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Abstract

Estimating value functions is a core component of reinforce-
ment learning algorithms. Temporal difference (TD) learning
algorithms use bootstrapping, i.e. they update the value func-
tion toward a learning target using value estimates at subse-
quent time-steps. Alternatively, the value function can be up-
dated toward a learning target constructed by separately pre-
dicting successor features (SF)—a policy-dependent model—
and linearly combining them with instantaneous rewards. We
focus on bootstrapping targets used when estimating value
functions, and propose a new backup target, the η-return mix-
ture, which implicitly combines value-predictive knowledge
(used by TD methods) with (successor) feature-predictive
knowledge—with a parameter η capturing how much to rely
on each. We illustrate that incorporating predictive knowl-
edge through an ηγ-discounted SF model makes more effi-
cient use of sampled experience, compared to either extreme,
i.e. bootstrapping entirely on the value function estimate, or
bootstrapping on the product of separately estimated succes-
sor features and instantaneous reward models. We empirically
show this approach leads to faster policy evaluation and bet-
ter control performance, for tabular and nonlinear function
approximations, indicating scalability and generality.

1 Introduction
The fundamental goal of reinforcement learning (RL) is to
maximize return, i.e. (temporally discounted) cumulative re-
ward. Value functions provide an estimate of the expected
return from a specific state (and action), and as such, they are
a fundamental component of RL algorithms. Modern deep
RL methods require numerous environment interactions to
solve complex tasks, which can be expensive or impossible
to obtain, particularly for tasks resembling the real-world.
This makes it essential to develop data-efficient methods for
learning accurate value functions.

The problem we address in this work is that of credit
assignment, namely how to associate (distant) rewards to
the states and actions that caused them. Value-based RL
methods tackle this problem through temporal difference
(TD) learning algorithms (Sutton 1988). TD algorithms rely
on bootstrapping: using the value estimate at a subsequent
timestep, together with the observed data (e.g. rewards), to
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construct the learning target—the return—for the current
timestep. However, the value estimate in the backup tar-
get does not need to come from the current value function
being learned. For instance, value can be estimated using
successor features—the (discounted) cumulative features—
linearly combined with an estimate of instantaneous rewards
(Barreto et al. 2017). This approach can make use of the
same TD methods (Sutton 1988) to estimate the successor
features as the former does when learning the value function,
requiring similar amounts of sampled experience. Moreover,
the backup target and the value function can be completely
distinct (e.g. if the successor features and learned value func-
tion are dis-jointly parameterized); they can share feature
representations (e.g. when the value function and the suc-
cessor features are both linear functions of the features); or
partially share representations (e.g. through Polyak averag-
ing). Since the value function is regressed toward the target,
the method of computing the target influences the quality of
the value function.

In this paper, we aim to improve credit assignment and
data efficiency for value-based methods, by proposing a
new method of constructing a learning target, which bor-
rows properties from all aforementioned approaches of tar-
get construction. This η-return mixture uses a parameter η
to combine an ηγ-discounted successor features model (ηγ-
SF) with the current value function estimate to parameter-
ize the learning target used during bootstrapping—with the
η parameter controlling the combination of value-predictive
and feature-predictive knowledge. We observe an intermedi-
ate value of η incorporates the benefits of both approaches in
a complementary way, using sampled experience more effi-
ciently.

Contributions In this paper we make three contributions:
(i) We introduce the η-return mixture, a simple yet novel
way of constructing a backup target for value learning, using
an ηγ-discounted SF model to interpolate between a direct
value estimate and the fully factorized estimate relying on
SF and instantaneous rewards. (ii) We describe a new learn-
ing algorithm using the η-return mixture as the bootstrap tar-
get for value estimation. (iii) We provide empirical results
showing more efficient use of experience with the η-return
mixture as the backup target, in both prediction and control,
for tabular and nonlinear approximation, when compared to
baselines.
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2 Preliminaries
We denote random variables with uppercase (e.g., S) and the
obtained values with lowercase letters (e.g., S = s). Multi-
dimensional functions or vectors are bolded (e.g., w), as are
matrices (e.g. Φ). For all state-dependent functions, we also
allow time-dependent shorthands (e.g., ϕt=ϕ(St)).

2.1 Reinforcement Learning Problem Setup
A discounted Markov Decision Process (MDP) (Puterman
1994) is defined as the tuple (S,A, P, r), with state space S ,
action space A, reward function r : S ×A → R, and transi-
tion probability function P : S×A×S → P(S) (withP(S)
the set of probability distributions on S , and P (s′|s, a) the
probability of transitioning to state s′ by choosing action a at
state s). A policy π : S → P(A) maps states to distributions
over actions; π(a|s) denotes the probability of choosing ac-
tion a in state s. Let St, At, Rt denote the random variables
of state, action and reward at time t, respectively.

Policy evaluation implies estimating the value function
vπ , defined as the expected discounted return:

Gt ≡ Rt+1 +
∑∞

k=1 γ
kRt+k+1 = Rt+1 + γGt+1 , (1)

vπ(s) ≡ E [Gt | St = s,Ak ∼ π(Sk), k ≥ t] , (2)
where γ ∈ [0, 1) is the discount factor. The learner’s goal is
to find a policy, π which maximizes the value vπ . When the
Markov chain induced by π is ergodic, we denote with dπ
the stationary distribution induced by policy π. We hence-
forth shorthand the expectation over the environment dy-
namics and the policy π with Eπ[·].

2.2 Value Learning
Typically, vπ is represented directly, using a linear
parametrization over some state features ϕ(s) ∈ Rd, where
d is the dimension of the representation space:

vθ(s) = ϕ(s)
⊤
θ ≈ vπ(s), (3)

with θ ∈ Rd learnable parameters, and ϕ(s) are features.1
Learning vπ with TD methods involves bootstrapping on a
target, Ut, at each timestep t, and updating θ by regressing
it towards the target:

θ′ = θ + α [Ut − vθ(St)]∇θvθ(St) , (4)
with learning rate α. The TD(0) algorithm (Sutton 1988)
uses the one-step TD return as the value target:

Ut ≡ G
(0)
t = Rt+1 + γvθ(St+1) . (5)

The forward view of TD(λ) constructs the λ-return target—a
geometrically weighted average over all possible multi-step
returns (Sutton and Barto (2018), chapter 12.1):

Ut ≡ Gλ
t =(1− λ)

∑∞
n=1 λ

n−1G
(n)
t , with (6)

G
(n)
t ≡

(∑n
k=1 γ

k−1Rt+k

)
+ γnvθ(St+n) , (7)

where λ ∈ [0, 1] controls the weight of value estimates from
the distant future, interpolating between the one-step return
(equation (5)) (λ = 0) and the Monte Carlo return (λ =
1). The λ-return can only be computed offline at the end of
an episode, since it requires the entire future trajectory to
calculate the multi-step returns.

1ϕ(s) can be a non-linear function jointly learned with θ, as is
the case for many deep reinforcement learning algorithms.

2.3 Successor Features (SF)
Previous work (Dayan 1993; Kulkarni et al. 2016; Zhang
et al. 2017; Barreto et al. 2017, 2018) has shown it can be
useful to decouple the reward and transition information of
the value function by factorizing it into immediate rewards
and SF. The SF, ψπ : Rd → Rd, are defined as the expected
cumulative discounted features under a policy π:

ψπ(s)≡Eπ

[∑∞
n=0 γ

nϕt+n |St=s
]
, (8)

and can be learned by TD learning algorithms, similar to the
standard value function:

ψΞ(s) = Ξ⊤ϕ(s) ≈ ψπ(s) ,with (9)

Ξ′ = Ξ+ α δΞ∇ΞψΞ(St) (10)
δΞ ≡ ϕ(St) + γψΞ(St+1)−ψΞ(St) , (11)

with Ξ ∈ Rd×d (learnable) parameters.2 An alternative ap-
proach to the direct representation of value (equation (3)) is
to used a factorization of SF and instantaneous reward:

vψ(s) ≡ ψΞ(s)
⊤w ≈ vπ(s) , with (12)

rw(s) ≡ ϕ(s)⊤w ≈ Eπ[Rt+1|St = s] , (13)

the instantaneous reward function with (learnable) parame-
ters w ∈ Rd.

3 The η-Return Mixture
We take inspiration from the canonical λ-return (equa-
tion (6)), to write a similar quantity.3 A full derivation of
this section is given in the appendix.

Gη
t ≈ Rt+1 + γ

[
(1−η)

∑∞
n=1(ηγ)

n−1vθ(St+n)

+ η
∑∞

n=1(ηγ)
n−1rw(St+n)

]
. (14)

As both vθ (equation (3)) and rw (equation (13)) are linear
in features, we can express the geometric sums in equation
(14) using ηγ-discounted SFs,

ψη(s) ≡ Eπ

[∑∞
n=0(ηγ)

nϕt+n | St = s
]
. (15)

We can separately estimate this SF-model using equa-
tion (10). Further, we can use the SF-model in the boot-
strapping process by substituting equation (15) into equation
(14). This yields a learning target which uses predictive fea-
tures (ψη), along with a mixture of value (θ) and reward (w)
parameters. This is the η-return mixture:

Ut ≡ Gη
t ≡ Rt+1 + γψη(St+1)

⊤ [(1− η)θ + ηw] . (16)

This target can be used to replace e.g. the standard TD(0)
backup target from equation (5). Despite its similarity to the
standard λ-return, the η-return mixture does not assume ac-
cess to a full episodic trajectory.

2Unless stated otherwise, we consider ψ as a linear function of
features (equation (9)), though non-linear functions are available
(Zhang et al. 2017; Machado, Bellemare, and Bowling 2020).

3We replaced λ with η to denote the different properties of the
interpolation parameter η compared to λ.
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Interpretation Consider learning using single-step transi-
tion tuple (St, At, Rt+1, St+1). TD(0) propagates informa-
tion locally from St+1 to St by constructing a bootstrapping
target. Using the value function in the target (equation (5))
propagates only value information; bootstrapping using the
product of estimated SF and instantaneous rewards (equa-
tion (12)) relies on separately learning the SF, which also
uses TD(0), and thus propagates only feature information.
We can more effectively use the same single-step of expe-
rience if we simultaneously use the sampled information
to predict both the value and the features, and update the
value function using a mixture of both in the way specified
in equation (16).

Fixed-point solution With accurate SF and instantaneous
reward models, one-step value-learning with the η-return
mixture as bootstrapping target has the same fixed-point so-
lution as the standard TD(0) target, per the following.

Proposition 1. Assume the SF parameters Ξ have con-
verged to their fixed-point solution, ΞTD(0) = Edπ[ϕt(ϕt −
ηγϕt+1)

⊤]−1Edπ[ϕtϕ
⊤
t ], and the instantaneous reward

parameters have achieved the optimal solution w =
Edπ[ϕtϕ

⊤
t ]

−1Edπ[ϕtRt+1], where Edπ[·] denotes the expec-
tation over the stationary distribution dπ for policy π,
which we assume exists under mild conditions (Tsitsiklis and
Van Roy 1997). Then, value learning using the η-return mix-
tureas the target has the TD(0) fixed point solution:

θ∗η = Edπ

[
ϕt(ϕt − γϕt+1)

⊤]−1 Edπ
[ϕtRt+1] = θTD(0).

(17)

Proof. In the appendix. Follows from the linearity of the
policy evaluation equations.

Furthermore, it has been shown that on-policy planning
with linear models converges to the same fixed point as di-
rect linear value estimation (Schoknecht 2002; Parr et al.
2008; Sutton et al. 2008). However, despite the fact that the
fixed point solution is subject to the same bias as one-step
TD methods, our method may still benefit from substantial
learning efficiency while moving towards this solution. In
fact, our finite sample empirical evaluation shows exactly
this.

Interpolating between value and feature prediction with
η Similar to how λ-return interpolates between the one-
step TD and Monte-Carlo returns, the η-return mixture in-
terpolates between bootstrapping on the “value-predictive”
parameters of the value function, or on the “feature-
predictive” parameters of the SF.

When η = 0, the η-return mixture recovers the standard
TD(0) learning target (equation (5)):

Gη=0
t = Rt+1 + γψη=0(St+1)

⊤ ((1− 0)θ + 0w)

= Rt+1 + γϕ⊤
t+1θ . (18)

At the opposite end of the spectrum, when η = 1, the
η-return mixture relies on the full SF (equation (12)) and

the instantaneous reward model, akin to using an implicit
infinite model:

Gη=1
t = Rt+1 + γψη=1(St+1)

⊤ ((1− 1)θ + 1w)

= Rt+1 + γψ⊤
t+1w . (19)

Consequently, the η-return mixture is a simple generaliza-
tion that spans the spectrum of learning target parameteriza-
tions using η ∈ [0, 1], with the traditional learning target and
the SF factorization as extremes.

Compared to the standard learning target used in TD(0),
the η-return mixture with an intermediate value of η
(0 < η < 1) uses information more effectively than the
extremes Gη=0

t (equation (5)), and Gη=1
t , approximating the

true value faster given the same amount of data (see figure 1
for an intuitive illustration).

3.1 Estimating the η-Return Mixture
There are different choices with respect to how the learning
target is estimated, depending on (i) the form or elements
used in building the target; (ii) the parametrization of the el-
ements making up the target; (iii) the learning methods used
to estimate the elements of the target.

Regarding (i), the form of the η-return mixture target re-
quires access to SF, instantaneous rewards, and the value
parameters themselves. Regarding (ii), we parameterize all
these estimators as linear functions of features, and share
feature parameters in cases where the feature representation
is learned and not given (e.g. in the nonlinear control empir-
ical experiments).

With respect to (iii), we can use any learning method for
estimating the SF model ψη

Ξ and the instantaneous reward
model rw. In this paper, we make the choice of using TD(0)
to learn the SF model, and supervised regression for the re-
ward model, since one-step methods are ubiquitous in con-
temporary RL, and require the use of only single-step transi-
tions (Mnih et al. 2015; van Hasselt, Guez, and Silver 2015;
Lillicrap et al. 2015; Wang et al. 2016; Schaul et al. 2015;
Haarnoja et al. 2018). Likewise, we use the η-return mixture
as a one-step bootstrap target (equation (16)) for estimating
of the value parameters θ (equation (4)). Although we have
chosen to focus here on one-step learning targets for their
simplicity and ease of use, these methods can be extended to
multi-step targets (e.g. TD(n) or TD(λ)) analogously as the
one-step target.

All components of the η-return mixture are now
learnable with one-step transitions tuples of the form
(St, At, Rt+1, St+1), which make these methods amenable
to both the online setting and the i.i.d. setting. In the for-
mer, the algorithm is presented with an infinite sequence of
state, actions, rewards {S0, A0, R1, S1, A1, R2, . . . }, where
At ∼ π(St), Rt+1 ≡ r(St, At), St+1 ∼ P (St, At). In the
i.i.d. setting, the learner is presented with a set of transition
tuples {(St, At, Rt+1, St+1)}t≥0.

From an algorithmic perspective, we now describe a com-
putationally congenial way for learning the value func-
tion online, from a single stream of experience, using
our method. As mentioned, in the online setting, the
agent has access to experience in the form of tuples
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Figure 1: Online value prediction in a deterministic MRP for different η’s. (A) The agent starts in the left-most state (s0) and
deterministically transitions right until reaching the terminal state. All rewards are 0, except for the transition into the terminal
state when it is +1. (B) Parameter dynamics: The table shows how the η-return mixture value estimate for the first state, vη(S0),
is computed usingψη(s0)

⊤, θ and w over the course of training, for different values of η = {0.0, 0.7, 1.0}. For η = 0.7 (center)
the estimation for the η-return mixture combines the parameters of the value function (θ) and the SF predictions (ψη) to more
quickly propagate value information than either extremes. (C) The estimated value function for all states (columns) across
learning episodes (rows). For η = 0.7 value information propagates faster than η = 0 and 1. (D) Absolute value error: for
different η values over episodes. For η = 0.7 error reduction is faster.

(St, At, Rt+1, St+1) at each timestep t. The pseudo-code in
algorithm 1 describes the online value estimation process,
for the linear case, with given representations.

Algorithm 1: Value prediction using a linear η-return mix-
ture
Input: Given vθ(s) = ϕ(s)⊤θ (value function), rw(s) =
ϕ(s)⊤w (instantaneous reward function), ψη

Ξ(s) =

Ξ⊤ϕ(s) (SF model), γ ∈ [0, 1), η ∈ [0, 1], αθ , αw, αΞ

(learning rates).
Output: Value function vθ ≈ vπ for a policy π.

1: while sample one-step experience tuple using π,
(St, At, Rt+1, St+1), do

2: SF learning update: Ξt+1 ← Ξt + αΞ
t (ϕ(St) +

ηγψη
Ξt
(St+1)−Ξt

⊤ϕ(St))ϕ(St)
⊤

3: Instantaneous reward learning update:
wt+1 ← wt+αw

t (Rt+1−ϕ(St)
⊤wt)ϕ(s)

4: Next step value estimate:
vηt+1 = ϕ(St+1)

⊤Ξt+1((1−η)θt+ηwt+1)
5: Value learning update:

θt+1 ← θt+αθt (Rt+1+γvηt+1−ϕ(St)
⊤θt)ϕ(St)

6: end while

4 Empirical Studies
We start with two simple prediction examples to provide in-
tuition about our approach, after which, we verify that our
method scales by extending it to a more complex non-linear
control setting.

4.1 Value Prediction in a Deterministic Chain
Experiment setup: Consider the 16-state deterministic
Markov reward process (MRP) with tabular features illus-
trated in figure 1-A. The agent starts in the left-most state
(s0), deterministically transitions right to the right-most ab-
sorbing state. The reward is 0 everywhere except for the final
transition into the absorbing state, where it is +1. We apply
algorithm 1 to estimate the value function in an online in-
cremental setting. We use a discount factor γ = 0.9999 and
learning rate α = 1.0.
Results: Figure 1-B illustrates the result of combining the
successor features model ψΞ, with the value parameters θ,
and reward parameters w into a prediction of the η-return
mixture for the starting state s0, vη(s0), for different values
of η. When completely relying on the canonical value boot-
strap target (η = 0, recovering TD(0)), we have vη=0 = vθ ,
which corresponds to an unchanging feature representation.
In this setting, the value information (in θ) moves backward
one state per episode. For the opposite end, when bootstrap-

6832



(A) 1 · · · 9 10 11 · · · 19
+0 +1

(B)
0.0 0.3 0.5 0.7 0.9 0.99 1.0

η-Interpolation

0.1

0.12

0.14

0.16
0.18

0.2

A
ve

ra
ge

d
va

lu
e

er
ro

r

(C)
0 100 200

Episodes

0.1

0.2
0.3
0.4
0.5

V
al

ue
er

ro
r

η
0.0
0.5
0.7
1.0

(D)
0.01 0.1 0.2 0.3 0.5

Learning rate

0.1

0.2

0.3

0.4

A
ve

ra
ge

d
va

lu
e

er
ro

r

η
0.0
0.5
0.7
1.0

Figure 2: Policy evaluation in 19-state tabular random chain. (A) The agent starts in the center and transitions left/right randomly
until either end is reached. Reward is 0 on all transitions, except the on the right-side termination, which yields a reward of
+1. (B) Parameter study for η: The y-axis shows the root mean squared error (RMSE) (minimized over learning rates for each
η) averaged over first 400 episodes. (C) Learning dynamics: The y-axis shows the RMSE for four illustrative η values. (D)
Parameter study for the learning rate The y-axis shows the RMSE for four illustrative η values, across different learning rates.
Results averages over first 400 episodes. Error bars and shaded areas denote 95 confidence intervals (some too small to see),
with 10 independent seeds.

ping on the full successor features (η = 1), the instanta-
neous reward is learned immediately (parameter w) for the
final state, while the successor features (parameterψ) learns
about one additional future state per episode. For both cases,
we require ∼ 16 episodes for the information to propagate
across the entire chain and for the value estimate of s0 to
improve (Figure 1-D). However, with an intermediate value
of 0 < η < 1 (Figure 1-B, middle, η = 0.7 here), we are
able to both propagate value information backward by boot-
strapping on θ, as well as improve the predictive features
(using ψη) to predict further in the forward direction. This
results in an improved value estimate much earlier, as we
can observe in figure 1-B middle, C middle, and D.
Interpretation: In an online prediction setting, using the η-
return mixture (with an intermediate η: 0 < η < 1), in place
of the standard TD(0) learning target, effectively combines
both backward credit assignment by bootstrapping the value
estimates, as well as forward feature prediction, to more
quickly estimate the correct values.

4.2 Value Prediction in a Random Chain
Experiment setup: We now switch to a slightly harder set-
ting, a stochastic 19-state chain prediction task, still with
tabular features (Sutton and Barto 2018, Example 6.2). The
agent starts in the centre (state 10) and randomly transitions
left or right until reaching the absorbing states at either end
(figure 2-A). The reward is 0 everywhere except upon tran-
sitioning into the right-most terminal state, when it is +1.
Hyperparameters were chosen by sweeping over learning
rates α ∈ {0.01, 0.1, 0.2, 0.3, 0.5}, and mixing parameter
η = {0.0, 0.3, 0.5, 0.7, 0.9, 0.99, 1.0}. Figure 2-B,D illus-
trate value error averaged over the first 400 episodes.
Results: In figure 2-B, we observe that mixing with η ∈
[0, 1] results in a U-shape error curve, illustrating that an
intermediate value of η is optimal. For each value of η, we
plot the optimal learning rate α. Figure 2-C further confirms
our hypothesis that an intermediate value (here for η = 0.5
or 0.7) is most efficient. We also observe that intermediate
η’s show a degree of parameter robustness, having low value

error over a range of different learning rates (figure 2-D).
Interpretation: Using the η-return mixture as one-step
learning target is robust to environment stochasticity and
learns most efficiently for intermediate values of η.

4.3 Value-Based Control in Mini-Atari
We hypothesize that efficient value prediction using the η-
return can help in value-based control, so we extend our
proposed algorithm to the control setting, simply by estimat-
ing the action-value function qθ using the η-return mixture.
We build on top of the deep Q network (DQN) architecture
(Mnih et al. 2015), and simply replace the bootstrap target
with an estimate of the η-return mixture starting from a state
and action.

Given a sampled transition (St, At, Rt+1, St+1), DQN
encodes features ϕt = ϕ(St), then estimates the action-
values qθ(ϕt, At) ≈ q(St, At) using the canonical boot-
strap target in which it relies on the next value estimate,
maxa′ qθ(ϕt+1, a

′), with ϕt+1 = ϕ(St+1). We use the
same feature encoding ϕ(·) to track the successor features
of the current policy ψη

t = ψη
Ξ(ϕt) ≈ ψ(ϕt), and estimate

the instantaneous rewards rw(ϕt). This allows us to con-
struct the η-return mixture and use it in the learning target of
Q-learning when updating the parameters θ:

qηt+1 ≡ (1− η) qθ
(
ψη

Ξ(St+1), a
′)+ η rw

(
ψη

Ξ(St+1)
)
,

(20)

θ′ = θ + α
(
Rt+1 + γmax

a′
qηt+1 − qθ(ϕt, At)

)
∇θqθ ,

(21)

where qη is the value estimate of the η-return mixture used
in the learning target, and∇θqθ = ∇θqθ(ϕt, At). We simul-
taneously estimate the feature representation and the action-
values in an end-to-end fashion. See appendix algorithm for
a complete description.
Experiment Set-up: We test our algorithm in the Mini-
Atari (MinAtar, Young and Tian (2019), GNU General Pub-
lic License v3.0) environment, which is a smaller version of
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Figure 3: Performance for value-based control in Mini-Atari. (A) Parameter study for different values of η. The y-axis shows
the average performance over 10k timesteps and 10 seeds using an ϵ-greedy policy with ϵ = 0.05, after stopping training after
5e6 learning steps. (B) Learning curves for 3 illustrative η values over the course of training. The y-axis displays the average
return over 10 independent seed. Shaded area and error bars depicts 95 confidence interval.

the Arcade Learning Environment (Bellemare et al. 2013)
with 5 games (asterix, breakout, freeway,
seaquest, space invaders) played in the same
way as their larger counterparts. Other than the architectural
update to the bootstrap target, we make no other changes
(e.g. to policy, relay buffer, etc.). Unless otherwise stated, we
use the same hyperparameters as DQN version from Young
and Tian (2019). Details on environment, algorithms and hy-
perparameters can be found in the appendix.

Intermediate η improves nonlinear control. Figure 3-A
illustrates a parameter study on the mixing parameter η after
training for 5 million environmental steps. We again observe
the U-shaped performance curve as we interpolate across η,
confirming the advantage of using an intermediate η value.
Figure 3-B shows the learning curves of our proposed model
that uses an intermediate value of η in comparison to the two
baseline algorithms: bootstrapping entirely on the value pa-
rameters (η = 0, equivalent to vanilla DQN with a reward
prediction auxiliary loss), and bootstrapping entirely on the
full SF value (η = 1). The latter baseline is remarkably
unstable, while the η-return mixture, with an intermediate
η = 0.5, outperforms both in 4/5 games, and is competitive
with η = 0 in freeway. The poor performance for higher
η values in freeway is likely due to sparse reward, as the
reward gradient used to shape the representation ϕ(·) is un-
informative most of the time, leading to a collapse in repre-
sentation (this is explicitly measured in the appendix). This
highlights a weakness of learning the feature encoding and
SF simultaneously, since poor features result in poor SF, and
thus poor value estimates. The use of auxiliary losses can
help ameliorate this issue (Machado, Bellemare, and Bowl-
ing 2020; Kumar et al. 2020), although it is not explored here
as we found the issue to only be significant for high values
of η.

Parameter study: robustness to the learning rates of
the SF and instantaneous reward models. Figure 4 shows
parameter studies for an intermediate η that illustrate the
sensitivity to the learning rates of the successor features
and reward heads used in learning the value function. We
vary the learning rates for these estimators while keeping
the learning rates of the representation torso and the value
function head fixed (at the same values used by Young and
Tian (2019): αθ = 2.5e-4). We observe that performance
is not highly dependent on the SF and reward learning rates
(figure 4, green), but a higher learning rate for the SF than
the one used by the representation torso facilitates track-
ing the changes in the feature representations (ϕ) by the
SF. This choice is important in freeway. For comparison,
we also sweep over the value and encoder learning rates
of a vanilla DQN (figure 4, blue), and see that it is sen-
sitive to the learning rate, i.e. performance drops as learn-
ing rate settings deviate from the recommendation of Young
and Tian (2019) (most prominently observed in asterix,
seaquest and space invaders, and for high learn-
ing rates in breakout). Additionally, we also sweep over
the learning rates of all parameters making up the η-return
mixture used as target for the q-function: either keeping all
learning rates the same (figure 4, brown) or setting the suc-
cessor feature and reward learning rates to be 10× the en-
coder learning rates (figure 4, pink). Overall, we again ob-
serve that the agent is most sensitive to learning rates in the
value head and encoder torso: performance decreases in all
games other than breakout.

5 Related Work
Successor features (SF, equation (8)) are an extension to
state-based successor representations (Dayan 1993), allow-
ing feature-based value functions to be factorized using a
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Figure 4: Parameter study on the learning rates of the SF and instantaneous reward model: The y-axis shows the average return
over 10k evaluation steps using an ϵ-greedy policy with ϵ = 0.05, after stopping training after 5e6 steps. For our algorithm,
shown here as the Deep η-Q algorithm (green), we sweep over the SF and reward learning rates while keeping the learning
rates for the representation torso and the value function head fixed at 0.00025. For the vanilla DQN (blue), we vary the learning
rates of the representation torso and the value function head. We also show the cumulative sensitivity to the parameters as we
vary all the learning rates in our algorithm (brown). Error bar denote 95 confidence intervals and each setting is ran using 3
independent seeds.

separately parameterized policy-dependent transition model
and an instantaneous reward model (Kulkarni et al. 2016;
Lehnert and Littman 2020). A wide variety of uses have
been proposed for the SF: aiding in exploration (Janz et al.
2019; Machado, Bellemare, and Bowling 2020), option dis-
covery (Machado, Bellemare, and Bowling 2017; Machado
et al. 2018), and transferring across multiple goals (Lehnert,
Tellex, and Littman 2017; Zhang et al. 2017; Ma et al. 2020;
Brantley, Mehri, and Gordon 2021), in particular through the
generalized policy improvement framework (Barreto et al.
2017, 2018; Borsa et al. 2018; Hansen et al. 2019; Grimm
et al. 2019). Our method adds to this repertoire, by using the
SF inside the learning target in bootstrapping methods.

Forward model-based planning can facilitate efficient
credit assignment. Among the algorithms that address this
topic, are Dyna-style methods, which use explicit models to
generate fictitious experience, that they then leverage to im-
prove the value function (Schoknecht 2002; Parr et al. 2008;
Sutton et al. 2008; Yao et al. 2009b). Closest to our method
is the work by Yao et al. (2009a,b) which learns an explicit
λ-model and uses it to generate fictitious experience for k-
step updates to the value function. Our work is different in
that the model we use is an implicit model, used to con-
struct a learning target. Particularly, the SF here are akin to
models for implicit planning, aiding in speeding up the value
learning process within a single-task setup. Furthermore, we
extend our method to learned non-linear feature representa-
tions and combine it with batch learning algorithms (DQN)
in MinAtar.

Building state representation is fundamental for deep
RL. The SF model is a type of general value function (Sutton
et al. 2011), hypothesized to be a core component in building
internal representations of autonomous agents (Sutton et al.
2011; White et al. 2015; Schlegel et al. 2021). Our work ties
to this topic, since we can view the partial SF model as a new
learned representation of the value function used as learning
target in the η-return mixture.

6 Discussion

In this work we propose a new, generalized learning target
that combines the previous approaches, making more effi-
cient use of the same experience. The approach we proposed
uses an implicit model represented by the SF model, and
can thus also be viewed as implicit planning with a multi-
step policy-dependent expectation model. The η-return mix-
ture we proposed for the learning target can easily be used
in place of the bootstrap target used in any value-based al-
gorithm (e.g. TD(n), TD(λ)), as we have illustrated in this
work for one-step returns used by TD(0). Empirically, we
showed that this method, while using the same amount of
sampled experience, is more effective, resulting in more ef-
ficient value function estimation and higher control perfor-
mance.

Many potential directions of investigation have been left
for future work. (i) The η-return mixture contains a succes-
sor feature estimate, which could also be further leveraged
for exploration and transfer. (ii) Chelu, Precup, and Hasselt
(2020) investigates the complementary properties of explicit
forward and backward models and argues for the potential of
optimally combining both “forward” and “backward” facing
credit assignment schemes. Further, van Hasselt et al. (2020)
introduces expected eligibility traces as implicit backward
models, a kind of “predecessor features” (time-reversed suc-
cessor features). Future work can explore the differences and
commonalities between implicit models in the forward and
backward direction using our proposed SF model and ex-
pected eligibility traces. The right balance between using
backward credit assignment through the use of eligibility
traces, and forward prediction through predictive represen-
tations remains an open question with fundamental impli-
cations for learning efficiency. (iii) How to best use predic-
tive representations to build an internal agent state is central
to generalization and efficient credit assignment. Our work
opens up many exciting new questions for investigation in
this direction.
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