r1 = r2 = · · · = rN = r)

Tucker min{
∏l+d−1

i=l ri,
∏l+N−1

j=l+d rj}
Tensor Train (TT) rlrl+d

Tensor Ring (TR) rlrl+d

Table 1: r∗⟨l,d⟩ for different tensor models.

of the i-th way of the tensor, and Xi1...iN denotes the
(i1, i2, . . . , iN )-th entry of tensor X . For a 3-rd order tensor
(i.e., N = 3), the notation X (:, :, i),X (:, i, :),X (i, :, :) de-
notes the frontal, lateral, horizontal slices of X , respectively.
The Frobenius norm of tensor X is defined as ∥X∥F =√∑

i1...iN
|Xi1...iN |2. Next, we review the definition of the

tensor circular unfolding along with its properties.
Definition 1 (Tensor Circular Unfolding (TCU) (Yu et al.
2018, 2019)). Let X ∈ RI1×I2×···×IN be an N -order tensor.
The (l,d)-mode tensor circular unfolding of X is a matrix
denoted by X⟨l,d⟩ of size

∏l+d−1
i=l Ii ×

∏l+N−1
j=l+d Ij , whose

elements are defined by

X⟨l,d⟩
(
il · · · il+d−1, il+d · · · il+N−1

)
=X (i1, i2, . . . , iN )

with Il+N = Il, il+N = il for l = 1, . . . , N and

ia · · · ib =1 +
b∑

c=a

(ic − 1)
c−1∏
j=a

Ij .

TCU was originally proposed for the tensor ring decom-
position model (Zhao et al. 2016). In this work, we apply
TCU to more tensor decomposition models, including CAN-
DECOMP/PARAFAC (CP) (Kiers 2000), Tucker (Tucker
1966) and Tensor Train (TT) (Oseledets 2011). The follow-
ing theorem characterizes the rank property of TCU under
different tensor models.
Theorem 1. Assume X ∈ RI1×...×IN is an N-order tensor
under the CP/Tucker/TT/TR decomposition model with mul-
tilinear rank r = [r1, . . . , rN ]. Then, for each tensor, the
rank r⟨l,d⟩ of the circular unfolding matrix X⟨l,d⟩ satisfies

r⟨l,d⟩ := rank
(
X⟨l,d⟩

)
≤ r∗⟨l,d⟩ ,

where r∗⟨l,d⟩ is given in Table 1 with rl+N = rl.

Theorem 1 extends (Yu et al. 2019, Theorem 1)
on the TR model. It can be seen from Table 1 that
r∗⟨l,d⟩ is directly related to the tensor rank. If r∗⟨l,d⟩ ≪
max{

∏l+d−1
i=l Ii,

∏l+N−1
j=l+d Ij}, X⟨l,d⟩ will be low rank. In

other words, the columns of X⟨l,d⟩ can be represented as
a linear combination of a basis consisting of at most r∗⟨l,d⟩
columns from X⟨l,d⟩. Based on this observation, we define a
tensor space containing a set of subtensors.
Definition 2 (Tensor space). Given a set of N -order sub-
tensors Xi ∈ RI1×I2×...×IN−1×1, i = 1, . . . , IN , define
X ∈ RI1×I2×...×IN as the concatenation of all subten-
sors along the N -th dimension. If X has multilinear rank

r = [r1, . . . , rN ] under the CP/Tucker/TT/TR decomposi-
tion model, we say that the subtensors {Xi}Ni=1 lie in a CP/-
Tucker/TT/TR tensor space with dimension (rank) vector r.
Specifically, the columns of the TCU matrix X⟨l,d⟩ for any
l, d ∈ [1, . . . , N ] lie in an r⟨l,d⟩-dimensional subspace.

We remark that our definition of tensor space above is
more general than that in (Ashraphijuo and Wang 2020) and
(Zhou et al. 2019) where the unfolding dimension and the
tensor order are restricted to N and 3, respectively.

Tensor Space Clustering
Similar to subspace clustering, the task of tensor space clus-
tering is to group subtensors drawn from a union of tensor
spaces, which can be stated as follows.
Data Model 1 (Tensor space clustering (Ashraphijuo and
Wang 2020)). The data tensor X ∈ RI1×I2×...×IN can
be represented as X = Φ(X 1, . . . ,X k, . . . ,XK), where
X k ∈ RI1×I2×...IN−1×ck , k = 1, 2, . . . ,K , IN =

∑K
k=1 ck.

The operator Φ(·) permutes and concatenates the subten-
sors Xi ∈ RI1×I2×...×IN−1×1, i = 1, . . . , IN along the N -
th dimension. The subtensors in X k lie in the k-th tensor
space of dimension vector rk = [rk1 , . . . , r

k
N ].

In this work, we are interested in clustering the subtensors
Xi into K groups such that the subtensors in each group
belong to the same tensor space.

Low-Tensor-Rank Representation
Low Rank Representation (LRR)
The LRR algorithm (Liu et al. 2010) finds a low-rank rep-
resentation of a data matrix X ∈ Rm×n whose columns are
drawn from a union of K independent subspaces of dimen-
sions {rk}Kk=1. It finds a representation coefficient matrix
C ∈ Rn×n by solving the convex optimization problem

min
C

∥C∥∗ s.t. X = XC , (1)

where ∥.∥∗ denotes the nuclear norm. A segmentation of the
data is then obtained by applying spectral clustering to an
affinity matrix W = |C| + |CT |. The underlying principle
of LRR is that if the rank r = rank(X) =

∑K
k=1 rk of

the data matrix X is such that r ≪ min{m,n}, then the
representation coefficient matrix C will be low rank.

In the tensor space clustering problem, given a tensor sat-
isfying Data Model 1, for X k in the k-th tensor space, we
have that rank(Xk

⟨l,d⟩) = rk⟨l,d⟩, i.e., the columns of Xk
⟨l,d⟩

lie in an rk⟨l,d⟩-dimensional subspace. Therefore, for a ten-
sor X lying in a union of K tensor spaces, the columns of
the unfolding matrix X⟨l,d⟩ lie in a union of K subspaces of
dimensions {rk⟨l,d⟩}

K
k=1. Hence, we can apply the LRR sub-

space clustering algorithm to X⟨l,d⟩. Specifically, the repre-
sentation matrix can be obtained by solving

min
C

∥C∥∗ s.t. X⟨l,d⟩ = X⟨l,d⟩C , (2)

and the columns can then be grouped via spectral clustering.
However, note that multiple columns in X⟨l,d⟩ may repre-
sent the same subtensor (see Figure 1), but ∥C∥∗ does not
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capture this ‘group’ consistency. To this end, one should use
an alternative constraint on C, which will be introduced in
this work.

Low-Tensor-Rank Representation (LTRR)
In this paper, we develop a new representation for tensor
space clustering. We first propose an ordered TCU to group
the columns belonging to the same subtensor.
Definition 3 (Ordered Tensor Circular Unfolding (OTCU)).
Given a TCU matrix X⟨l,d⟩ of tensor X , the ordered TCU
X̄⟨l,d⟩ is obtained by re-sorting the columns of X⟨l,d⟩ as

X̄⟨l,d⟩:,v =


[
X⟨l,d⟩

]
:,o

, N − l + 1 > d[
XT

⟨l,d⟩

]
:,o

, N − l + 1 ≤ d
(3)

where X:,i and Xi,: represents the i-th column and row of
the matrix X, respectively, The relation between v and o is
o = D((p(v)− 1)IN + c(v)− 1) + q(v), where

c(v) =⌊(v − 1)/(LD)⌋+ 1, q(v) = mod{v − 1, D}+ 1

p(v) = ⌊(v − (c(v)− 1)LD − 1)/D⌋+ 1

{L,D} =

{
{
∏l−1

i=1 Ii,
∏N−1

j=l+d Ij}, N − l + 1 > d

{
∏k+d−N−1

i=1 Ii,
∏N−1

j=l Ij}, N − l + 1 ≤ d

Specifically, by rewriting X̄⟨l,d⟩ as the group form X̄⟨l,d⟩ =

[X1 X2 . . . XIN ], Xi ∈ R[
∏N−1

i=1 Ii/(LD)]×LD is a subma-
trix unfolded from the i-th subtensor.

Figure 1 illustrates the process of generating the trans-
formed coefficient tensor. Using the OTCU operation above,
the columns representing the same subtensors are grouped.
After obtaining the representation matrix C, each LD×LD
block is vectorized into an L2D2 vector. Finally, all the
vectors are stacked in a 3-rd order tensor of size IN ×
IN ×L2D2. We denote the resulting transformed coefficient
tensor as C = Θ(C), where Θ(·) denotes the above ten-
sorization procedure, whereby C is reshaped into a tensor
C ∈ RIN×IN×L2D2

. The following lemma characterizes the
tensor C obtained from a tensor X lying in a tensor space.
Lemma 1. Suppose X ∈ RI1×...×IN is an N -order ten-
sor with multilinear rank [r1, . . . rN ]. For an OTCU ma-
trix X̄⟨l,d⟩, let C be the self-representation matrix obtained
using (2). Then, the transformed coefficient tensor C =

Θ(C) ∈ RIN×IN×L2D2

is a tensor with multilinear rank
[r<1,N−1>, 1, r<1,N−1>] under the TR model. Further, the
concatenation of the tensor C obtained from X̄⟨l,d⟩ for any
l, d along the 3-rd dimension will also have the multilinear
rank [r<1,N−1>, 1, r<1,N−1>].

The following proposition generalizes Lemma 1 for a ten-
sor generated from a union of tensor spaces.
Proposition 1. Suppose X ∈ RI1×...×IN is an N -order
tensor generated from Data model 1, Cl,d is a self-
representation matrix for the OTCU matrix X̄⟨l,d⟩ obtained
using (2), l, d = 1, . . . , N , and Cl,d is the corresponding
transformed coefficient tensor. Then, for a tensor C gen-
erated by concatenating any tensors in {Cl,d}Nl,d=1 along

the 3-rd dimension, the multilinear rank of tensor C will be
[
∑K

k=1 r
k
<1,N−1>, 1,

∑K
k=1(r

k
<1,N−1>)] under TR model.

We name the above representation for OTCU the low-
tensor-rank representation (LTRR). LTRR has two main ad-
vantages. First, it allows us to capture various group consis-
tency relations among the columns that would not be possi-
ble to capture by the rank constraint on C in LRR. Second,
it resolves the problem of integrating representation matri-
ces for different unfolding matrices of disparate dimensions,
making it possible to ensure consistency across the different
modes (see supplementary document for more explanation).

Proposed Multi-Mode Clustering Method
In this section, we present our algorithm for tensor space
clustering based on LTRR. Similar to multi-view cluster-
ing (Gao et al. 2020), we treat an (l, d)-mode OTCU matrix
X̄⟨l,d⟩ as a view and find a representation matrix Cl,d for
X̄⟨l,d⟩. The rank constraint is imposed on a representation
tensor C integrated from different representation matrices.
Specifically, given M modes {li, di}Mi=1, we solve the fol-
lowing optimization problem

min
E,C

λ∥Ω ◦E∥2,1 + ranktr(C) s.t.

Xm = XmCm +Em,m = 1, . . . ,M

C = Ψ(Θ(C1),Θ(C2), . . . ,Θ(CM ))

E = [f(E1); f(E2); . . . ; f(EM )]

(4)

where Xm is short for X̄⟨lm,dm⟩, ranktr(C) denotes the ten-
sor ring rank of C, ◦ is the Hadamard product, and the Ψ(·)
operator stacks the tensors along the 3-rd dimension. f(Em)
is obatined by first folding the self-expressiveness error ma-
trix for the m-th mode, Em, back to a tensor with the same
size as X , then unfolding along the (N − 1)-th dimension.
The L2,1-norm ∥ ·∥2,1 is used to promote column sparsity of
E (Zhang et al. 2017). We also define the inverse mapping
Cm = Ψ−1

m (C).
We also consider the case where X has missing entries.

In this case, we fill the missing entries with 0 and introduce
a mask matrix Ω. An entry of Ω is 1 if the corresponding
error is computed from observed entries, otherwise it is set
to 0. The intuition is similar to the projected zero-filled SSC
(PZF-SSC) algorithm for subspace clustering with missing
data (Lane et al. 2019), where the self-expressiveness error
is only measured on the observed entries to discount unwar-
ranted errors over the zero-filled unobserved entries.

The formulation above resembles the t-SVD based Multi-
view Subspace Clustering (t-SVD-MSC) (Xie et al. 2018)
but there are important differences. First, here the unfolding
matrices from all views share the same data. Second, the
representation matrices Cl may not have the same size so
they cannot be simply merged. Third, t-SVD-MSC does not
consider the missing data case. Fourth, we use a tensor ring
rank model for the constraint on C.

Solving the Problem Using Tensor-Ring Nuclear
Norm Minimization and ADMM
Minimizing ranktr(C) is an NP-hard problem. In this work,
we use a tensor ring nuclear norm minimization-based
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method (Yu et al. 2019) to relax the tensor ring rank con-
straint to a convex optimization problem. Specifically, by
introducing new variables {G(i)}3i=1, (4) can be rewritten as

min
E,C

λ∥Ω ◦E∥2,1 +
∑3

i=1

1

3
∥G(i)

<i,2>∥∗ s.t.

Xm = XmCm +Em,m = 1, . . . ,M,

C = Ψ(Θ(C1),Θ(C2), . . . ,Θ(CM ))

E = [f(E1); f(E2); . . . ; f(EM )]

G(i) = C, i = 1, 2, 3 .

(5)

The problem in (5) can be efficiently solved using an
ADMM-based algorithm. Specifically, by introducing new
variables {G(i)}3i=1, {W(i)}3i=1 and {Ym}Mm=1, (5) can be
reformulated as the unconstrained minimization of

L
(
C;E;G(1), . . . ,G(3);W(1), . . . ,W(3);Y1, . . .YM

)
= λ∥Ω ◦E∥2,1 +

∑3

i=1

1

3
∥G(i)

<i,2>∥∗

+
M∑

l=m

(
⟨Ym,Xm−XmCm−Em⟩+µ

2
∥Xm−XmCm−Em∥2F

)
+
∑3

i=1

(
⟨W(i), C − G(i)⟩+ β

2

∥∥∥C − G(i)
∥∥∥2
F

)
(6)

Then, we alternatively update the variables as follows.
1. Update Cm: The representation coefficient matrix Cm

for the m-th mode can be obtained as

Cm =argmin
C

µ

∥∥∥∥Xm −XmC−Em +
1

µ
Ym

∥∥∥∥2
F

+ β
∑3

i=1

∥∥∥∥C−G(i)
m +

1

β
W(i)

m

∥∥∥∥2
F

(7)

where G
(i)
m and W

(i)
m are obtained by Ψ−1

m (G(i)) and
Ψ−1

m (W(i)), respectively. The above problem has a closed-
form solution

Cm=

(
3β

µ
I+XT

l Xm

)−1 (
XT

mXm −XT
mEm

+
1

µ
(XT

mYm + β
∑3

i=1
G(i)

m −
∑3

i=1
W(i)

m )

) (8)

2. Update E: The variable E can be updated as

E=argmin
E

λ∥Ω ◦E∥2,1+
∑M

m=1
(⟨Ym,Xm−XmCm

−Em⟩+ µ

2
∥Xm −XmCm −Em∥2F

)
=argmin

E

λ

µ
∥Ω ◦E∥2,1 +

1

2
∥E−B∥2F

(9)

where B is constructed by vertically concatenating the ma-
trices Xm−XmCm+ 1

µYm together along the columns. The
above problem has the following solution (Xie et al. 2018)

E:,i =


∥Ω:,i◦B:,i∥2−

λ
µ

∥Ω:,i◦B:,i∥2
Ω:,i ◦B:,i + (1−Ω:,i) ◦B:,i,

∥Ω:,i ◦B:,i∥2 > λ
µ

(1−Ω:,i) ◦B:,i, otherwise
(10)

Algorithm 1: Multi-mode tensor space clustering (MMTSC)

Input: X , Ω, {(lm, dm)}Mm=1, β, λ, µ, ρ and ϵ.
1: initial matrices {Cm}Mm=1, {Ym}Mm=1, tensors

{G(i)}3i=1 and {W(i)}3i=1.
2: repeat
3: compute {Cm}Mm=1 using (8).
4: compute E using (10).
5: compute {G(i)}3i=1 using (12).
6: compute {Ym}Mm=1 and {W(i)}3i=1 using (13).
7: update µ = ρµ, β = ρβ.
8: until

∑3
i=1 ∥C − G(i)∥2F /∥C∥2F < ϵ

9: obtain the affinity matrix by A =
∑S

i=1 |C(:, :, i)|+ |C(:
, :, i)|T , where S is the number of frontal slices.

10: apply spectral clustering using A and obtain cluster la-
bel vector c.

Output: clustering label c

3. Update G(i): The tensors G(i) can be obtained by solving

G(i)=argmin
G

∥G<i,2>∥∗+ 3β∥C−G+ 1

β
W(i)∥2F (11)

The above problem has a closed-form solution

G(i) = foldi

[
Γ 1

3β
(M<i,2>)

]
(12)

where M = C− 1
βW

(i), Γ(·) denotes the thresholding SVD
operation and foldi(·) folds the matrix back to the tensor.
4.Update {W(i)}3i=1 and {Ym}Mm=1:

Ym = Ym + µ(Xm −XmCm −Em),

W(i) = W(i) + β(C − G(i))
(13)

We name the above algorithm Multi-mode tensor space
clustering (MMTSC). The pseudocode for MMTSC is pre-
sented in Algorithm 1. To improve convergence, we set the
parameters µ and β to increase geometrically with the itera-
tions (Nishihara et al. 2015).

Proving convergence in multi-block settings is known to
be generally hard. We note that the authors in (Xie et al.
2018) established convergence guarantees of the t-SVD-
MSC under two sufficient conditions, namely, full column
rank of representations of the unfolding matrices and mono-
tonicity of the iterates by the convexity of the Lagrangian
function. Despite the differences in formulations between
our algorithm and t-SVD-MSC, we could still establish simi-
lar convergence guarantees for the proposed algorithm under
the same conditions of t-SVD-MSC.

Experimental Results
In this section, we carry out experiments to verify the per-
formance of the proposed method. We compare the perfor-
mance with several existing clustering methods, including
matrix-based methods LRR, SSC, SSC-PZF (Yang, Robin-
son, and Vidal 2015), the sequential OSC method (Tier-
ney, Gao, and Guo 2014), and the tensor-based method t-
SVD-TLRR (Zhou et al. 2019). We use the clustering ac-
curacy (percentage of correctly classified subtensors) for
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evaluation with synthetic data. For real data, the perfor-
mance is evaluated using the accuracy and the normalized
mutual information (NMI) between the clustering results
and the ground truth labels. The suffix “+TC” appended to
a method’s name designates first applying the tensor ring
completion algorithm PTRC (Yu et al. 2020) to complete
the missing pixels then applying the clustering method. For
the proposed MMTSC, we add a suffix “-M” to repre-
sent the number of modes used by the algorithm. We set
lm = m, dm = ⌈N/2⌉,m = 1, . . . ,M . The parameters
for MMTSC are set to λ = 0.1M , µ = 0.01, β = 0.1,
ρ = 1.1, ϵ = 10−3. We tune the parameters of the algo-
rithms that we compare against so that they achieve their
best performance in our experiments. All experiments were
performed using MATLAB R2018b on a desktop PC with a
2.6-GHz processor and 16GB of RAM. The code is available
at https://github.com/he1c/LTRR-TensorSC.

Synthetic Data
In this section, the performance of the algorithms is inves-
tigated using synthetic data. The data is generated from a
union of TR tensor spaces following Data Model 1, with
model parameters N = 4, K = 10, I1 = · · · = I3 = 10.
The elements of TR rank rk for all k are set to the same
value r. All values of ck are set to the same value c = 10.
The entries of the TR core tensors are generated indepen-
dently from a Gaussian distribution with zero mean and unit
variance. All tensors are scaled to the range [−1, 1]. Then,
p× 100% of entries are selected as the observed entries and
the remaining entries are marked as unobserved (filled with
0). Further, i.i.d. additive Gaussian noise with zero mean and
variance 0.04 is added to the observed entries of the tensor.

First, we analyze the clustering performance with differ-
ent rank r and observation rate p. The values of r and p are
selected from the intervals [1, 20] and [0.05, 1], respectively.
For a fixed combination of r and p, the clustering accuracy is
evaluated by averaging over 20 Monte Carlo (MC) runs with
different tensors, observation locations and noise. Figure 2
displays the phase transition of the accuracy as function of
r and p for different clustering algorithms, where whiter re-
gions indicate higher accuracy. Our algorithm is shown to
exhibit better phase transitions. Specifically, given a fixed r,
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Figure 2: Phase transitions for different rank r and observa-
tion rate p(%).
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Figure 3: Phase transitions for different rank r and number
of subtensors per cluster c (p = 0.5).
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Figure 4: Phase transitions for different rank r and number
of subtensors per cluster c (p = 1).

MMTSC with 2 and 4 modes requires a smaller observation
rate to achieve accurate clustering.

Second, we study the clustering performance with differ-
ent numbers of subtensors per cluster. The observation rate p
is selected as 0.5 and 1. The number of subtensors per clus-
ter c is varied from 2 to 40. For each c, 20 MC runs are per-
formed. The phase transition plots of the average accuracy
in the c and r plane are depicted in Figures 3 and 4 for dif-
ferent algorithms. As shown, MMTSC with 2 and 4 modes
has the best phase transitions. Specifically, given a certain
r, it requires less subtensors per cluster for accurate cluster-
ing. Further, as can be seen from Figure 3, tensor completion
may bias the clustering results as it may not accurately com-
plete the tensor due to high rank r.

Real Dataset
In this section, we verify the performance in clustering im-
age and video sequences using three datasets described next.

YUV dataset1 contains a collection of color videos from
different scenes. For each video, a sequence consisting of
the first 50 frames is selected. Each frame is converted to
grayscale and down-sampled to 36×44, yielding a subtensor
of size 36×44×50. For each MC run, we randomly select 10
videos clips. The video clips (subtensors) are concatenated
along the temporal dimension resulting in a tensor of size
36×44×800. For the proposed method, the observed tensor
is reshaped to a 5-order tensor of size 6× 6× 4× 11× 800,
while for the matrix-based methods the observed tensor is
reshaped to a matrix of size 1584× 800.
UCSD dataset2 provides 18 short videos containing differ-

1http://trace.eas.asu.edu/yuv/
2http://www.svcl.ucsd.edu/projects/background subtraction/
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Dataset p metric LRR+TC SSC+TC OSC+TC t-SVD-
TLRR+TC

SSC-
PZF

MMTSC-
1

MMTSC-
1+TC

MMTSC-
2

MMTSC-
2+TC

YUV

0.1 Acc 0.1680 0.3850 0.1800 0.3980 0.6780 0.7260 0.6920 0.8820 0.9010
NMI 0.0433 0.2785 0.0605 0.3309 0.7094 0.6724 0.6740 0.8330 0.8920

0.3 Acc 0.1790 0.9750 0.7690 0.9950 0.8460 0.9630 1 0.9800 1
NMI 0.0541 0.9820 0.7375 0.9906 0.9330 0.9593 1 0.9760 1

0.5 Acc 0.1630 0.8550 0.7760 1 0.9090 0.9520 1 0.9990 1
NMI 0.0428 0.9543 0.7724 1 0.9598 0.9583 1 0.9979 1

1 Acc 0.1610 0.8620 0.7600 1 0.8530 1 1 0.9060 0.9060
NMI 0.0347 0.9548 0.7646 1 0.9461 1 1 0.9606 0.9606

Coil20

0.1 Acc 0.2074 0.2009 0.2653 0.2894 0.6264 0.6296 0.5981 0.6787 0.6481
NMI 0.1030 0.0857 0.1602 0.1980 0.6301 0.6250 0.5985 0.7005 0.6919

0.3 Acc 0.1903 0.5597 0.7227 0.7514 0.6981 0.8227 0.7870 0.6894 0.7722
NMI 0.0682 0.6416 0.6785 0.7489 0.7406 0.8365 0.8021 0.7527 0.8003

0.5 Acc 0.1565 0.5597 0.7079 0.7667 0.7366 0.8125 0.7690 0.7463 0.7565
NMI 0.0338 0.7348 0.7181 0.7868 0.7516 0.8325 0.8105 0.7763 0.8172

1 Acc 0.1574 0.7523 0.7060 0.7907 0.7512 0.7537 0.7537 0.7097 0.7088
NMI 0.0323 0.8016 0.7148 0.8225 0.8101 0.8234 0.8234 0.8096 0.8096

UCSD

0.1 Acc 0.1676 0.4810 0.1713 0.3405 0.5389 0.5320 0.7271 0.6311 0.8172
NMI 0.0463 0.4154 0.0517 0.2378 0.4687 0.4912 0.6949 0.5993 0.8267

0.3 Acc 0.1627 0.8161 0.3234 0.8522 0.8155 0.8763 0.8843 0.8547 0.9126
NMI 0.0454 0.9218 0.2140 0.8857 0.8624 0.8980 0.9105 0.8949 0.9590

0.5 Acc 0.1764 0.7862 0.4001 0.8775 0.8705 0.8837 0.9081 0.8717 0.9228
NMI 0.0495 0.9116 0.2908 0.9183 0.9255 0.9200 0.9357 0.9161 0.9634

1 Acc 0.1680 0.8012 0.3455 0.8979 0.7993 0.9032 0.9032 0.9243 0.9243
NMI 0.0430 0.8911 0.2353 0.9353 0.8856 0.9425 0.9425 0.9650 0.9650

Table 2: Comparison of the clustering performance of different algorithms for three datasets.

ent dynamic scenes. For each MC run, 10 videos consist-
ing of the first 50 frames are randomly selected (if a video
has less than 50 frames, we use all its frames). The frames
are resized to form a tensor of size 36 × 56 × Nf with to-
tal number of frames Nf ≤ 500. For the proposed method,
the observed tensor is reshaped to a 5-order tensor of size
6× 6× 7× 8×Nf , while for the matrix-based methods the
observed tensor is reshaped to a matrix of size 2016×Nf .
Coil20 dataset3 is a collection of grayscale images, includ-
ing 20 objects taken from different angles. An image is
taken for each object every 5 degrees, so each object has
72 images. For each MC run, we stack the 720 images
from 10 randomly selected objects to form a tensor of size
36×36×720. For the proposed method, the observed tensor
is reshaped to a 5-order tensor of size 6× 6× 6× 6× 720,
while for the matrix-based methods the observed tensor is
reshaped to a matrix of size 1296× 720.

After obtaining the above tensor data, the subtensors
(frames) are randomly shuffled along the temporal dimen-
sion. Given observation rate p, the observed tensor with
missing and noisy entries is generated by removing (1 −
p) × 100% of the pixels (filled with 0), then adding i.i.d.
Gaussian noise with variance 0.001 to the observed pixels.

We test the clustering performance for different values
of p. For each p, 20 MC runs with different videos, frame
orders, missing locations and noise are performed. Table 2
shows the average accuracy and NMI for different values
of p for various clustering algorithms. The best accuracy or

3https://cs.columbia.edu/CAVE/software/softlib/coil-20.php

NMI is shown in bold and the second best is underlined. Our
algorithm achieves the best overall performance. Specifi-
cally, when p is small (i.e., p = 0.1), the proposed method
with 2 modes obtains better results than with single mode.
When p becomes large, the proposed MMTSC with the sin-
gle mode yields the best results in YUV and Coil20, while
MMTSC with 2 modes performs best in UCSD. In general,
our algorithm yields better clustering performance because
our proposed LTRR representation can identify and capture
more intrinsic structure from the high-order tensor.

Conclusion

In this work we developed a novel low-tensor-rank represen-
tation (LTRR) for unfolded matrices of tensor data lying in
a low-rank tensor space. The representation coefficient ma-
trix for each unfolding matrix is tensorized to a transformed
coefficient tensor, which is theoretically proved to have a
low-tensor-rank property. Further, we develop a multi-mode
tensor space clustering algorithm (MMTSC) that can deal
with tensor space clustering with or without missing en-
tries. The proposed method imposed a low-tensor-ring-rank
constraint on the concatenated transformed coefficient ten-
sor from different modes, which simultaneously captures the
low rank property within each tensor space and maintains
cluster consistency across different modes. Experimental re-
sults on both synthetic and real datasets verify the superior
performance of the proposed MMTSC over existing cluster-
ing algorithms.

6899



Acknowledgements
This work was supported by NSF CAREER Award CCF-
1552497 and NSF Award CCF-2106339.

References
Ashraphijuo, M.; and Wang, X. 2020. Union of Low-Rank
Tensor Spaces: Clustering and Completion. Journal of Ma-
chine Learning Research, 21(69): 1–36.
Cao, X.; Zhang, C.; Fu, H.; Liu, S.; and Zhang, H. 2015.
Diversity-induced multi-view subspace clustering. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 586–594.
Elhamifar, E. 2016. High-rank matrix completion and clus-
tering under self-expressive models. Advances in Neural In-
formation Processing Systems, 29: 73–81.
Elhamifar, E.; and Vidal, R. 2013. Sparse subspace clus-
tering: Algorithm, theory, and applications. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 35(11):
2765–2781.
Fan, J.; and Chow, T. W. 2017. Matrix completion by least-
square, low-rank, and sparse self-representations. Pattern
Recognition, 71: 290–305.
Fu, Y.; Gao, J.; Tien, D.; Lin, Z.; and Hong, X. 2016. Tensor
LRR and sparse coding-based subspace clustering. IEEE
Transactions on Neural Networks and Learning Systems,
27(10): 2120–2133.
Gao, H.; Nie, F.; Li, X.; and Huang, H. 2015. Multi-view
subspace clustering. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 4238–4246.
Gao, Q.; Xia, W.; Wan, Z.; Xie, D.; and Zhang, P. 2020.
Tensor-SVD based graph learning for multi-view subspace
clustering. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 34, 3930–3937.
Hong, W.; Wright, J.; Huang, K.; and Ma, Y. 2006. Multi-
scale hybrid linear models for lossy image representation.
IEEE Transactions on Image Processing, 15(12): 3655–
3671.
Jegelka, S.; Sra, S.; and Banerjee, A. 2009. Approximation
algorithms for tensor clustering. In International Confer-
ence on Algorithmic Learning Theory, 368–383. Springer.
Kernfeld, E.; Aeron, S.; and Kilmer, M. 2014. Clustering
multi-way data: A novel algebraic approach. arXiv preprint
arXiv:1412.7056.
Kiers, H. A. 2000. Towards a standardized notation and ter-
minology in multiway analysis. Journal of Chemometrics:
A Journal of the Chemometrics Society, 14(3): 105–122.
Lane, C.; Boger, R.; You, C.; Tsakiris, M.; Haeffele, B.; and
Vidal, R. 2019. Classifying and comparing approaches to
subspace clustering with missing data. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion Workshops.
Li, C.-G.; and Vidal, R. 2016. A structured sparse plus struc-
tured low-rank framework for subspace clustering and com-
pletion. IEEE Transactions on Signal Processing, 64(24):
6557–6570.

Li, S.-Y.; Jiang, Y.; and Zhou, Z.-H. 2014. Partial multi-
view clustering. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 28.
Liu, G.; Lin, Z.; Yu, Y.; et al. 2010. Robust subspace seg-
mentation by low-rank representation. In International Con-
ference on Machine Learning (ICML), volume 1, 8.
Lu, C.-Y.; Min, H.; Zhao, Z.-Q.; Zhu, L.; Huang, D.-S.; and
Yan, S. 2012. Robust and efficient subspace segmentation
via least squares regression. In European Conference on
Computer Vision, 347–360. Springer.
Nishihara, R.; Lessard, L.; Recht, B.; Packard, A.; and Jor-
dan, M. 2015. A general analysis of the convergence of
ADMM. In International Conference on Machine Learning,
343–352.
Oseledets, I. V. 2011. Tensor-train decomposition. SIAM
Journal on Scientific Computing, 33(5): 2295–2317.
Parsons, L.; Haque, E.; and Liu, H. 2004. Subspace clus-
tering for high dimensional data: a review. ACM SIGKDD
Explorations Newsletter, 6(1): 90–105.
Peignier, S.; Rigotti, C.; and Beslon, G. 2015. Subspace
clustering using evolvable genome structure. In Proceedings
of the 2015 Annual Conference on Genetic and Evolutionary
Computation, 575–582.
Piao, X.; Hu, Y.; Gao, J.; Sun, Y.; and Lin, Z. 2016. A sub-
module clustering method for multi-way data by sparse and
low-rank representation. arXiv preprint arXiv:1601.00149.
Pimentel-Alarcón, D.; Balzano, L.; Marcia, R.; Nowak, R.;
and Willett, R. 2016. Group-sparse subspace clustering with
missing data. In IEEE Statistical Signal Processing Work-
shop (SSP), 1–5.
Shao, W.; He, L.; and Philip, S. Y. 2015. Multiple incom-
plete views clustering via weighted nonnegative matrix fac-
torization with L2,1 regularization. In Joint European Con-
ference on Machine Learning and Knowledge Discovery in
Databases, 318–334. Springer.
Tao, H.; Hou, C.; Yi, D.; Zhu, J.; and Hu, D. 2019. Joint
embedding learning and low-rank approximation: A frame-
work for incomplete multiview learning. IEEE Transactions
on Cybernetics.
Tierney, S.; Gao, J.; and Guo, Y. 2014. Subspace clustering
for sequential data. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 1019–1026.
Tucker, L. R. 1966. Some mathematical notes on three-mode
factor analysis. Psychometrika, 31(3): 279–311.
Vidal, R. 2011. Subspace clustering. IEEE Signal Process-
ing Magazine, 28(2): 52–68.
Von Luxburg, U. 2007. A tutorial on spectral clustering.
Statistics and Computing, 17(4): 395–416.
Wang, Q.; Chen, M.; Nie, F.; and Li, X. 2018a. Detecting
coherent groups in crowd scenes by multiview clustering.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 42(1): 46–58.
Wang, Y.; Wu, L.; Lin, X.; and Gao, J. 2018b. Multiview
spectral clustering via structured low-rank matrix factoriza-
tion. IEEE Transactions on Neural Networks and Learning
Systems, 29(10): 4833–4843.

6900



Wu, F.; Hu, Y.; Gao, J.; Sun, Y.; and Yin, B. 2015. Ordered
subspace clustering with block-diagonal priors. IEEE Trans-
actions on Cybernetics, 46(12): 3209–3219.
Xie, Y.; Tao, D.; Zhang, W.; Liu, Y.; Zhang, L.; and Qu,
Y. 2018. On unifying multi-view self-representations for
clustering by tensor multi-rank minimization. International
Journal of Computer Vision, 126(11): 1157–1179.
Xu, C.; Tao, D.; and Xu, C. 2015. Multi-view learning with
incomplete views. IEEE Transactions on Image Processing,
24(12): 5812–5825.
Yang, C.; Robinson, D.; and Vidal, R. 2015. Sparse subspace
clustering with missing entries. In International Conference
on Machine Learning, 2463–2472.
Yu, J.; Li, C.; Zhao, Q.; and Zhao, G. 2019. Tensor-ring
nuclear norm minimization and application for visual data
completion. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 3142–3146.
Yu, J.; Zhou, G.; Li, C.; Zhao, Q.; and Xie, S. 2020. Low
tensor-ring rank completion by parallel matrix factorization.
IEEE Transactions on Neural Networks and Learning Sys-
tems.
Yu, J.; Zhou, G.; Zhao, Q.; and Xie, K. 2018. An effective
tensor completion method based on multi-linear tensor ring
decomposition. In IEEE Asia-Pacific Signal and Informa-
tion Processing Association Annual Summit and Conference
(APSIPA ASC), 1344–1349.
Zhang, C.; Hu, Q.; Fu, H.; Zhu, P.; and Cao, X. 2017. Latent
multi-view subspace clustering. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
4279–4287.
Zhang, H.; Zhai, H.; Zhang, L.; and Li, P. 2016. Spectral–
spatial sparse subspace clustering for hyperspectral remote
sensing images. IEEE Transactions on Geoscience and Re-
mote Sensing, 54(6): 3672–3684.
Zhang, Y.; Jiang, Z.; and Davis, L. S. 2013. Learning struc-
tured low-rank representations for image classification. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 676–683.
Zhao, H.; Liu, H.; and Fu, Y. 2016. Incomplete multi-modal
visual data grouping. In International Joint Conference on
Artificial Intelligence (IJCAI), 2392–2398.
Zhao, Q.; Zhou, G.; Xie, S.; Zhang, L.; and Cichocki,
A. 2016. Tensor ring decomposition. arXiv preprint
arXiv:1606.05535.
Zheng, R.; Li, M.; Liang, Z.; Wu, F.-X.; Pan, Y.; and Wang,
J. 2019. SinNLRR: a robust subspace clustering method for
cell type detection by non-negative and low-rank represen-
tation. Bioinformatics, 35(19): 3642–3650.
Zhou, P.; Lu, C.; Feng, J.; Lin, Z.; and Yan, S. 2019. Ten-
sor low-rank representation for data recovery and clustering.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 43(5): 1718–1732.

6901


