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Abstract

Deep semi-supervised learning (SSL) aims to utilize a size-
able unlabeled set to train deep networks, thereby reducing
the dependence on labeled instances. However, the unlabeled
set often carries unseen classes that cause the deep SSL al-
gorithm to lose generalization. Previous works focus on the
data level that they attempt to remove unseen class data or
assign lower weight to them but could not eliminate their ad-
verse effects on the SSL algorithm. Rather than focusing on
the data level, this paper turns attention to the model param-
eter level. We find that only partial parameters are essential
for seen-class classification, termed safe parameters. In con-
trast, the other parameters tend to fit irrelevant data, termed
harmful parameters. Driven by this insight, we propose Safe
Parameter Learning (SPL) to discover safe parameters and
make the harmful parameters inactive, such that we can miti-
gate the adverse effects caused by unseen-class data. Specif-
ically, we firstly design an effective strategy to divide all pa-
rameters in the pre-trained SSL model into safe and harmful
ones. Then, we introduce a bi-level optimization strategy to
update the safe parameters and kill the harmful parameters.
Extensive experiments show that SPL outperforms the state-
of-the-art SSL methods on all the benchmarks by a large mar-
gin. Moreover, experiments demonstrate that SPL can be inte-
grated into the most popular deep SSL networks and be easily
extended to handle other cases of class distribution mismatch.

Introduction
Deep semi-supervised learning (SSL) has made break-
throughs in many applications, such as medical image anal-
ysis (Han et al. 2021b; Ren, Yeh, and Schwing 2020) , video
object segmentation (Lu et al. 2020b, 2021), and object
tracking (Lu et al. 2020a; Shen et al. 2021). The remarkable
success of deep SSL methods attributes to a large amount
of cheap unlabeled data and a static environment where
we draw labeled data and unlabeled data from an identi-
cal data distribution. The research of deep SSL methods
have grown into a big tree with three main branches: con-
sistency regularization methods (Sajjadi, Javanmardi, and
Tasdizen 2016; Laine and Aila 2017; Tarvainen and Valpola
2017), pseudo-labeling methods (Rizve et al. 2021; Xie et al.
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2020b; Cascante-Bonilla et al. 2021) and some hybrid meth-
ods (Berthelot et al. 2019, 2020; Sohn et al. 2020).

Once the learning environment changes, like unseen-class
instances emerging in the unlabeled data, previous deep SSL
methods often suffer severe performance degradation due to
error propagation introduced by unseen-class unlabeled data
(Oliver et al. 2018; Chen et al. 2020c; Guo et al. 2020). For
example, at the beginning stage of the outbreak of COVID-
19, the unlabeled data inevitably contains some impercepti-
ble COVID-19 instances in the deep SSL pneumonia clas-
sification (Han et al. 2020b, 2021a). These unseen-class in-
stances result in the loss of safety of the pneumonia classifi-
cation model. We define this case as the problem of Safe
Deep semi-supervised learning with Unseen-class unla-
beled data (SDU), which accommodates a variety of real-
world applications but is rarely considered in the literature.

To solve the SDU problem defined above, several safe
deep SSL methods are proposed. Since unseen-class in-
stances contained in unlabeled data can hurt the performance
of seen-class classification, these methods focus on the data
level that attempt to remove unseen-class data (Chen et al.
2020c; Yu et al. 2020) or assign lower weight to unseen-
class data (Guo et al. 2020). Although they have weakened
the negative influence brought by unseen-class instances,
the performance is restricted because they could not thor-
oughly eliminate the adverse effects of unseen-class data.
Some hard unseen-class unlabeled instances inevitably par-
ticipate in the model training, which causes partial parame-
ters fitting to these hard unseen-class data.

Inspired by recent works (Zhang et al. 2021) and (Xia
et al. 2020), we present a novel insight: rather than focus-
ing on data level; it is better to discover safe parameters.
We term the parameters fitting to unseen-class data as harm-
ful parameters and the other as safe parameters. Driven by
this insight, we propose Safe Parameter Learning (SPL) to
reduce the adverse effects caused by unseen-class unlabeled
data in the learning process and thus enhance safe parame-
ters for seen-class classification. SPL first identifies the safe
parameters in the pre-trained SSL model by exploiting the
magnitude of parameter weights and the class distribution
mismatch degree. In this way, SPL divides all parameters
into two parts: safe parameters and harmful parameters. SPL
then suggests a bi-level optimization strategy, where inner-
level optimization aims to enhance the reliability of safe pa-
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rameters by swapping the state of partial safe and harmful
parameters. In contrast, outer-level optimization aims to im-
prove the performance of seen-class classification by further
updating the safe parameters and making the harmful param-
eters inactive.

Our contributions can be summarized as follows:

• To our knowledge, it is the first time to solve the SDU
problem from the perspective of parameter level.

• We propose a novel and effective strategy to categorize
the safe and harmful parameters.

• We propose a novel bi-level optimization strategy to op-
timize safe parameters and make harmful parameters in-
active.

• Experimental results on several representative datasets
show that SPL achieves remarkable improvements com-
pared with the state-of-the-art. Moreover, extensive stud-
ies also verify the universality of SPL.

Related Work
Deep Semi-Supervised Learning. Deep SSL has made
remarkable progress in various machine learning problems.
This remarkable achievement is mainly owed to the exploita-
tion of abundant unlabeled data. Deep SSL methods mainly
contain three categories: consistency regularization meth-
ods, pseudo-labeling methods, and hybrid methods. Consis-
tency regularization methods take advantage of unlabeled
data by forcing the outputs of the original unlabeled data
and the perturbed unlabeled data to be similar (Sajjadi, Ja-
vanmardi, and Tasdizen 2016; Laine and Aila 2017; Tar-
vainen and Valpola 2017). Pseudo-labeling methods lever-
age the model itself to obtain pseudo labels for unlabeled
data (Lee et al. 2013; Xie et al. 2020b; Cascante-Bonilla
et al. 2021; Pham et al. 2020; Rizve et al. 2021). Hybrid
methods (Berthelot et al. 2019, 2020; Sohn et al. 2020) si-
multaneously combine consistency regularization, pseudo-
labeling, and data augmentation (Xie et al. 2020a; Cubuk
et al. 2019; Devries and Taylor 2017). However, the suc-
cess of these methods is based on the assumption that all the
labeled and unlabeled data are derived from the same dis-
tribution. Once this assumption is not satisfied, the perfor-
mance of these SSL methods degrades, even below the per-
formance of supervised learning methods trained with only
labeled data (Oliver et al. 2018).

Safe Semi-Supervised Learning. Safe SSL ensures the
performance of SSL methods is no worse than a simple su-
pervised learning model. The safe SSL problem under study
mainly consists of three situations: data quality (Zhou et al.
2003; Han et al. 2020a; Guo et al. 2020), model uncer-
tainty (Li and Zhou 2015), and measure diversity (Li and
Liang 2019). This paper focuses on the data quality that the
unseen-class instances emerge in unlabeled data. To miti-
gate the performance degradation of seen-class classification
brought by unseen-class instances in unlabeled data, several
deep safe SSL methods are proposed. Guo et al. (2020) pro-
poses to assign soft weights to each unlabeled instance by
a weighting function. Chen et al. (2020c) uses the model to

identify unseen-class instances at the beginning of the train-
ing time but which is unstable. Yu et al. (2020) identifies
unseen-class by considering labeled data as in-distribution
data and unlabeled data as out-of-distribution data. How-
ever, the performance of unseen-class identification is lim-
ited by the small number of in-distribution data and noisy
out-of-distribution data. Cascante-Bonilla et al. (2021) uses
labeled data to train a supervised model and then identify
unseen classes based on the model confidence. However,
as the training process progresses, all unlabeled instances
are involved in the training set. Although these methods
have weakened the adverse effects brought by unseen-class
instances, the improvement of performance is limited due
to inaccurate unseen-class identification. Some unseen-class
unlabeled data are selected to participate in the model train-
ing, which leads to some model parameters inevitably fitting
to the irrelevant data. Different from these methods that fo-
cus on the data level, this paper focuses on the parameter
level and proposes a novel and effective strategy to learn the
safe parameters and make the harmful parameter inactive.

Lottery Tickets Hypothesis. The lottery ticket hypothe-
sis (LTH) was originally proposed in (Frankle and Carbin
2018) which advocates the existence of an independently
trainable sparse sub-network from a dense network. LTH
has been explored widely in numerous contexts, such as im-
age classification (Ma et al. 2021; Chen et al. 2021a), nat-
ural language processing (Gale, Elsen, and Hooker 2019;
Chen et al. 2020a), reinforcement learning (Yu et al.
2019), generative adversarial networks (Chen et al. 2021c),
graph neural networks (Chen et al. 2021b), adversarial ro-
bustness (Cosentino et al. 2019), lifelong learning (Chen
et al. 2020b), out-of-distribution generalization (Zhang et al.
2021), and so on. Different from them, this paper focuses
on the safe SSL problem and propose a new safe parameter
learning strategy to improve seen-class classification.

Safe Parameters Learning
In this section, we first introduce the necessary notations.
Then, we propose Safe Parameter Learning (SPL) to solve
the SDU problem by answering three vital issues: How to
identify the safe/harmful parameters? How to determine the
ratio of safe parameters? Moreover, how to enhance the reli-
ability of safe parameters? The overview of SPL can be seen
in Fig. 1.

Learning Set-Up
Definition 1 Distribution for Safe Semi-supervised Sce-
nario. Given a feature space X ⊂ Rd and the label space
Y , the labeled and unlabeled data have different joint distri-
butions P (X l, Y l) and P (Xu, Y u), where the feature space
X l, Xu ⊂ X and the label space Y l, Y u ⊂ Y .

Definition 2 Safe Deep semi-supervised learn-
ing with Unseen-class unlabeled data (SDU). Let
DL = {(xli, yli)}mi=1 denote the labeled data set, where
m is the number of labeled data, xli ∈ X l, yli ∈ Y l. Let
DU = {xui }ni=1 denote the unlabeled data set, where n
is the number of unlabeled data, xui ∈ Xu, and m � n.
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Figure 1: The overview of SPL for deep safe SSL with class distribution mismatch. Especially, SPL uses a novel and effec-
tive strategy to categorize the safe and harmful parameters, and uses a novel bi-level optimization strategy to optimize safe
parameters and make harmful parameters inactive.

Y l ⊂ Y u and Y new = Y u\Y l, where Y new denotes
unseen classes that only emerge in the unlabeled set DU .
Let K = |Y l| denote the number of seen classes.

Identifying Safe Parameters
The security of parameters has an active correlation with the
magnitude of parameters in the pre-trained model (Han et al.
2015). Therefore, we classify safe and harmful ones based
on the magnitude of the parameters. The process of catego-
rizing parameters is to apply to mask ω on the parameter
θ. The value of ω is ‘0’ or ‘1’. ‘0’ means that the parame-
ter is harmful. ‘1’ means that the parameter is essential for
seen-class classification. Assuming that the ratio of safe pa-
rameters p is known, this process can be described formally
by

ω � θ0 ⇐ θ0 , s.t.
‖ω‖0
k

= p , (1)

where ‖ · ‖0 means the standard `0-norm, � denotes the
element-wise multiplication, k is the number of parameters
and θ0 is the pre-trained model parameters. By Eq. (1), the
process of identifying safe parameters is based on a pre-
trained model. To obtain the pre-trained model, we can use
common SSL methods such as VAT (Miyato et al. 2019), Pi-
Model (Sajjadi, Javanmardi, and Tasdizen 2016), and so on.
The objective function of the pre-training stage is as follows,

θ0 = min
θ
L(θ;DL, DU ) , (2)

where θ0 denotes the weights of the pre-trained model and
L denotes the loss function.

However, we assume that the ratio of safe parameters p is
known when identifying safe parameters. In fact, we need to

estimate p in advance. To achieve that, we design an effec-
tive estimation strategy in the next subsection.

Estimating the Ratio of Safe Parameters
We have presented how to judge the safety of parameters
and then divide them into safe and harmful ones. However,
how to obtain the ratio of safe parameters is also a critical is-
sue. We exploit the class distribution mismatch proportion in
unlabeled data and size proportion degree between labeled
and unlabeled data to help estimate the ratio of safe parame-
ters. Intuitively, if the class distribution mismatch proportion
is high, the number of unseen-class instances is large. The
number of harmful parameters for memorizing unseen-class
instances is then large. Therefore, the number of harmful
parameters has a positive correlation with the class distribu-
tion mismatch proportion. Similarly, if the size proportion
degree between labeled and unlabeled data is low, the num-
ber of unseen-class instances is large. The number of harm-
ful parameters for memorizing unseen-class instances is then
large. The number of harmful parameters has a negative cor-
relation with the ratio of the labeled set. In summary, we
combine the class distribution mismatch proportion and the
ratio of the labeled set to help determine the ratio of safe pa-
rameters. Let δ denote the class distribution mismatch pro-
portion and let τ denote the ratio of the labeled set. If δ is
not known in advance, we can consider the unseen-class in-
stances in the unlabeled set as open set noises and then easily
infer it by (Liu and Tao 2015). τ can be obtained by calcu-
lating m/n, where m denotes the number of instances in
labeled set DL, and n denotes the number of instances in
unlabeled set DU . Then, the ratio p of safe parameters is:

p = 1− δ · (1− τ) . (3)
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According to the estimated ratio p of safe parameters and
magnitude-based safe parameter identification criterion, we
can divide the parameters into safe ones whose masks are set
‘1’ and harmful ones whose masks are set ‘0’.

Last but not least, there is still an important problem that
cannot be ignored: the masks obtained by magnitude-based
safe parameter identification criterion are not reliable. It is
not stable to identify safe parameters simply by the cor-
responding magnitude. Because the security of parameters
cannot be measured by magnitude alone, which is also af-
fected by other factors, such as gradient flow (Wang, Zhang,
and Grosse 2020), input data (Zhang et al. 2021), and so on.
To enhance the safe parameters, we propose an effective bi-
level optimization strategy.

Bi-level Optimization
The objective of the bi-level optimization strategy is to op-
timize the parameters of the network and the masks of the
network parameters. Formally, we define the bi-level opti-
mization by

min
θ
Louter (ω∗ � θ;DL, DU ) ,

s.t. ω∗ = arg min
ω
Linner (ω � θ;V1) ,

(4)

where θ denotes the parameters of network, ω denotes the
mask of parameters, Louter denotes the loss function of
outer-level optimization, Linner denotes the loss function
of inner-level optimization, V1 denotes a part of the vali-
dation set V , |V1|/|V | = 0.7, the remaining validation set
V2 = V \V1 are used to select optimal model for testing.
Eq. (4) can be divided into two stages: first, inner-level opti-
mization seeks the optimal mask ω∗ by minimizing Linner,
then outer-level optimization aims to further enhance seen-
class classification by minimizing Louter. Linner is

Linner =
∑

(xi,yi)∈V1

`(h(xi;ω, θ), yi) , (5)

where ` : Y × Y → R refers to certain loss function, e.g.,
mean squared error or cross entropy loss, and h(·) denotes
the output of model. Louter is defined as follows,

Louter =
∑

xl
i∈DL

`
(
h
(
xli;ω, θ

)
, yli
)

+
∑

xu
i ∈DU

Ω (xui ;ω, θ) ,

(6)
where Ω(·) denotes the regularization term defined by

Ω(x;ω, θ) = ‖h(perturb(x);ω, θ)− h(x;ω, θ)‖22 , (7)

where perturb(·) refers to certain stochastic perturbation.

Optimization Strategy
Eq. (4) is a bi-level optimization problem (Bard 2013),
where one optimization problem is nested within another
problem. The inner-level optimization is to enhance the re-
liability of safe parameter selection by swapping the state
of the partial safe and harmful parameters given a part of
the validation set, whereas the outer-level optimization is
to improve the performance of seen-class classification by

fine-tuning the weights of safe parameters given the learned
mask, labeled data, and unlabeled data. More specifically,
we adopt gradient descent methods to obtain the optimal ω∗
approximately. And the training procedure can be written as:

ωt+1 = ωt − ηω∇ωLinner (ωt � θ;V1) , (8)
where ηω is learning rate for ω, t indicates the t-th iteration.
But it is worth mentioning that the initial mask ω ∈ {0, 1}k,
which fails to back propagate due to discrete value.

To achieve gradient updating to ω, SPL offers two feasible
strategies called hard mask and soft mask. First, SPL relaxes
the mask ω from {0, 1} to continuous values in the interval
[0, 1], denoted by ω̄. Then, hard mask strategy tries to use the
straight-through gradient estimator (Bengio, Léonard, and
Courville 2013) to approximate ∇ωLinner(·). During the
forward propagation, we use the binarization function h(·)
to ω̄ as follows,

ω = h(ω̄) =

{
1 , if ω̄ in the top- pl largest ,
0 , otherwise , (9)

where pl is the special ratio of safe parameters in l-th layer.
When h(ω̄) = 0, the corresponding parameters are con-
sidered as harmful parameters and not involved in forward
propagation, and vice versa. During the backpropagation, re-
laxed mask ω̄ is updated by Eq. (8).

Unlike hard mask strategy using binarization function op-
eration, soft mask strategy tries to use ω̄ with ReLU (Glorot,
Bordes, and Bengio 2011), defined by

ω = ReLU(ω̄) =

{
ω̄ , if ω̄ > 0 ,
0 , otherwise . (10)

By comparing Eq. (9) and Eq. (10), we can know that ω
in hard mask strategy and soft mask strategy during the for-
ward propagation is discrete value and continuous value, re-
spectively. We can also understand the two strategies in this
way, where hard mask strategy can be seen as selecting safe
parameters, and soft mask strategy can be seen as weighting
the parameters according to parameters’ security. The spe-
cific process of the two strategies can be seen in Fig. 1.

These two strategies have their advantages and deficien-
cies. Regarding the hard mask strategy, it strictly controls the
number of safe parameters and achieves the performance im-
provement of seen-class classification with a smaller number
of parameters, while the performance improvement is not as
good as the soft mask strategy. Although the performance
of the soft mask strategy is superior to the hard mask strat-
egy, the soft mask strategy cannot strictly control the ratio
of safe parameters, and all harmful parameters are still being
optimized continuously. We adopt the hard mask strategy to
optimize the mask in our experiments.

By continuously utilizing Eq. (8), we can obtain the op-
timal ω∗ approximately. After that, we compute Louter and
then update the parameters θ:

θt+1 = θt − ηθ∇θLouter (ω∗ � θ;DL, DU ) , (11)
where ηθ is the learning rate for θ.

The whole bi-level optimization process needs 2 × T
round iterations. T is very small compared to the number of
iterations required for the pre-training process. So, the time
spent on the bi-level optimization is very little. The overall
algorithm is summarized in Algorithm 1.
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Algorithm 1: Safe Parameter Learning (SPL).
input : The parameters θ of model, the mask ω of

parameters, the ratio p of safe parameters,
max iterations T, max epochs E, T� E

output: θ, ω
1 /*Pre-training:*/
2 for e = 1 to E do
3 compute loss L based on baseline by θ
4 update θ← SGD with loss L
5 obtain the parameters θ0 of model after pre-train
6 /*Safe Parameters Identification:*/
7 compute threshold based on the ratio p
8 obtain initial mask ω0 according to the threshold
9 ω← ω0

10 /*Bi-level Optimization:*/
11 while not converged do
12 for t = 1 to T do
13 compute loss: Linner (ω � θ;V1)

14 update ω← SGD with loss Linner
15 ω∗ ← ω
16 for t = 1 to T do
17 compute loss: Louter (ω∗ � θ;DL, DU )
18 update θ← SGD with loss Louter
19 end while

Convergence
We show that the update of mask in the inner-level optimiza-
tion algorithm leads to the convergence of Linner(·). Once
the overall ratio of safe parameters p is determined, the ratio
of safe parameters in each layer is also fixed. Let pl denote
the ratio of safe parameters in the l-th layer. Then, we fix the
parameters of the network but optimize the corresponding
masks of parameters.

Suppose Linner(·) is Lipschitz-smooth. ω̄(u, v) is the re-
lated mask of parameter θ(u, v) which connect node u and
v, where node u is in (l − 1)-th layer and node v is in l-th
layer. Let Iv denote the input to node v and Ov denote the
output of node v. Suppose the state of parameter θ(u, v) in
t-th iteration is harmful parameter and θ(j, v) in t-th itera-
tion is safe parameter. Let Ivt+1 denote the input to node v
at (t + 1)-th iteration and Ivt denote the input to node v at
t-th iteration.

Theorem 1 (Convergence.) When parameter θ(u, v) re-
places parameter θ(j, v) as safe parameter in (t+1)-th iter-
ation and the rest of the parameters remains fixed, Linner(·)
is convergent, i.e.,

Linner(Ivt+1) < Linner(Ivt) . (12)

Furthermore, the equality in Eq. (12) holds only when the
replacement does not occur, i.e.,

Linner(Ivt+1) = Linner(Ivt) , (13)

if and only if
Ivt+1 = Ivt . (14)

The specific proof process can be found in the Appendix.

Experiments
In this section, we analyze the effectiveness of SPL on stan-
dard SSL benchmarks using deep convolutional neural net-
works for SSL image classification.

Experimental Setup
Datasets. We evaluate SPL on image classification
datasets: CIFAR-10 (Krizhevsky, Hinton et al. 2009),
CIFAR-100 (Krizhevsky, Hinton et al. 2009) and TinyIm-
ageNet (a subset of ImageNet (Deng et al. 2009)), with dif-
ferent ratios of class mismatch. Detailed introductions to
datasets can be found in the Appendix.

Baselines. We compare SPL on test data that only con-
tain seen-class instances with SSL baselines: Pseudo-
Labeling (PL) (Lee et al. 2013), Pi-Model (PI) (Saj-
jadi, Javanmardi, and Tasdizen 2016), Temporal Ensem-
bling (TE) (Laine and Aila 2017), Mean Teacher (MT) (Tar-
vainen and Valpola 2017), Virtual Adversarial Training
(VAT) (Miyato et al. 2019), UASD (Chen et al. 2020c),
DS3L (Guo et al. 2020), Multi-Task Curriculum (MTC) (Yu
et al. 2020), and Curriculum Labeling (CL) (Cascante-
Bonilla et al. 2021). Moreover, we let supervised method
trained on DL as another baseline.

Implementation Details For a comprehensive and fair
comparison, our experiments are built upon (Oliver et al.
2018) with Pytorch. We use the standard Wide ResNet
(Zagoruyko and Komodakis 2016), i.e., WRN-28-2, as the
base network for training. More details of implementation
are given in the Appendix.

CIFAR-10
Evaluation protocol. To simulate a more realistic SSL
with class distribution mismatch, we construct the unlabeled
data with unseen classes that are not in the labeled data.
Following (Oliver et al. 2018), we perform experiments on
CIFAR-10 for a six-class classification task, using 400 ex-
amples per class. The labeled set contains six classes of an-
imals: bird, cat, deer, dog, frog, horse; while the unlabeled
data comes from all ten classes, with a varying class distri-
bution mismatch proportion from 0% to 60%. For instance,
when the mismatch proportion is 50%, half of the unlabeled
data comes from six classes of animals, and the others come
from the remaining four classes. The test accuracy is re-
ported on the six seen classes.

Comparison with baseline. Fig. 3(a) shows experimen-
tal results on CIFAR-10, including the supervised learning
method, five common SSL methods, and our proposed SPL
under varying class distribution mismatch proportion from
0% to 60%. It can be observed that when increasing the
amount of unseen-class unlabeled data, these SSL methods
degrade drastically. Especially when the class distribution
mismatch proportion reaches 40%, these SSL methods are
inferior to the supervised learning method, which contra-
dicts the original purpose of SSL. However, SPL even out-
performs the supervised learning method by 3.6% when the
class distribution mismatch is 60%. These results demon-
strate that our proposed SPL is very effective against the
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Method CIFAR-10 CIFAR-100 TinyImageNet
ratio=0.3 ratio=0.6 ratio=0.3 ratio=0.6 ratio=0.3 ratio=0.6

Supervised 76.3±0.4 76.3±0.4 58.6±0.5 58.6±0.5 36.5±0.5 36.5±0.5

PI 75.7±0.7 74.5±1.0 59.4±0.3 57.9±0.3 36.9±0.4 36.4±0.5
PL 75.8±0.8 74.6±0.7 60.2±0.3 57.5±0.6 36.6±0.6 35.8±0.4
VAT 76.9±0.6 75.0±0.5 63.3±0.4 61.6±0.6 36.7±0.5 36.3±0.6

DS3L 78.1±0.4 76.9±0.5 - - - -
UASD 77.6±0.4 76.0±0.4 61.8±0.4 58.4±0.5 37.1±0.7 36.9±0.6
MTC 85.5±0.6 81.7±0.5 63.1±0.6 61.1±0.3 37.0±0.5 36.6±0.4
CL 83.2±0.4 82.1±0.4 63.6±0.4 61.5±0.5 37.3±0.7 36.7±0.8

PI+SPL 78.6±0.5 77.2±0.4 60.6±0.2 59.8±0.4 37.8±0.3 37.1±0.6
PL+SPL 79.0±0.4 76.8±0.4 61.7±0.4 60.4±0.4 37.3±0.5 36.6±0.6
VAT+SPL 80.1±0.6 79.9±0.5 65.7±0.2 63.9±0.4 37.7±0.5 37.1±0.5
UASD+SPL 78.2±0.4 76.8±0.6 63.2±0.2 59.5±0.2 38.1±0.4 37.1±0.4
MTC+SPL 85.7±0.3 81.7±0.4 64.2±0.3 63.1±0.4 38.3±0.3 37.3±0.4
CL+SPL 87.8±0.3 84.1±0.5 65.9±0.3 65.5±0.4 38.6±0.5 37.7±0.5

Table 1: Accuracy (%) on the three datasets.

harms caused by class distribution mismatch. In more depth,
we also compare SPL with deep safe SSL methods (such
as DS3L, UASD, MTC, CL). The results of these baseline
methods on CIFAR-10 can be seen in the first column of
Table 1. These baseline methods solve the SDU problem
from sample selection. Different from these baseline meth-
ods, SPL is based on parameter selection. According to the
first column of Table 1, we know that SPL based on CL
achieves the accuracy of 87.8% and 84.1% at class distri-
bution mismatch proportions of 30% and 60%, respectively,
which improves by 2.3% and 2.0% compared to state of the
art. These results show the effectiveness of SPL.

Evaluation on CIFAR-100 and TinyImageNet
Evaluation protocol. We conduct experiments on
CIFAR-100 and TinyImageNet to evaluate SSL under larger
class space. Following the similar setting to CIFAR-10, on
CIFAR-100, we use the first 50 classes as labeled classes
and the remaining 50 classes as unseen classes. And on
TinyImageNet, we use the first 100 classes as labeled
classes and the remaining 100 classes as unseen classes. We
verify the accuracy when the class distribution mismatch
proportion is 30% and 60%, respectively.

Evaluation results. The second column and third column
of Table 1 reports the results on CIFAR-100 and TinyIma-
geNet, respectively. SPL achieves the best results under dif-
ferent class distribution mismatch proportions. For example,
on CIFAR-100, when SPL is incorporated into CL, and the
class distribution mismatch proportion is 60%, SPL signif-
icantly outperforms CL by a large margin, with about 4%
accuracy improvement.

In-depth Analysis
Universality analysis. As shown in Fig. 3(c) and
Fig. 3(d), we incorporate SPL into two typical deep SSL
methods (i.e., PI, PL) on CIFAR-10 and CIFAR-100 under
different class mismatch ratios to demonstrate the universal-
ity of SPL. The results show that the two deep SSL methods

（0.775, 0.606）

Figure 2: Classification accuracy of SPL based on PI on
CIFAR-100 under different ratios of safe parameters with
the class distribution mismatch proportion of 0.3.

can achieve performance improvement by combining SPL.
To further demonstrate the universality of SPL, we also con-
duct experiments on CIFAR-10, CIFAR-100, and TinyIma-
geNet by combining three deep SSL methods and three deep
safe SSL methods with SPL. As shown in Table 1, SPL
achieves state-of-the-art accuracies on all datasets. After
incorporating into existing methods, our algorithm outper-
forms all the original methods, showing its efficacy and uni-
versality. For example, when SPL is built-in CL (CL+SPL)
on CIFAR-10 under the 30% of class mismatch ratio, it sig-
nificantly outperforms CL by a large margin, over 4.6% ac-
curacy. The above results explicitly verify that safe param-
eter learning is an effective approach to solving the SDU
problem.

The ratio of safe parameters. While the above results
have demonstrated the strengths of our proposed SPL for
reducing the adverse effects of unseen-class unlabeled data,
we provide a broader spectrum for more in-depth analysis
for the ratio p of safe parameters. Fig. 2 shows the results
of PI-based SPL on CIFAR-100 under the wider ratios of
safe parameters, in which the ratios of safe parameters are
set from 0.1 to 1.0 or according to Eq. (3). We can see that
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Figure 3: (a): Experiment results on CIFAR-10 under varying class distribution mismatch proportion (from 0% to 60%). (b):
Experiment results on CIFAR-100 with different class distribution mismatch proportion (from 30% to 90%). The shaded area
indicates the standard deviation over five runs. (c): Classification accuracy of PI, PI+SPL, PL, and PL+SPL on CIFAR-10 under
varying class distribution mismatch proportion. (d): Classification accuracy of PI, PI+SPL, PL, and PL+SPL on CIFAR-100
with different class mismatch proportion.
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Figure 4: Each layer’s ratio of safe parameters when the
overall ratio of safe parameters is 0.3.

using the estimated ratio of safe parameters maintains the
best accuracy. Fig. 2 also points that the accuracies with the
different ratios of safe parameters are stable, indicating that
the performance of our proposed SPL is insensitive to the ra-
tio of safe parameters. Fig. 4 shows the specific ratio of safe
parameters in the different layers under WRN-28-2 network
with the estimated ratio of 0.775. From Fig. 4, we can find
that the closer to the input layer, the higher the ratio of safe
parameters, and the closer to the output layer, the lower the
ratio of safe parameters. This phenomenon illustrates that
the unseen-class unlabeled data have the more significant in-
fluence on high-level semantic feature learning.

Method ratio=0.3 ratio=0.4 ratio=0.5 ratio=0.6

CL 63.6±0.4 63.2±0.2 62.4±0.3 61.5±0.5
CL+fine-tuning 62.1±0.5 62.0±0.2 61.1±0.2 61.0±0.5
CL+SPL (HMK) 65.9±0.3 65.1±0.3 65.0±0.3 65.5±0.4
CL+SPL (SMK) 66.9±0.4 67.3±0.3 66.3±0.2 66.7±0.2

Method ratio=0.7 ratio=0.8 ratio=0.9 ratio=1.0

CL 61.5±0.4 59.3±0.2 58.9±0.5 57.9±0.6
CL+fine-tuning 59.2±0.3 57.6±0.1 56.8±0.5 56.4±0.4
CL+SPL (HMK) 63.6±0.3 62.5±0.3 60.9±0.2 60.7±0.4
CL+SPL (SMK) 65.8±0.3 63.8±0.4 63.6±0.3 63.5±0.5

Table 2: Accuracy (%) on CIFAR-100 with the class mis-
match ratio from 30% to 100%.

Hard and soft mask. During the section of optimization
strategy, we offer two optimization ways for ω called hard
mask (HMK) and soft mask (SMK). Then, we compare these
two ways on CIFAR-100, and the experimental results are
shown in Table 2. Whatever the class distribution mismatch
ratio is and whether to use hard mask or soft mask, the accu-
racy of SPL is higher than CL. The performance of soft mask
is higher than hard mask, which demonstrates that weighting
the parameters according to parameters’ safety degree is bet-
ter. Moreover, to verify that the performance improvement is
due to SPL rather than introducing V1, we fine-tune the CL-
based pre-trained model directly using V1. Results show that
introducing V1 directly for fine-tuning cannot lead to perfor-
mance improvement of seen-class classification. SPL uses
V1 for safe parameter learning, which can be seen as adjust-
ing the hyper-parameters using V1, because we don’t change
the value of parameters in this step.

Ablation analysis. We validate the effectiveness of the
components in SPL by ablating them and measuring the per-
formance on CIFAR-10. Table 3 reports the results of abla-
tion studies which contain SPL without pre-training (PT),
SPL without identifying safe parameters (ISP), SPL with-
out bi-level optimization (BLO), SPL without inner-level
optimization (ILO), and SPL without outer-level optimiza-
tion (OLO). We can see that all components have a signifi-
cant effect as removing any of them causes a decline in per-
formance.

Method m=100×6 m=200×6 m=400×6

pre-training 59.7±1.0 71.2±0.7 76.9±0.6

SPL w/o PT 32.5±1.5 33.2±1.2 33.8±1.1
SPL w/o ISP 59.9±0.6 71.2±0.4 77.0±0.5
SPL w/o BLO 59.6±0.7 71.1±0.6 77.2±0.6
SPL w/o ILO 59.4±0.5 70.4±0.4 76.3±0.3
SPL w/o OLO 65.9±0.3 75.5±0.3 79.8±0.2

SPL 66.1±0.4 75.7±0.2 80.1±0.2

Table 3: Seen-class classification accuracy (%) of ablation
studies on CIFAR-10 when the extent of labeled/unlabeled
class mismatch ratio is 30% and pre-trained model is VAT.
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Conclusion
We presented a new analysis of deep safe SSL with unseen-
class unlabeled data, an under-explored but more realistic
scenario. We also proposed a practical method called SPL
guaranteed by solving three critical issues, that are how to
identify the safe/harmful parameters, how to determine the
ratio of safe parameters, and how to enhance the reliability
of safe parameters. Empirical studies show that, unlike the
compared deep SSL methods, SPL still achieves stable per-
formance gain no matter the class distribution mismatch pro-
portion and exceeds the existing deep safe SSL techniques
by a large margin on different datasets. SPL can incorpo-
rate into the most typical deep SSL methods and deep safe
SSL methods when emerging class distribution mismatch.
Beyond this work, it is also worthwhile to build a unified
theoretical analysis work for this new problem. One can also
extend our work into other safe SSL environments.

The Proof of Theorem 1
Proof. Let ω̄t+1(u, v) denote the soft mask of parameter
θ(u, v) after the gradient is updated, which is obtained as
follows,

ω̄t+1(u, v) = ω̄t(u, v)− ηω
∂Linner

∂Iv
θ(u, v)Ou . (15)

Because parameter θ(u, v) replaces parameter θ(j, v) as
safe parameter, we can know ω̄t(u, v) < ω̄t(j, v) but
ω̄t+1(u, v) > ω̄t+1(j, v). Accordingly,

ω̄t+1(u, v)− ω̄t(u, v) > ω̄t+1(j, v)− ω̄t(j, v) (16)

which implies that

−ηω
∂Linner

∂Iv
θ(u, v)Ou > −ηω

∂Linner

∂Iv
θ(j, v)Oj (17)

Let Ivt+1 denote the input to node v at (t+1)-th iteration
and let Ivt denote the input to node v at t-th iteration. Note
that Ivt+1 − Ivt = θ(u, v)Ou − θ(j, v)Oj .

Now, we need to verify Linner(Ivt+1) < Linner(Ivt).
Owing to Linner(·) is Lipschitz-smooth, by Taylor expan-
sion, we obtain the approximation of Linner(Ivt+1) as fol-
lows,

Linner
(
Ivt+1

)
= Linner

(
Ivt +

(
Ivt+1 − Ivt

))
≈ Linner

(
Ivt
)

+
∂Linner

∂Iv
(
Ivt+1 − Ivt

)
= Linner

(
Ivt
)

+
∂Linner

∂Iv
(θ(u, v)Ou − θ(j, v)Oj)

(18)
By Eq. (17), we know that the second item of Eq. (18) less

than zero. Accordingly, Linner(Ivt+1) < Linner(Ivt).

Experiments
Datasets
We evaluate SPL on image classification datasets: CIFAR-
10, CIFAR-100 and TinyImageNet, with different ratios of
class mismatch.

• CIFAR-10 includes 60,000 training images and 10,000
testing images of size 32 × 32 which contains ten cat-
egories: “airline”, “automobile”, “bird”, “cat”, “deer”,
“dog”, “frog”, “horse”, “ship”, and “trunk”. Our exper-
iment carries out six-class classification tasks. We con-
sider animal categories (birds, cats, deer, dogs, frogs, and
horses) as seen classes and the rest as unseen classes. We
select 400 images from each seen category to construct
the labeled data set DL, i.e., 2400 labeled instances.
Meanwhile, 20,000 images in total are randomly selected
as the unlabeled data set DU from all the ten categories.
We adjust the ratio of unseen-class images in the unla-
beled data to modulate class distribution mismatch.

• CIFAR-100 includes 50,000 training images and 10,000
testing images of size 32 × 32 which contains 100 cat-
egories. We use the first half categories (1-50) as seen
classes, and the remaining classes as unseen classes. We
select 100 images from each seen category to construct
the labeled data set DL, i.e., 5000 labeled instances.
Meanwhile, 20,000 images in total are randomly selected
as the unlabeled data set DU from all the 100 categories
with different ratios of unseen classes.

• TinyImageNet contains 200 categories which includes
500 training images and 50 testing images in each cate-
gory. We resize all images to 32 × 32. We use the first
100 categories as seen classes, and the remaining classes
as unseen classes. We select 100 images from each seen
category to construct the labeled data set DL, i.e., 10000
labeled instances. Meanwhile, 40,000 images in total are
randomly selected as the unlabeled data set DU from all
the 200 categories with different ratios of unseen classes.

Hyperparameters

parameter value

max iteration T 300
initial learning rate 0.1
learning decay factor 0.1
learning decay at iteration 100,200

Table 4: Hyperparameter settings of our proposed SPL.
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