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Abstract
Unsupervised reinforcement learning aims to train agents to
learn a handful of policies or skills in environments with-
out external reward. These pre-trained policies can acceler-
ate learning when endowed with external reward, and can
also be used as primitive options in hierarchical reinforce-
ment learning. Conventional approaches of unsupervised skill
discovery feed a latent variable to the agent and shed its em-
powerment on agent’s behavior by mutual information (MI)
maximization. However, the policies learned by MI-based
methods cannot sufficiently explore the state space, despite
they can be successfully identified from each other. There-
fore we propose a new framework Wasserstein unsupervised
reinforcement learning (WURL) where we directly maximize
the distance of state distributions induced by different poli-
cies. Additionally, we overcome difficulties in simultaneously
training N(N > 2) policies, and amortizing the overall re-
ward to each step. Experiments show policies learned by
our approach outperform MI-based methods on the metric
of Wasserstein distance while keeping high discriminability.
Furthermore, the agents trained by WURL can sufficiently
explore the state space in mazes and MuJoCo tasks and the
pre-trained policies can be applied to downstream tasks by
hierarchical learning.

Introduction
Autonomous agents can learn to solve challenging tasks by
deep reinforcement learning, including locomotive manip-
ulation (Lillicrap et al. 2015); (Haarnoja et al. 2018) and
game playing (Mnih et al. 2015); (Silver et al. 2016). The
reward signal specified by the task plays an important role
of supervision in reinforcement learning. However, recent
research reveals the possibilities that agents can acquire di-
verse skills or policies in the absence of reward signal (Ey-
senbach et al. 2019); (Gregor, Rezende, and Wierstra 2016);
(Achiam et al. 2018). This setting is called unsupervised re-
inforcement learning.

Practical applications of unsupervised reinforcement
learning have been studied. The skills learned without re-
ward can serve as primitive options for hierarchical RL in
long horizon tasks (Eysenbach et al. 2019). Also the prim-
itive options may be useful for transferring across differ-
ent tasks. In model-based RL, the learned skills enables the
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agent to plan in the skill space (Sharma et al. 2020). Unsu-
pervised learning methods may alleviate the cost of super-
vision: in certain cases, designing reward function requires
human supervision (Christiano et al. 2017). The intrinsic re-
ward derived from unsupervised learning can enhance ex-
ploration when combined with task reward (Houthooft et al.
2016); (Gupta et al. 2018).

The key point of unsupervised reinforcement learning is
how to learn a set of policies that can sufficiently explore the
state space. Previous methods make use of a latent variable
and maximize the mutual information (MI) between the la-
tent variable and the behavior (Eysenbach et al. 2019). Con-
sequently the diversity in the latent space is cast into the
state space. These methods are able to obtain different skills
which are distinguishable from each other. However, limita-
tions of MI-based methods are pointed out as the diversity of
learned skills is restricted by the Shannon entropy of the la-
tent variable. In addition, discriminability of skills does not
always lead to the goal of sufficient exploration of the envi-
ronment.

In this paper, we propose a new approach of unsuper-
vised reinforcement learning which is essentially different
form MI-based methods. The motivation of our method is
to increase the discrepancy of learned policies so that the
agents can explore the state space extensively and reach the
state as “far” as possible compared to other policies. This
idea incentivizes us to employ a geometry-aware metric to
measure the discrepancy between the state distributions in-
duced by different policies. In recent literature of genera-
tive modeling, the optimal transport (OT) cost is a new di-
rection to measure distribution distance (Tolstikhin et al.
2018) since it provides a more geometry-aware topology
than f -divergences, including GAN (Nowozin, Cseke, and
Tomioka 2016). Therefore, we choose Wasserstein distance,
a well-studied distance from optimal transport, to measure
the distance between different policies in unsupervised re-
inforcement learning. By maximizing Wasserstein distance,
the agents equipped with different policies may drive them-
selves to enter different areas of state space and keep as “far”
as possible from each other to earn greater diversity.

Our contributions are four-fold. First, we propose a
novel framework adopting Wasserstein distance as discrep-
ancy measure for unsupervised reinforcement learning. This
framework is well-designed to be compatible with various
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Wasserstein distance estimation algorithms, both in primal
form and in dual form. Second, as Wasserstein distance is
defined on two distributions, we extend our framework to
multiple policy learning. Third, to address the problem of
sparse reward provoked by Wasserstein distance estimation,
we devise an algorithm to amortize Wasserstein distance be-
tween two bunches of samples to stepwise intrinsic reward.
Four, we empirically demonstrate our approach surpasses
the diversity of MI-based methods and can cover the state
space by incremental learning.

Distribution Discrepancy Measure
In this Section, we briefly review Wasserstein distance and
its estimation methods.

Wasserstein Distance and Optimal Transport
Measuring discrepancy or distance between two probabil-
ity distributions can be seen as a transport problem (Villani
2009). Consider two distributions p, q on domains X ⊆ Rn

and Y ⊆ Rm. Let Γ[p, q] be the set of all distributions on
product space X ×Y , with their marginal distributions on X
and Y being p, q respectively. Therefore, given a proper cost
function c(x, y) : X × Y → R for moving mass from x to
y, the Wasserstein distance is defined as

Wc(p, q) = inf
γ∈Γ[p,q]

∫
X×Y

c(x, y)dγ. (1)

The joint distribution family Γ[p, q] essentially forms a fam-
ily of bijective plans transporting probability mass from p
to q. Minimizing the transport cost is an optimal transport
problem. The optimization problem suffers from supercu-
bic complexity, since the problem becomes linear program-
ming when X and Y are finite discrete sets (Cuturi 2013);
(Genevay et al. 2016). To circumvent the difficulties, a regu-
larizer is added to the optimization objective. The smoothed
Wasserstein distance is defined as

W̃c(p, q) = inf
γ∈Γ[p,q]

[∫
X×Y

c(x, y)dγ + βKL(γ|pq)
]
.

(2)
Minimizing the cost together with the KL divergence en-
courages the joint distribution γ(x, y) to move close to
p(x)q(y). As β → 0, the smoothed distance converges to
Wc(p, q) (Pacchiano et al. 2020).

The objective function is convex if c(x, y) is a proper
cost function. Therefore the infimum can be calculated ei-
ther by primal formulation or dual formulation. In the fol-
lowing sections, we introduce practical methods estimating
Wasserstein distance from distribution samples.

Primal Form Estimation
Solving the optimal transport problem from the primal for-
mulation is hard. However, the problem has analytical so-
lutions when the distributions are on one-dimensional Eu-
clidean space and cost function is lp measure (p ≥ 0) (Row-
land et al. 2019). Inspired by 1-D Wasserstein distance es-
timation, we may estimate Wasserstein distance in high di-
mensional Euclidean spaces by projecting distributions to R.

Suppose p, q are probability distributions on Rd. For a vector
v on the unit sphere Sd−1 in Rd, the projected distribution
Πv(p) is the marginal distribution along the vector by inte-
grating p in the orthogonal space of v. Estimating Wasser-
stein distance on 1-D space results sliced Wasserstein dis-
tance (SWD) (Wu et al. 2019); (Kolouri, Rohde, and Hoff-
mann 2018):

SW (p, q) = Ev∼U(Sd−1) [W (Πv(p),Πv(q))] , (3)

where U(Sd−1) means the uniform distribution on unit
sphere Sd−1. In practical use, the projected distribution
Πv(p̂) of empirical distribution p̂ = 1

N

∑N
n=1 δxn

can be
written as Πv(p̂) = 1

N

∑N
n=1 δ⟨xn,v⟩, where ⟨·, ·⟩ denotes

inner product and δ is Dirac distribution.
To reduce estimation bias of SWD, Rowland et al. (2019)

proposed projected Wasserstein distance (PWD) by disen-
tangling coupling calculation and cost calculation. PWD ob-
tains optimal coupling by projecting samples to R, and cal-
culates costs in original space Rd rather than the projected
space.

Dual Form Estimation
Define set A = {(u, v)|∀(x, y) ∈ X × Y : u(x) − v(y) ≤
c(x, y)}. By Fenchel-Rockafellar duality, the dual form of
Wasserstein distance is (Villani 2009)

Wc(p, q) = sup
(µ,ν)∈A

Ex∼p(x),y∼q(y) [µ(x)− ν(y)] , (4)

where µ : X → R and ν : Y → R are continuous functions
on their domains. The dual formulation provides us a neu-
ral approach to estimate Wasserstein distance, circumvent-
ing the difficulties to find the optimal transport plan between
two probability distributions. The dual form of smoothed
Wasserstein distance shows more convenience since there
are no constraints on µ, ν:

W̃c(p, q) = sup
µ,ν

Ex∼p(x),y∼q(y) [µ(x)− ν(y)

− β exp

(
µ(x)− ν(y)− c(x, y)

β

)
] .

(5)

Alternative dual formulation emerges when X = Y . It is the
most common case that two distributions are defined in the
same space. Under this assumption, Kantorovich-Rubinstein
duality gives another dual form objective in which only
one function with Lipschitz constraint is optimized (Villani
2009).

Wc(p, q) = sup
∥f∥L≤1

Ex∼p(x),y∼q(y) [f(x)− f(y)] . (6)

The maxima of dual problem theoretically equals to the
minima of primal problem. However, sliced Wasserstein
distance and projected Wasserstein distance have no such
guarantee. Nonetheless, the primal form estimation methods
show competitive accuracy empirically.

Wasserstein Unsupervised Reinforcement
Learning

MI-based Unsupervised Reinforcement Learning
Traditional unsupervised reinforcement learning adopts mu-
tual information to seek diverse skills. Mutual information
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Figure 1: Examples of Jensen-Shannon divergence and Wasserstein distance between q0 and q1. q0 and q1 are uniform distribu-
tions over a round plate with radius r. The distance between the centers of q0, q1 varies from 0 to 3r.

between two random variables is popularly perceived as
the degree of empowerment (Gregor, Rezende, and Wier-
stra 2016); (Kwon 2021): I(X;Y ) = H(X) −H(X|Y ) =
H(Y ) − H(Y |X). For instance, DIAYN (Eysenbach et al.
2019) mainly aims to maximize I(S;Z), the mutual infor-
mation between latent variables and states reached by agent.
Conventionally, the prior of latent variable p(z) is fixed to a
uniform distribution which has maximal entropy. The max-
imization process of I(S;Z) broadcasts the diversity in Z
to states S through policy π(a|s, z). However, estimating
mutual information involves intractable posterior distribu-
tion p(z|s). With the tool of variational inference, a feasible
lower bound is ready by approximating p(z|s) with qϕ(z|s).
We call qϕ(z|s) a learned discriminator trying to recognize
the latent variable behind the policy from behavior. For ex-
ample, the discriminator is a neural net predicting labels as
in classification tasks when p(z) is a categorical distribution.

From the view of optimization, the agent and the discrim-
inator are trained in the cooperative way to maximize the
same objective. This learning process comes to the end im-
mediately after the discriminator can successfully infer z
behind the policy. However, the learned policy is not nat-
urally diverse enough. We will explain this claim by a sim-
ple example. Suppose the latent variable Z is randomly se-
lected from {0, 1}. The mutual information I(S;Z) equals
to the Jensen-Shannon divergence between the two con-
ditional probability distributions q0 = p(s|Z = 0) and
q1 = p(s|Z = 1). As illustrated in Fig. 1, the JS divergence
reaches the maximal value when the supports of q0, q1 do
not overlap. Actually, the decomposition of mutual informa-
tion I(S;Z) = H(Z)−H(Z|S) also implies that I(S;Z) is
upper bounded by H(Z), which is fixed by a predetermined
distribution.

To address this issue, we propose our method that uses
Wasserstein distance as intrinsic reward to encourage the
agent to explore for farther states. In Fig. 1, Wasserstein
distance provides information about how far the two dis-
tributions are, while the JS divergence fails. Therefore, our
method will drive the agent to reach different areas as far as
possible in the unknown space of valid states.

Algorithm 1: Naive WURL (test function)

Initialize two policy πθ1 , πθ2 , and replay buffers for each
policy D1 = {}, D2 = {}. Intialize test functions.
while Maximum number of episode is not reached do

Select policy l randomly or in turn. done = False.
while Not done do

Sample action from πθl , execute, and receive s′

and done.
if l = 1 then

Set reward r = f(s) or r = µ(s).
else

Set reward r = −f(s) or r = −ν(s).
end if
Dl=Dl ∪ {(s, a, s′, r)}.
Train πθl with SAC.
Train test functions by sampling D1, D2.

end while
end while

Wasserstein Distance as Intrinsic Reward
The Wasserstein distance can only measure discrepancy be-
tween two distributions. Therefore for the most naive ap-
proach to Wasserstein unsupervised reinforcement learning
(WURL), we train a policy pair parameterized by πθ1 , πθ2 ,
with Wasserstein distance between the state distributions
pπθ1

(s), pπθ2
(s) as their intrinsic reward.

As Pacchiano et al. (2020) mentioned, dual form esti-
mation allows us to assign reward at every step using test
functions. We adopt two manners of dual formulation, TF1
(Arjovsky, Chintala, and Bottou 2017) and TF2 (Abdullah,
Pacchiano, and Draief 2018). TF1 has one test function f
with Lipschitz constraint optimizing the objective in Eqn. 6.
Meanwhile TF2 has two test functions µ, ν without any con-
straint. µ, ν are trained according to Eqn. 5. As long as the
test functions are optimal dual functions, the test functions
give scores of each state. By splitting the maximization ob-
jective in Eqn. 6, we can assign f(x) as reward for policy 1,
and assign −f(y) as reward for policy 2 to push Wc(p, q)
higher. Similar treatment can be applied to TF2. Combining
RL training and test function training, we obtain Alg. 1.

However, primal form estimation can only be executed
after policy rollout by collecting states in one episode and
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compute the distance with states sampled from the replay
buffer from another policy. We refer this pattern of reward
granting to Alg. 2. The challenge of sparse reward emerges
in this training manner since the agent receives no reward
until the episode ends. We will address this issue later.

The backend training algorithm of RL can vary. Off-
policy algorithms like Soft-Actor-Critic (SAC) (Haarnoja
et al. 2018) and on-policy algorithms like TRPO (Schulman
et al. 2015), PPO (Schulman et al. 2017) can all be deployed
on WURL. Since SAC enjoys higher sample efficiency and
suits environments with continuous action space, we choose
SAC as our backend RL algorithm in our experiments.

Algorithm 2: Naive WURL (final reward)

Initialize two policy πθ1 , πθ2 , and replay buffers for each
policy D1 = {}, D2 = {}.
while Maximum number of episode is not reached do

Select policy l randomly or in turn. Set trajectory S =
{}. done = False.

while Not done do
Sample action from πθl , execute, and receive s′

and done.
S = S ∪ {s′}. Set reward r = 0.
if done then

Sample target batch of states T from D3−l.
Set reward r = W (S, T ) by any Wasserstein

distance estimation method.
end if
Dl=Dl ∪ {(s, a, s′, r)}.
Train πθl with SAC.
Train test functions if WDE algorithm is one of

the dual form methods.
end while

end while

Learning with Multiple Policies
Learning N(N > 2) policies at the same time requires the
arbitrary policy i to keep distance with all other policies. We
expect the policy to maximize the average Wasserstein dis-
tance between state distribution pi induced by policy i, and
other state distributions 1

N−1

∑N
j=1,j ̸=i W (pi, pj). Also we

can use the Wasserstein distance between pi and the average
distribution of all others’. However this incurs underestima-
tion due to the inequality

W

pi,
1

N − 1

N∑
j=1,j ̸=i

pj

 ≤ 1

N − 1

N∑
j=1,j ̸=i

W (pi, pj).

(7)
Practically we use minNj=1,j ̸=i W (pi, pj) as reward to keep
the current policy away from the nearest policy. As the num-
ber of policies growing, the number of times of distance
computing grows as O(N2). The dual form requires O(N2)
test functions which provokes memory and time consump-
tion concern since every test function is a neural network and
needs training. The primal form reward computation com-
plexity also rises to O(N2). Fortunately, sliced Wasserstein

distance or projected Wasserstein distance gives us a faster
and more lightweight solution without training and inferring
through neural networks.

Amortized Reward
In contrast to test functions, the primal form estimation of
Wasserstein distance produces one final reward at the end
of an episode since we cannot estimate distribution distance
from one sample. This nature of primal form estimation in-
curs sparse reward which imposes challenges on reinforce-
ment learning and may impair the performance of value-
based RL algorithms (Andrychowicz et al. 2017).

Noting that the primal form estimation automatically
yields an optimal matching plan, we could decompose the
overall Wasserstein distance into every sample. Formally
speaking, suppose batch S = {xn}Nn=1 is the set of states
in one episode, and batch T = {ym}Mm=1 is the state sample
set of target distribution. We further suppose PN×M is the
optimal matching matrix given cost matrix CN×M . Denote
Pi as the ith row of matrix P , then the sample xi has its own
credit by computing PiC

⊤1 where 1 is N × 1 vector filled
with ones. Combining with projected Wasserstein distance,
we have the following algorithm for crediting amortized re-
ward. The matching matrix computation algorithm is stated
in Appendix.

Algorithm 3: Amortized Reward Crediting

Given source batch S = {xn}Nn=1 and target batch T =
{ym}Mm=1.
Compute cost matrix CN×M

for k from 1 to K do
Sample vk from U(Sd−1)

Compute projected samples x̂
(k)
n = ⟨xn, vk⟩, ŷ(k)m =

⟨ym, vk⟩
Compute matching matrix P

(k)
N×M from projected

samples
Compute reward vector r(k) = P (k)C⊤1

end for
Return mean reward vector r = 1

K

∑K
k=1 r

(k)

Training Schedule
Our proposed method can either train N policies at the same
time or train incrementally by introducing new policies. Pro-
vided N diverse policies, a new policy is trained to maxi-
mize the average Wasserstein distance from other policies
by collecting state samples of policy 1, 2, . . . , N at the be-
ginning. The incremental training schedule provides flexi-
bility of extending the number of diverse policies, especially
when we are agnostic about how many policies are suitable
for a certain environment beforehand. On the contrary, mu-
tual information based unsupervised reinforcement learning
is limited by fixed number of policies that cannot be easily
extended due to the fixed neural network structure.

Similar idea appears in Achiam et al. (2018), in which
skills are trained by a curriculum approach. The objective
of curriculum training is to ease the difficulty of classifying
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Figure 2: In the FreeRun environment, (a) and (b) show the
results of learning 2 policies, across all algorithms. (c) and
(d) show the results of learning 10 policies at the same time.
(a) and (c) show the success rate of the discriminator distin-
guishing policies. (b) and (d) show the mean Wasserstein
distance between every two policies. Error bars represent
standard deviations across 5 random runs.

large number of skills. However, the maximum number of
skills is still fixed in advance therefore one cannot flexibly
add new policies in.

Experiments
Policy Diversity
We first examine our methods on a FreeRun environment
where the particle agent spawns at the center. The agent
can only control the acceleration on the X-Y plane and take
the current position and velocity as observation. The parti-
cle runs freely on the plane with a velocity limit for a fixed
number of steps. We compare the performance of the two
groups of algorithms:

• Mutual information as intrinsic reward: DIAYN, DADS;
• Wasserstein distance as intrinsic reward: TF1, TF2,

PWD, APWD.

DADS (Sharma et al. 2020) is another mutual informa-
tion based algorithm that maximizes I(St+1;Z|St) utilizing
model-based framework. It claims lower entropy of learned
skills than DIAYN. TF1 and TF2 are two methods which
adopt test function optimizing Eqn. 6 and Eqn. 5 respec-
tively. PWD (Projected Wasserstein Distance) uses a primal
form Wasserstein distance estimation method, and APWD is
the amortized version of PWD to avoid sparse reward stated
in the algorithm section. In the setting of learning 10 poli-
cies, TF1 and TF2 are unavailable since they are not com-
patible with multiple policies. We examine these methods

Figure 3: Visualized policies in MuJoCo Ant environment.
The left column shows the rendered trajectories of 5 out of
10 total policies. The right column shows the X-Y position
trajectories of 10 policies with different colors.

from two aspects. First, we train a neural network (discrimi-
nator) to distinguish each policy from rollout state samples,
and compare the success rate of the discriminator. Second,
we estimate the mean Wasserstein distance between every
two state distributions of two different policies. Fig. 2 shows
policies learned by Wasserstein distance based algorithms
generally has greater discriminability, and larger distance
between the state distributions of every two policies. Fig. 2
also demonstrates amortized reward improves performance.

We also examine our algorithms on several MuJoCo tasks,
including three classical locomotion environments, and two
customized point mass environments where a simplified
ball agent wanders in different maps with various land-
scapes and movable objects (see Appendix for demonstra-
tions). Considering the significantly larger action space and
state space in MuJoCo environments, we replace the shared
actor network π(a|s, z), z = OneHot(i) in DIAYN and
DADS with N individual networks πi(a|s), i = 1, . . . , N ,
while keep the discriminator network unchanged. DIAYN
and DADS with individual actors (DIAYN-I and DADS-I
for short) enjoy greater parameter space and they are ca-
pable to learn a more diverse set of policies in MuJoCo
tasks. Table 1 shows in the most cases, all three unsuper-
vised RL approaches yield highly distinguishable policies.
However, APWD achieves better performance on Wasser-
stein distance, which means the policies learned by APWD
are more distantly distributed in the state space. Fig. 3 vi-
sualizes the differences of three policy sets in MuJoCo Ant
environment and clearly shows that APWD encourages the
policies to keep far from each other. The results verify our
hypothesis that mutual information based intrinsic reward is
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Figure 4: Results of training a bunch of policies incrementally. From left to right, new policies tend to reach new territory. As
the number of policy n grows, the policies gradually fill the state space.

unable to drive the policies far from each other when JS di-
vergence saturates.

Incremental Learning
Our method provides flexibility to enlarge the policy set.
New policies can be trained one by one, or trained based on
policies in hand. We show the process of incremental learn-
ing to illustrate how the newly learned policies gradually fill
the state space in Fig. 4. As new policies added in, the par-
ticle agent in FreeRun and TreeMaze runs to new directions
and new areas, and behaves differently (dithering around,
turning, etc.).

Downstream Tasks
In previous unsupervised RL literature, the policies (or
skills) learned without any task reward can be utilized ei-
ther in hierarchical reinforcement learning or in planning
(Eysenbach et al. 2019); (Sharma et al. 2020). Likewise, we
examined our methods on downstream tasks including two
navigation tasks based on the particle environment FreeRun
and MuJoCo Ant. Both tasks require the agent to reach spe-
cific goals in a given order. The agent receives +50 reward
for each goal reached. In FreeRun navigation task, we pe-
nalize each step with small negative reward to encourage the
agent to finish the task as quickly as possible.

To tackle these navigation tasks with pre-trained policies,
we employ a meta-policy to choose one sub-policy to exe-
cute during H steps (H is fixed in advance in our tasks). The
meta-policy observes agent state every H steps , chooses an
action corresponded to a sub-policy, and then receives the
reward that the sub-policy collected during the successive
H steps. Therefore, we can train the meta-policy with any
compatible reinforcement learning algorithms. In our ex-

periments, we adopt PPO as meta-policy trainer (Schulman
et al. 2017).

Table 2 presents the results on FreeRun and MuJoCo Ant
navigation tasks. The pre-trained 10 policies with DIAYN-I,
DADS-I and our proposed method APWD serve as the sub-
policies in the hierarchical framework. Since our method
yields more diverse and distant sub-policies, APWD based
hierarchical policy achieves higher reward in both naviga-
tion tasks without doubt.

Related Work
Learning in a reward-free environment has been attracting
reinforcement learning researchers for long. Early research
takes mutual information as maximization objective. They
explored the topics on which variable of the policy should be
controlled by the latent variable, and how to generate the dis-
tribution of the latent variable. VIC (Gregor, Rezende, and
Wierstra 2016) maximizes I(Z;Sf ) to let the final state of
a trajectory be controlled by latent code Z, while allowing
to learn the prior distribution p(z). VALOR (Achiam et al.
2018) takes similar approach maximizing I(Z; τ) where τ
denotes the whole trajectory, but keeps p(z) fixed by Gaus-
sian distribution. (Hausman et al. 2018) uses a network
to embed various tasks to the latent space. DIAYN (Ey-
senbach et al. 2019) improves the performance by maxi-
mizing I(Z;S), fixing prior distribution, while minimizes
I(Z;A|S). Recent papers show their interests on better
adapting unsupervised skill discovery algorithm with MDP,
on the aspect of transition model and initial state. DADS
(Sharma et al. 2020) gives a model based approach by maxi-
mizing I(S′;Z|S) so that the learned skills can be employed
in planning. Baumli et al. (2020) alternates the objective to
I(Sf ;Z|S0) in order to avoid state partitioning skills in case
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Algorithm Metric HalfCheetah Ant Humanoid

APWD(Ours) DSR 0.981 ± 0.010 0.989 ± 0.002 0.998 ± 0.002
WD 39.21 ± 0.44 8.57 ± 0.39 556.96 ± 27.78

DIAYN-I DSR 0.978 ± 0.006 0.985 ± 0.001 0.999 ± 0.001
WD 13.01 ± 2.89 4.50 ± 0.27 279.94 ± 27.98

DADS-I DSR 0.994 ± 0.003 0.793 ± 0.035 0.999 ± 0.001
WD 11.75 ± 1.90 7.53 ± 0.27 420.67 ± 56.83

Table 1: Policy diversity on three MuJoCo locomotion environments. Metric DSR represents the discriminator success rate and
WD denotes the mean Wasserstein distance between two policies.

Algorithm FreeRun Ant

APWD(Ours) 125.56 ± 12.63 100.00 ± 18.03
DIAYN-I 15.06 ± 26.97 35.00 ± 7.07
DADS-I 109.78 ± 27.08 46.00 ± 10.84

Table 2: Rewards of meta-policies on two hierarchical RL
scenarios. Each meta-policy is trained with a sub-policy set
which contains 10 policies pre-trained with a specific unsu-
pervised RL algorithm listed above.

of various start states.
However, the nature of these methods restrict the diver-

sity of learned skills since the mutual information is upper
bounded by H(Z). Recent research on mutual information
based methods tries to enlarge the entropy of the prior distri-
bution through fitting the uniform distribution on valid state
space U(S). EDL (Campos et al. 2020) takes three seperate
steps by exploring the state space, encoding skills and learn-
ing skills. EDL first uses state marginal matching algorithm
to yield a suffiently diverse distribution of states p(s), then a
VQ-VAE is deployed to encode the state space to the latent
space, which creates p(z|s) as the discriminator to train the
agent. Skew-fit (Pong et al. 2019) adopts goal conditioned
policies where the goal is sampled through importance sam-
pling in the skewed distribution of p(s) acquired by current
policy. The agent can gradually extend their knowledge of
state space by fitting the skewed distribution. Both methods
claim they have state-covering skills.

Wasserstein distance as an alternative distribution dis-
crepancy measure is attracting machine learning researchers
recently (Ozair et al. 2019). Especially in the literature of
generative models (Arjovsky, Chintala, and Bottou 2017);
(Ambrogioni et al. 2018); (Patrini et al. 2020); (Tolstikhin
et al. 2018), Wasserstein distance behaves well in the situa-
tions where distributions are degenerate on a sub-manifold
in pixel space. In reinforcement learning, Wasserstein dis-
tance is used to characterize the differences between poli-
cies instead of commonly used f -divergences, e.g., KL di-
vergence (Zhang et al. 2018). Pacchiano et al. (2020) reports
improvements in trust region policy optimization and evo-
lution strategies, and Dadashi et al. (2021) shows its effi-
cacy in imitation learning by minimizing Wasserstein dis-
tance between behavioral policy and expert policy. Our pro-

posed method inherits the motivations of using Wasserstein
distance as a new distribution discrepancy measure in gen-
erative models and policy optimization. To increase the di-
versity of policies in unsupervised reinforcement learning,
Wasserstein distance appears to be a more appropriate mea-
sure than f -divergences derived from mutual information
based methods.

Discussion
Limitations
There are limitations or difficulties for further application.
First, choosing a proper cost function c(x, y) may be diffi-
cult for other reinforcement learning environments. Second,
implementing WURL in the full dimension of state space
may not properly balance among different dimensions with
different meanings. Third, image-based observations could
not be used for calculating Wasserstein distance directly.
Nevertheless, these limitations or difficulties may imply fu-
ture research directions.

Conclusion
We build a framework of Wasserstein unsupervised rein-
forcement learning (WURL) of training a set of diverse
policies. In contrast to conventional methods of unsuper-
vised skill discovery, WURL employs Wasserstein distance
based intrinsic reward to enhance the distance between dif-
ferent policies, which has theoretical advantages to mutual
information based methods (Arjovsky, Chintala, and Bottou
2017). We overcome the difficulties of extending the WURL
framework for multiple policy learning. In addition, we de-
vise a novel algorithm combining Wasserstein distance esti-
mation and reinforcement learning, addressing reward cred-
iting issue. Our experiments demonstrate WURL generates
more diverse policies than mutual information based meth-
ods such as DIAYN and DADS, on the metric of discrim-
inability (MI-based metric) and Wasserstein distance. Fur-
thermore, WURL excites autonomous agents to form a set
of policies to cover the state space spontaneously and pro-
vides a good sub-policy set for sequential navigation tasks.

Acknowledgements
This work was supported by the National Key R&D Program
of China under Grant 2018AAA0102800, National Natu-
ral Science Foundation of China under Grant 61620106005,

6890



and Beijing Municipal Science and Technology Commis-
sion grant Z201100005820005.

References
Abdullah, M. A.; Pacchiano, A.; and Draief, M. 2018. Re-
inforcement Learning with Wasserstein Distance Regulari-
sation, with Applications to Multipolicy Learning. arXiv
preprint arXiv:1802.03976.
Achiam, J.; Edwards, H.; Amodei, D.; and Abbeel, P. 2018.
Variational option discovery algorithms. arXiv preprint
arXiv:1807.10299.
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