
SpreadGNN: Decentralized Multi-Task Federated Learning for
Graph Neural Networks on Molecular Data

Chaoyang He*, Emir Ceyani*, Keshav Balasubramanian*

Murali Annavaram, Salman Avestimehr
University of Southern California, Los Angeles, CA 90089

{chaoyang.he,ceyani,keshavba,annavara,avestime}@usc.edu

Abstract

Graph Neural Networks (GNNs) are the first choice meth-
ods for graph machine learning problems thanks to their abil-
ity to learn state-of-the-art level representations from graph-
structured data. However, centralizing a massive amount of
real-world graph data for GNN training is prohibitive due to
user-side privacy concerns, regulation restrictions, and com-
mercial competition. Federated Learning is the de-facto stan-
dard for collaborative training of machine learning models
over many distributed edge devices without the need for cen-
tralization. Nevertheless, training graph neural networks in a
federated setting is vaguely defined and brings statistical and
systems challenges. This work proposes SpreadGNN, a novel
multi-task federated training framework capable of operating
in the presence of partial labels and the absence of a central
server for GNNs over molecular graphs. We provide conver-
gence guarantees and empirically demonstrate the efficacy of
our framework on a variety of non-I.I.D. distributed graph-
level molecular property prediction datasets with partial labels.
Our results show that SpreadGNN outperforms GNN mod-
els trained over a central server-dependent federated learning
system, even in constrained topologies.

Introduction
Graph Neural Networks (GNNs) (Hamilton, Ying, and
Leskovec 2017) are expressive models that can distill struc-
tural knowledge into highly representative embeddings.
While graphs are the representation of choice in domains
such as social networks (Bian et al. 2020), knowledge graphs
for recommendation systems (Chen et al. 2020), in this work
we focus on molecular graphs that are the core of drug dis-
covery, molecular property prediction (Gilmer et al. 2017;
Kearnes et al. 2016) and virtual screening (Zheng, Fan, and
Mu 2019). Molecular graphs differ from their more well-
known counterparts such as social network graphs. First,
each molecule is a graph representation of the basic atoms
and bonds that constitute the molecule and hence the size of
the graph is small. Second, even though each graph may be
small numerous molecules are being developed continuously
for varied use cases. Hence, what they lack in size they make
up for it in structural heterogeneity. Third, molecules can be

*Equal contribution (alphabetical order).
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

labeled along multiple orthogonal dimensions. Since each
graph has multiple labels the learning itself can be character-
ized as multi-task learning. For instance, whether a molecule
has potentially harmful interactions with a diabetics drug, or
whether that molecule can turn toxic under certain conditions
are distinct labels. Molecular property analysis and label-
ing require wet-lab experiments, which are time-consuming
and resource-costly. As a consequence, many entities may
only have partially labeled molecules even if they know the
graph structure. Finally, molecules are coveted inventions
and hence entities often possess a proprietary graph repre-
sentation that cannot be shared with other institutions for
competitive and regulatory reasons. However, training col-
lectively over a private set of molecular graphs can have
immense societal benefits such as accelerated drug discovery.

Federated Learning (FL) is a distributed learning paradigm
that addresses this data isolation problem via collaborative
training. In this paradigm, training is an act of collaboration
between multiple clients (such as research institutions) with-
out requiring centralized local data while providing a certain
degree of user-level privacy (McMahan et al. 2017; Kairouz
et al. 2019). However, there are still challenges and short-
comings to training GNNs in a federated setting. This setting
(Figure 1) is the typical case in molecular graphs since each
owner may have different molecules and even when they have
the same molecular graph each owner may have an incom-
plete set of labels for each molecule. The left half of Figure
1 shows a simpler case where all clients can communicate
through a central server. However, in practice, the presence
of a central server is not feasible when multiple competing
entities may want to collaboratively learn. The challenges are
further compounded by the lack of a central server as shown
in the right half of the Figure 1. Thus, it remains an open
problem to design a realistic federated learning framework
for molecular GNNs, in which clients only have partial labels
and one in which there is no reliance on a central server. This
is the problem we seek to address in this work.

We propose a multi-task federated learning framework
called SpreadGNN that operates in the presence of multi-
ple, but partial labels for each client and the absence of a
central server as shown in Figure 1. First, we present a multi-
task learning (MTL) formulation to learn from partial labels.
Second, in our MTL formulation, we utilize decentralized
periodic averaging stochastic gradient descent to solve the

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

6865

Centralized Molecular Property Prediction Serverless Molecular Property
Prediction with SpreadGNN

Institution A

Institution B

Institution C

Institution D

Institution A

Institution B

Institution C

Institution D

Figure 1: Serverless Multi-task Federated Learning for Graph Neural Networks.

serverless MTL optimization problem and provide a theoreti-
cal guarantee on the convergence properties, which further
verifies the rationality of our design.

We evaluate SpreadGNN on graph-level molecular prop-
erty prediction and regression tasks. We synthesize non-I.I.D.
and partially labeled datasets by using curated data from the
MoleculeNet (Wu et al. 2018) machine learning benchmark.
With extensive experiments and analysis, we find that Spread-
GNN can achieve even better performance than FedAvg
(McMahan et al. 2016b), not only when all clients can com-
municate with each other, but also when clients are con-
strained to communicate with a subset of other clients. We
plan on publishing the source code of SpreadGNN as well as
related datasets for future exploration.

SpreadGNN Framework
Federated GNNs for Graph-Level Learning
We seek to learn graph-level representations in a federated
learning setting over decentralized graph datasets which can-
not be centralized for training due to privacy and regula-
tion restrictions. For instance, compounds in molecular trials
(Rong et al. 2020) may not be shared across entities because
of intellectual property or regulatory concerns.

Under this setting, we assume that there are K clients
in the FL network, and the kth client has its own dataset

D(k) :=
{(
G

(k)
i ,y

(k)
i

)}N(k)

i=1
, where G(k)

i = (V(k)
i , E(k)

i)

is the ith graph sample in D(k) with node & edge feature
sets X(k) =

{
x

(k)
m

}
m∈V(k)

i

and Z(k) =
{
e

(k)
m,n

}
m,n∈V(k)

i

,

yi
(k) is the corresponding label of G(k)

i , N (k) is the sample
number in dataset D(k), and N =

∑K
k=1N

(k).
Each client owns a GNN with a readout, to learn graph-

level representations. We call this model of a GNN followed

by a readout function, a graph classifier. Multiple clients
are interested in collaborating to improve their GNN models
without necessarily revealing their graph datasets. In this
work, we build our theory upon the Message Passing Neural
Network (MPNN) framework (Gilmer et al. 2017) as most
spatial GNN models (Kipf and Welling 2016; Veličković et al.
2018; Hamilton, Ying, and Leskovec 2017) can be unified
into this framework. The forward pass of an MPNN has
two phases: a message-passing phase (Eq (1)) and an update
phase (Eq (2)). For each client, we define the graph classifier
with an L-layer GNN followed by a readout function as:

m
(k,`+1)
i =AGG

({
M

(k,`+1)
θ

(
h

(k,`)
i ,h

(k,`)
j ,e

(k)
i,j

)
|j∈Ni

})
,`=0,...,L−1

(1)

h
(k,`+1)
i =U

(k,`+1)
Ψ

(
h

(k,`)
i ,m

(k,`+1)
i

)
,`=0,...,L−1 (2)

ŷ
(k)
i =RΦpool,Φtask

({
h

(k,L)
j |j∈V(k)

i

})
(3)

where h(k,0)
i = x

(k)
i is the kth client’s node features, ` is the

layer index, AGG is the aggregation function (e.g., in the GCN
model (Kipf and Welling 2016), the aggregation function is
a simple SUM operation), and Ni is the neighborhood set of
node i. In Eq. (1), Mθ(k,`+1) (·) is the message generation
function which takes the hidden state of current node hi, the
hidden state of the neighbor node hj and the edge features
ei,j as inputs to gather and transform neighbors’ messages.
In other words, Mθ combines a vertex’s hidden state with
the edge and vertex data from its neighbors to generate a
new message. U (k,`+1)

Ψ (·) is the state update function that
updates the model using the aggregated feature m(k,`+1)

i
as in Eq. (2). After propagating through L GNN layers, the
final module of the graph classifier is a readout function
RΦpool,Φtask (·) which allows clients to predict a label for the
graph, given node embeddings that are learned from Eq.(2).
In general the readout is composed of two neural networks:
the pooling function parameterized by Φpool; and a classifier

6866

parameterized by Φtask. The role of the pooling function is to
learn a single graph embedding given node embedding from
Eq (2). The classifier then uses the graph level embedding to
predict a label for the graph.

To formulate GNN-based FL, using the model definition
above, we define W = {θ,Ψ,Φpool,Φtask} as the overall
learnable weights. Note that W is independent of graph
structure as both the GNN and Readout parameters make no
assumptions about the input graph. Thus, one can learnW
using a FL based approach. The the overall FL task can be
formulated as a distributed optimization problem as:

min
W

F (W)
def
= min

W

K∑
k=1

N (k)

N
· f (k)(W) (4)

where f (k)(W) = 1
N(k)

∑N(k)

i=1 L(ŷ
(k)
i ,y

(k)
i) is the kth

client’s local objective function that measures the local em-
pirical risk over the heterogeneous graph dataset D(k). L is
the loss function of the global graph classifier.

With such a formulation, it might seem like an optimization
problem tailored for a FedAvg based optimizers (McMahan
et al. 2016b). Unfortunately, in molecular graph settings this
is not the case for the following reasons. (a) In our setting,
clients belong to a decentralized, serverless topology. There is
no central server that can average model parameters from the
clients. (b) Clients in our setting possess incomplete labels,
hence the dimensions of Φtask can be different on differ-
ent clients in decentralized topologies. For instance, a client
may only have partial toxicity labels for a molecule, while
another client may have a molecule’s interaction properties
with another drug compound. Even with such incomplete
information from each client, our learning task is interested
in classifying each molecule across multiple label categories.

To combat these issues, we aim to propose a federated
learning framework that can achieve model personalization
and decentralized topology simultaneously. Particularly, we
propose a novel decentralized multi-task learning framework
to tackle the aforementioned issues. Next, we will first in-
troduce a centralized FMTL framework for graph neural
networks as preliminary. We then enhance this centralized
FMTL to a serverless and decentralized scenario, which is
named as SpreadGNN. We introduce how we address the
multi-label inconsistent issue and the challenge of correlating
model weights from different client numbers.

Federated Multi-Task Learning with GNNs

Under the regularized MTL paradigm (Evgeniou and Pon-
til 2004), we define the centralized federated graph MTL
problem (FedGMTL) as follows:

min
θ,Ψ,Φpool,Φtask,Ω

K∑
k=1

1

Nk

Nk∑
i=1

L(ŷ(k)
i ,y

(k)
i) +R(W ,Ω),

s.t. Ω ≥ 0 and Tr(Ω) = 1.
(5)

where

R(W ,Ω) =
1

2
λ1 Tr(ΦtaskΩ

−1ΦT
task) +

1

2

∑
χ∈W

λχ||χ||2F

(6)

is the bi-convex regularizer introduced in (Zhang and Yeung
2012). The first term of the Eq. (5) models the summation
of different empirical loss of each client, which is what Eq.
(4) exactly tries to address. The second term serves as a task-
relationship regularizer with Ω ∈ RS×S being the covariance
matrix for S different tasks constraining the task weights
Φtask = [Φtask,1, . . . ,Φtask,S] ∈ Rd×S through matrix trace
Tr(ΦtaskΩ

−1ΦT
task). Recall that each client in our setting may

only have a partial set of tasks in the labels of its training
dataset, but still needs to make predictions for tasks it does
not have in its labels during test time. This regularizer helps
clients relate its own tasks to tasks in other clients. Intuitively,
it determines how closely two tasks i and j are related. The
closer Φtask,i and Φtask,j are, the larger Ωi,j will be. If Ω is an
identity matrix, then each node is independent to each other.
But as our results show, there is often a strong correlation
between different molecular properties. This compels us to
use a federated learning model.

Figure 2-a depicts the FedGMTL framework where clients’
graph classifier weights are using an FL server. While the
above formulation enhances the FMTL with a constrained
regularizer that can be used for GNN learning, we still need
to solve the final challenge, which is to remove the reliance
on a central server to perform the computations in Eq. (5).
Therefore, we propose a Decentralized Graph Multi-Task
Learning framework, SpreadGNN, to extend the FedGMTL
framework to the decentralized case, which is shown in the
Figure 2-c. Note that each client’s learning task remains the
same but the aggregation process differs in SpreadGNN.

SpreadGNN: Serverless Federated MTL for GNNs

In a serverless setting, in which all clients are not necessarily
connected to all other clients through a central server also
makes it impossible to maintain one single task covariance
matrix Ω. Thus, the naive formulation in Equation 5 becomes
obsolete in a serverless case. To combat against this issue, we
propose using distinct covariance matrices Ωk for each client
that are efficiently updated using the exchange mechanism.
We formalize this idea as follows: Consider one particular
client m having task weights Φtask,m ∈ Rd×Sm where Sm is
the number of tasks that client m has. Then, each client local-
izes the optimization procedure in Equation 5 with respect to
his/her neighbors.

In the decentralized setting, we emphasize that clients
can collectively learn an exhaustive set of tasks, even when
clients may not have access to some of the classes in each
label. That is, Si ∩ Sj = ∅ ∀i 6= j and ∪iSi = S. Let
L =

∑K
k=1

1
Nk

∑Nk
i=1 L(ŷ

(k)
i (Xk

i ,Z
k
i W k),y

k
i). Then, the

new non-convex objective function is defined as:

6867

GNN in FL Client K

Step 1 Step 2Client K

Server

Client 1 Client 2 …

a) Centralized Federated Learning b) Graph Multi-Task Learning Block

MTL
Worker 1

MTL
Worker 3

MTL
Worker 2

MTL
Worker 4

c) Decentralized Federated Learning

Figure 2: Federated Graph Multi-Task Learning Framework (FedGMTL).

min
θ,Ψ,Φpool,Φtask,Ω

L+
K∑
k=1

1

2
λ1 Tr(ΦtaskMk

Ω−1
k ΦT

taskMk
) +

1

2

∑
χ∈W k

λχ||χ||2F ,

s.t. Ωk ≥ 0 and Tr(Ωk) = 1, k = 1, 2, ...,K.

(7)

whereW k =
{
θ,Ψ,Φpool,ΦtaskMk

}
is the set of all learn-

able weights for client k,Mk = k ∪Nk is the neighbor set
for client k including itself. This gives rise to: ΦtaskMk

=

[Φtask,1‖Φtask,2‖ . . . ‖Φtask,|Mk|] ∈ Rd×|SMk
| which is the

task weight matrix for client k and its neighbors and || rep-
resents the row-wise concatenation operation. The matrix
Ωk ∈ R|SMk

|×|SMk
| represents the correlation amongst all

the available tasks for the setMk.
To solve this non-convex problem, we apply the alternating

optimization method presented in (Zhang and Yeung 2012),
whereW k and Ωk are updated in an alternative fashion.
Optimizing W k: We define Ω = {Ωi}Ki=1 to represent the
set of correlation matrices for all clients. Fixing Ω, we can
use SGD to updateW k jointly. Then, our problem can then
be reformulated as:

G(W k|Ω) = L+
1

2
λ1

K∑
k=1

Tr(ΦtaskMk
Ω−1
k ΦtaskMk

)

+
1

2

∑
χ∈W

λχ‖χ‖2F .
(8)

where the summation in (8) is amongst all nodes connected
to node k. Then the gradient formulations for each node are:

∇ΦtaskMk
G(W k|Ω) = ∇ΦtaskMk

L+ λ1

|Mk|∑
i=1

1

Ni
ΦtaskMk

Ω−1
i + λχΦtaskMk

(9)

∇χG(W k|Ω) = ∇χL+ λχχ, ∀χ ∈W k\{ΦtaskMk
}

(10)

Optimizing Ωk ∈ Ω: In (Zhang and Yeung 2012),
an analytical solution for Ω is equal to Ω̂ =

(ΦT
taskΦtask)

1
2 /Tr((ΦT

taskΦtask)
1
2). However, this solution

is only applicable for the centralized case. This is because

missing central node forbids averaging parameters globally.
So here we propose a novel way to update each Ωk ∈ Ω:

falign(Ω
(t+1)
k)← η

1

|Mk|
(

|Mk|∑
i=1

1

Ni
falign(Ω

(t)
i) + falign(Ω̂k))

(11)

where Ω̂k is the analytical solution for ΦtaskMk
at node k.

The first averaging term can incorporate the nearby nodes
correlation into its own. It should be noticed that each Ωi

may have a different dimension (different number of neigh-
bors), so this averaging algorithm is based on the node-wised
alignment in the global Ω. We refer readers to Appendix1 for
a full sketch of our algorithm.

Convergence Properties In this section, we present our
convergence analysis for SpreadGNN optimization problem.
Before any formalism, we first introduce a connection matrix
M ∈ RK×K to record the connections in the network. We
assume that M satisfies the following:
1. M1K = 1K
2. MT = M

3. max{|λ2(M)|, . . . , |λK(M)|} < λ1(M) = 1

where λ denotes an eigenvalue of M. In our analysis, we
assume that the following properties hold (Bottou, Curtis,
and Nocedal 2018):
• The objective function F (·) is L-Lipschitz.
• F (·) is lower bounded by Finf such that F (·) ≥ Finf .
• The full gradient of the objective function F (·) is approx-

imated by stochastic gradient g on a mini-batch εi with
an unbiased estimate: Eεk [g(x)] = ∇F (x).

• The variance of stochastic gradient g(x) given a
mini-batch εk is upper bounded and Varεk(g(x)) ≤
β‖∇F (x)‖2 + σ2, ∃β, σ2 ≥ 0, ∀k.

For fixed step size, our updates can be written as follows:

Xt+1 = (Xt − ηGt) ·Mt, (12)

where Xt =
[
x

(1)
t , . . . ,x

(K)
t

]
is the matrix of our interest

(e.g. each element ofW (t)
k), Gt is the gradient and Mt is the

1Appendix is available at https://arxiv.org/abs/2106.02743

6868

connection matrix at time t. When t mod τ = 0,Mt = M,
otherwise, Mt = IK . In equation (12), multiplying IK/K
on both sides, defining the averaged model ut = Xt

IK
K , we

obtain the following update:

ut+1 = ut − ηgt

= ut − η

[
1

K

K∑
i=1

g(x
(i)
t)

]
(13)

Next, we will present our analysis on the convergence of
the above-averaged model ut. For non-convex optimization,
previous works on SGD convergence analysis use the average
squared gradient norm as an indicator of convergence to a
stationary point [Bottou, Curtis, and Nocedal 2018].

Theorem 1 (Convergence of SpreadGNN) If the learning
rate η satisfies the following condition:

ηL+
η2L2τ2

1− ζ

(
2ζ2

1 + ζ
+

2ζ

1− ζ
+
τ − 1

τ

)
≤ 1 (14)

where τ is the averaging period(one synchronization per τ
local updates), and ζ = max{|λ2(M)|, . . . , |λm(M)|}, and
all local models are initialized at a same point x0, then after
T iterations the average squared gradient norm is bounded
as

E

[
1

T

T∑
t=1

‖∇F (ut)‖2
]
≤ 2[F (x1)− Finf]

ηT
+
ηLσ2

K

+ η2L2σ2

(
1 + ζ2

1− ζ2
τ − 1

)
(15)

Theorem 1 shows that SpreadGNN algorithm converges to
the stationary point solution under certain conditions. (Wang
and Joshi 2018) presents similar results in an unified frame-
work, but it does not provide adequate theoretical analysis
and empirical evaluation for federated learning. The proof of
Theorem 1 is given in the Appendix1.

Experiments
Setup
Implementation. All experiments are conducted on a sin-
gle GPU server equipped with 2 Nvidia Geforce GTX 1080Ti
GPUs and an AMD Ryzen 7 3700X 8-Core Processor. Our
models are built on top of the FedML framework (He et al.
2020) and PyTorch (Paszke et al. 2019).

Multi-Label Dataset. We use molecular datasets from the
MoleculeNet (Wu et al. 2018) machine learning benchmark
in our evaluation. In particular, we evaluate our approach on
molecular property prediction datasets described in Table 1.
The label for each molecule graph is a vector in which each
element denotes a property of the molecule. Properties are
binary in the case of classification or continuous values in
the case of regression. As such, each multi-label dataset can
adequately evaluate our learning framework.

Non-I.I.D. Partition for Quantity and Label Skew. We
introduce non-I.I.D.ness in two additive ways. The first is a

1Appendix is available at https://arxiv.org/abs/2106.02743

non-I.I.D. split of the training data based on quantity. Here
we use a Dirichlet distribution parameterized by α to split
the training data between clients. Specifically, the number
of training samples present in each client is non-I.I.D. The
second source of non-I.I.D.ness is a label masking scheme
designed to represent the scenario in which different clients
may possess partial labels as shown in Figure 1. More specifi-
cally, we randomly mask out a subset of classes in each label
on every client. In our experiments, the sets of unmasked
classes across all clients are mutually exclusive and collec-
tively exhaustive. This setting simulates a worst case scenario
where no two clients share the same task. However our frame-
work is just as applicable when there is label overlap. Such
masking, introduces a class imbalance between the clients
making the label distribution non-I.I.D. as well.

Baseline Algorithm. For a fair and reasonable comparison
with our baseline, we utilize the same masking to simulate
missing labels for each client. Afterwards, we train mod-
els trained with FedAvg with the same loss as we use for
decentralized case.

Models. In order to demonstrate that our framework is
agnostic to the choice of GNN model, we run experiments
on GraphSAGE (Hamilton, Ying, and Leskovec 2017) and
GAT (Veličković et al. 2018).

Network Topology. We first evaluate our framework in
a complete topology in which all clients are connected to
all other clients to measure the efficacy of our proposed
regularizer. We then perform ablation studies on the number
of neighbors of each client to stress our framework in the
more constrained setting.

Hyperparameters. We use Adam (Kingma and Ba 2015)
as the client optimizer in all of our experiments. For our
Tox21, MUV, and QM8, we use an 8 client topology. For
SIDER we use a 4 client topology. A more comprehensive
hyperparameter list for network topology and models can be
found in the Appendix1.

Results
We use a central, server dependent FedAvg system as the
baseline of comparison. More specifically, all clients are
involved in the averaging of model parameters in every aver-
aging round.

Our results summarized in Table 2 demonstrate that
SpreadGNN (third column) outperforms a centralized feder-
ated learning system that uses FedAvg (first column) when
all clients can communicate with all other clients. This shows
that by using the combination of the task regularizer in equa-
tion 6 and decentralized optimization, we can eliminate the
dependence on a central server and enable clients to learn
more effectively in the presence of missing molecular prop-
erties in their respective labels. Additionally, the results also
show that our framework is agnostic to the type of GNN
model being used in the molecular property prediction task
since both GraphSAGE and GAT benefit from our frame-
work. Our framework also works in the case a trusted central
server is available (second column). The presence of a trusted

1Appendix is available at https://arxiv.org/abs/2106.02743

6869

Dataset # Molecules Avg # Nodes Avg # Edges # Tasks Task Type Evaluation Metric
SIDER 1427 33.64 35.36 27 Classification ROC-AUC
Tox21 7831 18.51 25.94 12 Classification ROC-AUC
MUV 93087 24.23 76.80 17 Classification ROC-AUC
QM8 21786 7.77 23.95 12 Regression MAE

Table 1: Dataset summary used in our experiments.

GraphSAGE GAT
FedAvg FedGMTL SpreadGNN FedAvg FedGMTL SpreadGNN

SIDER 0.582 0.629 0.5873 0.5857 0.61 0.6034
Tox21 0.5548 0.6664 0.585 0.6035 0.6594 0.6056
MUV 0.6578 0.6856 0.703 0.709 0.6899 0.713
QM8 0.02982 0.03624 0.02824 0.0392 0.0488 0.0315

Table 2: Molecular property prediction results with complete topology: and communication period τ = 1

0 10 20 30 40
Rounds

0.50

0.55

0.60

0.65

0.70

Te
st

 R
O

C
-A

U
C

GraphSAGE + MUV

Task Reg = 0.001
Task Reg = 0.002

0 5 10 15 20 25 30 35
Rounds

0.04

0.06

0.08

0.10

0.12

Te
st

 M
AE

GAT + QM8

Task Reg = 0.05
Task reg = 0.1
Task Reg = 0.2
Task Reg = 0.3

Figure 3: Effect of Task-Relationship Regularizer on Learning

0 10 20 30 40
Rounds

0.50

0.52

0.54

0.56

0.58

Te
st

 R
O

C
-A

U
C

GraphSAGE + Tox21

FedAvg
4 random neighbors
2 random neighbors
2 neighbors in a ring

0 20 40 60 80 100 120
Rounds

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.60

Te
st

 R
O

C
-A

U
C

GraphSAGE + SIDER

4 neighbors (complete topo)
2 neighbors random
2 neighbors ring

Figure 4: Effect of Topology on Learning for GraphSAGE Model.

central server improves the accuracy in a few scenarios. How-
ever, SpreadGNN provides competing performance in a more
realistic setting where the central server is not feasible.

Sensitivity Analysis
Task Regularizer. Figure 3 illustrates the effect of λ1 on
both regression as well as classification tasks. Interestingly,

regression is much more robust to variation in λ1 while classi-
fication demands more careful tuning of λ1 to achieve optimal
model performance. This implies that the different proper-
ties in the regression task are more independent than the
properties in the classification task.

Network Topology. The network topology dictates how
many neighbors each client can communicate with in a com-

6870

munication round. While Table 2 shows that SpreadGNN
outperforms FedAvg in a complete topology, Figure 4 shows
that our framework performs outperforms FedAvg even when
clients are constrained to communicate with fewer neigh-
bors. We can also see that it’s not just nneighbors that matters,
the topology in which clients are connected does too. When
nneighbors = 2, a ring topology outperforms a random topol-
ogy, as a ring guarantees a path from any client to any other
client. Thus, learning is shared indirectly between all clients.
The same is not true in a random topology. Also, in Figure
4 illustrates the effect of varying topologies on SpreadGNN
on the Sider dataset when using Graphsage as the GNN. The
qualitative behavior is similar to Figure 4, in that when each
client is connected to more neighbors, the local model of
each client is more robust. However, when the total number
of clients involved in the network is smaller, the effect of
topology is understated and the total number of neighbors
matters more. Recall that in an 8 client network, when each
client was restricted to being connected to only 2 neighbors,
random connections performed worse than a ring topology,
meaning that the topology mattered as much as the mere
number of neighbors. However, in the case of the 4 client
network, there is a minimal difference between a 2 neighbor
random configuration and a 2 neighbor ring configuration.

Period. The communication period τ is another important
hyperparameter in our framework. As we increase the com-
munication period τ more, model performance decreases.
However, selecting τ = 5 can sometimes be better than aver-
aging & exchanging each round. This indicates that tuning
τ is important for while controlling the tradeoff between the
performance and the running time. In general, our experi-
ments suggest that a lower period is better, but this is not
always the case. We include an ablation study on τ to support
this claim in the Appendix1.

Related Works
Molecular Representation Learning. (Rogers and Hahn
2010) encode the neighbors of atoms in the molecule into
a fix-length vector to obtain vector space representations.
To improve the expressive power of chemical fingerprints,
(Duvenaud et al. 2015; Coley et al. 2017) use CNNs to learn
rich molecule embeddings for downstream tasks like property
prediction. (Kearnes et al. 2016; Schütt et al. 2017) explore
the graph convolutional network to encode molecular graphs
into neural fingerprints. To better capture the interactions
among atoms, (Gilmer et al. 2017) proposes to use a message
passing framework.

FL. Early examples of research into federated learning
include (Konečný, McMahan, and Ramage 2015; McMa-
han et al. 2016a). To address both statistical and system
challenges in FL, (Smith et al. 2017) proposes a multi-task
learning framework for federated learning and its related opti-
mization algorithms, which extends early works in distributed
machine learning (Yang et al. 2013; Jaggi et al. 2014). The
main limitation, however, is that strong duality is only guar-
anteed when the objective function is convex, which can not
be generalized to the non-convex settings.(Jin et al. 2015;

1Appendix is available at https://arxiv.org/abs/2106.02743

Mateos-Núñez, Cortés, and Cortes 2015; Wang, Kolar, and
Srerbo 2016; Baytas et al. 2016; Liu, Pan, and Ho 2017)
extends federated multi-task learning to the distributed multi-
task learning setting, but not only this limitation remains
same, but also nodes performing the same amount of work is
prohibitive in FL.

Federated Graph Neural Networks. (Suzumura et al.
2019) and (Mei et al. 2019) use computed graph statistics
for information exchange and aggregation to avoid node in-
formation leakage. (Jiang et al. 2020) utilizes cryptographic
approaches to incorporate into GNN learning. (Wang et al.
2020) propose a hybrid of federated and meta learning to
solve the semi-supervised graph node classification problem
in decentralized social network datasets. (?) uses an edge-
cloud partitioned GNN model for spatio-temporal traffic fore-
casting tasks over sensor networks. The previous works do
not consider graph learning in a decentralized setting.

Stochastic Gradient Descent Optimization. In large-
scale distributed machine learning problems, learning syn-
chronized mini-batch SGD is a well-known method to
address the communication bottleneck by increasing the
computation-to communication ratio (Li et al. 2014). It is
shown that FedAvg (Konečný et al. 2016) is a special case of
local SGD which allow nodes to perform local updates and
infrequent synchronization between them to communicate
less while converging fast (Wang and Joshi 2018; Yu, Yang,
and Zhu 2018; Lin, Stich, and Jaggi 2018). Decentralized
SGD, another approach to reducing communication, was suc-
cessfully applied to deep learning (Jiang et al. 2017; Lian
et al. 2017). Asynchronous SGD is a potential method that
can alleviate synchronization delays in distributed learning
(Mitliagkas et al. 2016), but existing asynchronous SGD does
not fit for federated learning because the staleness problem is
particularly severe due to the reason of heterogeneity in the
federated setting (Dai et al. 2018).

Conclusion
In this work, we propose SpreadGNN, to train federated
graph neural networks in a decentralized manner. We mo-
tivate our framework through a realistic setting, in which
clients involved in molecular machine learning research can-
not share data with each other due to privacy regulations and
competition. Moreover, we are aware that clients possess
multiple, but partial labels. For the first time, experiments
show that training federated graph neural networks does not
require a centralized topology and that our framework can ad-
dress the non-I.I.D.ness in dataset size and label distribution
across clients. SpreadGNN can outperform a central server
dependent baseline even when clients can only communicate
with a few neighbors. To support our empirical results, we
also provide a convergence analysis for our framework.

Acknowledgements
Authors acknowledge that this material is based upon
work supported by Defense Advanced Research Projects
Agency (DARPA) under Contract No. HR001117C0053
and FA8750-19-2-1005, ARO award W911NF1810400,
NSF grants CCF-1703575, CCF-1763673, and MLWINS-

6871

2002874, ONR Award No. N00014-16-1-2189, and a gift
from Intel/Avast/Borsetta via the PrivateAI institute, a gift
from Cisco, and a gift from Qualcomm. The views, opin-
ions, and/or findings expressed are those of the author(s) and
should not be interpreted as representing the official views
or policies of the Department of Defense or the U.S. Govern-
ment.

References
Baytas, I. M.; Yan, M.; Jain, A. K.; and Zhou, J. 2016. Asyn-
chronous multi-task learning. In Data Mining (ICDM), 2016
IEEE 16th International Conference on, 11–20. IEEE.

Bian, T.; Xiao, X.; Xu, T.; Zhao, P.; Huang, W.; Rong, Y.;
and Huang, J. 2020. Rumor detection on social media with
bi-directional graph convolutional networks. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 34,
549–556.

Bottou, L.; Curtis, F. E.; and Nocedal, J. 2018. Optimization
methods for large-scale machine learning. SIAM Review,
60(2): 223–311.

Chen, C.; Cui, J.; Liu, G.; Wu, J.; and Wang, L. 2020. Survey
and Open Problems in Privacy Preserving Knowledge Graph:
Merging, Query, Representation, Completion and Applica-
tions. arXiv preprint arXiv:2011.10180.

Coley, C. W.; Barzilay, R.; Green, W. H.; Jaakkola, T. S.; and
Jensen, K. F. 2017. Convolutional embedding of attributed
molecular graphs for physical property prediction. Journal
of chemical information and modeling, 57(8): 1757–1772.

Dai, W.; Zhou, Y.; Dong, N.; Zhang, H.; and Xing, E. P. 2018.
Toward Understanding the Impact of Staleness in Distributed
Machine Learning. arXiv:1810.03264 [cs, stat]. ArXiv:
1810.03264.

Duvenaud, D.; Maclaurin, D.; Aguilera-Iparraguirre, J.;
Gómez-Bombarelli, R.; Hirzel, T.; Aspuru-Guzik, A.;
and Adams, R. P. 2015. Convolutional networks on
graphs for learning molecular fingerprints. arXiv preprint
arXiv:1509.09292.

Evgeniou, T.; and Pontil, M. 2004. Regularized multi–task
learning. In Proceedings of the tenth ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining,
109–117.

Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and
Dahl, G. E. 2017. Neural message passing for quantum
chemistry. In International Conference on Machine Learning,
1263–1272. PMLR.

Hamilton, W. L.; Ying, R.; and Leskovec, J. 2017. In-
ductive Representation Learning on Large Graphs. CoRR,
abs/1706.02216.

He, C.; Li, S.; So, J.; Zhang, M.; Wang, H.; Wang, X.;
Vepakomma, P.; Singh, A.; Qiu, H.; Shen, L.; Zhao, P.;
Kang, Y.; Liu, Y.; Raskar, R.; Yang, Q.; Annavaram, M.;
and Avestimehr, S. 2020. FedML: A Research Library and
Benchmark for Federated Machine Learning. arXiv preprint
arXiv:2007.13518.

Jaggi, M.; Smith, V.; Takác, M.; Terhorst, J.; Krishnan, S.;
Hofmann, T.; and Jordan, M. I. 2014. Communication-
efficient distributed dual coordinate ascent. In Advances
in neural information processing systems, 3068–3076.
Jiang, M.; Jung, T.; Karl, R.; and Zhao, T. 2020. Federated
Dynamic GNN with Secure Aggregation. arXiv preprint
arXiv:2009.07351.
Jiang, Z.; Balu, A.; Hegde, C.; and Sarkar, S. 2017. Collabo-
rative deep learning in fixed topology networks. In Advances
in Neural Information Processing Systems, 5904–5914.
Jin, X.; Luo, P.; Zhuang, F.; He, J.; and He, Q. 2015. Col-
laborating between local and global learning for distributed
online multiple tasks. In Proceedings of the 24th ACM In-
ternational on Conference on Information and Knowledge
Management, 113–122. ACM.
Kairouz, P.; McMahan, H. B.; Avent, B.; Bellet, A.; Bennis,
M.; Bhagoji, A. N.; Bonawitz, K.; Charles, Z.; Cormode, G.;
Cummings, R.; et al. 2019. Advances and open problems in
federated learning. arXiv preprint arXiv:1912.04977.
Kearnes, S.; McCloskey, K.; Berndl, M.; Pande, V.; and Riley,
P. 2016. Molecular graph convolutions: moving beyond
fingerprints. Journal of computer-aided molecular design,
30(8): 595–608.
Kingma, D. P.; and Ba, J. 2015. Adam: A Method for Stochas-
tic Optimization. CoRR, abs/1412.6980.
Kipf, T. N.; and Welling, M. 2016. Semi-Supervised Clas-
sification with Graph Convolutional Networks. CoRR,
abs/1609.02907.
Konečný, J.; McMahan, B.; and Ramage, D. 2015. Federated
Optimization:Distributed Optimization Beyond the Datacen-
ter. arXiv:1511.03575 [cs, math]. ArXiv: 1511.03575.
Konečný, J.; McMahan, H. B.; Yu, F. X.; Richtárik, P.; Suresh,
A. T.; and Bacon, D. 2016. Federated Learning: Strategies
for Improving Communication Efficiency. arXiv:1610.05492
[cs]. ArXiv: 1610.05492.
Li, M.; Andersen, D. G.; Park, J. W.; Smola, A. J.; Ahmed,
A.; Josifovski, V.; Long, J.; Shekita, E. J.; and Su, B.-Y. 2014.
Scaling Distributed Machine Learning with the Parameter
Server. In OSDI, volume 14, 583–598.
Lian, X.; Zhang, C.; Zhang, H.; Hsieh, C.-J.; Zhang, W.; and
Liu, J. 2017. Can Decentralized Algorithms Outperform
Centralized Algorithms? A Case Study for Decentralized
Parallel Stochastic Gradient Descent. arXiv:1705.09056 [cs,
math, stat]. ArXiv: 1705.09056.
Lin, T.; Stich, S. U.; and Jaggi, M. 2018. Don’t Use Large
Mini-Batches, Use Local SGD. arXiv:1808.07217 [cs, stat].
ArXiv: 1808.07217.
Liu, S.; Pan, S. J.; and Ho, Q. 2017. Distributed multi-task re-
lationship learning. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, 937–946. ACM.
Mateos-Núñez, D.; Cortés, J.; and Cortes, J. 2015. Dis-
tributed optimization for multi-task learning via nuclear-norm
approximation. In IFAC Workshop on Distributed Estimation
and Control in Networked Systems, volume 48, 64–69.

6872

McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; and
y Arcas, B. A. 2017. Communication-efficient learning of
deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, 1273–1282. PMLR.
McMahan, H. B.; Moore, E.; Ramage, D.; Hampson, S.; and
Arcas, B. A. y. 2016a. Communication-Efficient Learning of
Deep Networks from Decentralized Data. arXiv:1602.05629
[cs]. ArXiv: 1602.05629.
McMahan, H. B.; Moore, E.; Ramage, D.; and y Arcas, B. A.
2016b. Federated Learning of Deep Networks using Model
Averaging. CoRR, abs/1602.05629.
Mei, G.; Guo, Z.; Liu, S.; and Pan, L. 2019. Sgnn: A graph
neural network based federated learning approach by hiding
structure. In 2019 IEEE International Conference on Big
Data (Big Data), 2560–2568. IEEE.
Mitliagkas, I.; Zhang, C.; Hadjis, S.; and Ré, C. 2016. Asyn-
chrony begets momentum, with an application to deep learn-
ing. In Communication, Control, and Computing (Allerton),
2016 54th Annual Allerton Conference on, 997–1004. IEEE.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
Desmaison, A.; Köpf, A.; Yang, E.; DeVito, Z.; Raison, M.;
Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai, J.;
and Chintala, S. 2019. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. CoRR, abs/1912.01703.
Rogers, D.; and Hahn, M. 2010. Extended-connectivity fin-
gerprints. Journal of chemical information and modeling,
50(5): 742–754.
Rong, Y.; Bian, Y.; Xu, T.; Xie, W.; Wei, Y.; Huang, W.;
and Huang, J. 2020. Self-Supervised Graph Transformer on
Large-Scale Molecular Data. Advances in Neural Information
Processing Systems, 33.
Schütt, K. T.; Arbabzadah, F.; Chmiela, S.; Müller, K. R.;
and Tkatchenko, A. 2017. Quantum-chemical insights from
deep tensor neural networks. Nature communications, 8(1):
1–8.
Smith, V.; Chiang, C.-K.; Sanjabi, M.; and Talwalkar, A. S.
2017. Federated multi-task learning. In Advances in Neural
Information Processing Systems, 4424–4434.
Suzumura, T.; Zhou, Y.; Baracaldo, N.; Ye, G.; Houck, K.;
Kawahara, R.; Anwar, A.; Stavarache, L. L.; Watanabe, Y.;
Loyola, P.; et al. 2019. Towards federated graph learning
for collaborative financial crimes detection. arXiv preprint
arXiv:1909.12946.
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.;
Liò, P.; and Bengio, Y. 2018. Graph Attention Networks.
arXiv:1710.10903.
Wang, B.; Li, A.; Li, H.; and Chen, Y. 2020. GraphFL: A
Federated Learning Framework for Semi-Supervised Node
Classification on Graphs. arXiv preprint arXiv:2012.04187.
Wang, J.; and Joshi, G. 2018. Cooperative SGD: A unified
Framework for the Design and Analysis of Communication-
Efficient SGD Algorithms.
Wang, J.; Kolar, M.; and Srerbo, N. 2016. Distributed multi-
task learning. In Artificial Intelligence and Statistics, 751–
760.

Wu, Z.; Ramsundar, B.; Feinberg, E. N.; Gomes, J.; Ge-
niesse, C.; Pappu, A. S.; Leswing, K.; and Pande, V. 2018.
MoleculeNet: a benchmark for molecular machine learning.
Chemical science, 9(2): 513–530.
Yang, T.; Zhu, S.; Jin, R.; and Lin, Y. 2013. Analysis of
distributed stochastic dual coordinate ascent. arXiv preprint
arXiv:1312.1031.
Yu, H.; Yang, S.; and Zhu, S. 2018. Parallel Restarted SGD
with Faster Convergence and Less Communication: Demys-
tifying Why Model Averaging Works for Deep Learning.
arXiv:1807.06629 [cs, math]. ArXiv: 1807.06629.
Zhang, Y.; and Yeung, D.-Y. 2012. A convex formulation
for learning task relationships in multi-task learning. arXiv
preprint arXiv:1203.3536.
Zheng, L.; Fan, J.; and Mu, Y. 2019. Onionnet: a multiple-
layer intermolecular-contact-based convolutional neural net-
work for protein–ligand binding affinity prediction. ACS
omega, 4(14): 15956–15965.

6873

