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Abstract

Modal regression, a widely used regression protocol, has been
extensively investigated in statistical and machine learning
communities due to its robustness to outliers and heavy-tailed
noises. Understanding modal regression’s theoretical behav-
ior can be fundamental in learning theory. Despite significant
progress in characterizing its statistical property, the majority
of the results are based on the assumption that samples are
independent and identical distributed (i.i.d.), which is too re-
strictive for real-world applications. This paper concerns the
statistical property of regularized modal regression (RMR)
within an important dependence structure - Markov depen-
dent. Specifically, we establish the upper bound for RMR es-
timator under moderate conditions and give an explicit learn-
ing rate. Our results show that the Markov dependence im-
pacts on the generalization error in the way that sample size
would be discounted by a multiplicative factor depending on
the spectral gap of underlying Markov chain. This result shed
a new light on characterizing the theoretical underpinning for
robust regression.

Introduction
In this paper, we consider the non-parametric regression
problem which aims at inferring the relationship between
input and output. To formulate this problem, denote X as
the covariate variable that takes values in a compared metric
space X ⊂ Rd and Y that take values in Y = R. The sample
pair (X,Y ) is generated from the following model :

Y = f∗(X) + ε,

where ε is the noise term. The goal of non-parametric regres-
sion is to find the unknown function f? in a non-parametric
manner while some certain assumptions on noise term are
imposed. This problem can be boiled down to learn a charac-
terization of the conditional distribution, given a set of obser-
vations. Some commonly used characterizations include the
conditional mean (Tibshirani 1996), the conditional quan-
tile (Yu, Lu, and Stander 2003; Meinshausen and Ridgeway
2006) and the conditional mode (Chen et al. 2016; Feng,
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Fan, and Suykens 2020), which correspond to mean regres-
sion, quantile regression and modal regression (MR), re-
spectively. Each regression protocol has its own benefits in
modeling the noise. For instance, conditional mean regres-
sion can achieve satisfactory effect when the noise is Gaus-
sian or sub-Gaussian, while regression towards the condi-
tional quantile and conditional mode can be more robust in
complex noise cases. In practice, selecting an appropriate
regression protocol usually depends on the data type.

Modal regression is an appropriate regression protocol
when facing heavy-tailed noises and outliers. Different from
the conventional mean regression, which aims to estimate
the conditional mean, modal regression seeks for the un-
known truth f? by regressing towards to the conditional
mode function. For a set of observations, the mode denotes
the value that appears most frequently. In the context of den-
sity estimation, the mode is the value at which the density
function achieves its peak value. Hence, conditional mode
can reveal the structure of outputs and the trends of obser-
vations. Research on modal regression can be broadly clas-
sified into two categories: (semi-) parametric and nonpara-
metric approaches. For parametric approaches, a parametric
form of the global conditional mode function is required. To
name a few, studies in (Lee 1989; Yu and Aristodemou 2012;
Yao and Li 2014; Lv, Zhu, and Yu 2014; Khardani and Yao
2017) fall in this setting. For non-parametric approaches,
the conditional mode is sought by maximizing a conditional
density or a joint density which is typically estimated in a
non-parametric manner. Typical works include (Chen et al.
2016; Feng, Fan, and Suykens 2020; Yao and Xiang 2016;
Zhou, Huang et al. 2016; Wang et al. 2017). Great progress
on understanding the theoretical property of modal regres-
sion estimator have been made during the last two decades
(we refer the reader to (Feng, Fan, and Suykens 2020)). In
particular, Chen et al. (Chen et al. 2016) derived asymptotic
error bounds for local modal regression within the frame-
work of kernel density estimation. Feng et al. (Feng, Fan,
and Suykens 2020) established the statistical consistency
for modal regression estimator by assuming the existence
of global conditional mode function.

All the works mentioned above are based on the as-
sumption that data are independent and identical distributed
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(i.i.d.). Nevertheless, this assumption is too restrictive in a
broad range of real datasets. As a matter of fact, a consider-
able number of real datasets are tempera in nature. For ex-
ample, functional magnetic resonance imaging (fMRI) data
(Ryali et al. 2012; Smith 2012) are usually collected from
different regions over a time period; the macroeconomic
data (McCracken and Ng 2016) span the time periods of
decades and are kept updating till now. It poses challenges
for researchers applying modal regression to these time-
series data. Therefore, understanding the statistical behavior
of modal regression estimator for time-series data can be one
of the most important issues.

This paper aims to close the gap between theories of
modal regression and practical requirements in addressing
dependent observation of real data. Inspired by the statis-
tical guarantees of modal regression dealing with heavy-
tailed errors in the independent setup, we consider extending
MR to cope with dependent structure of observations. Albeit
convergence rates on modal regression are given in (Feng,
Fan, and Suykens 2020; Wang et al. 2017), it is still un-
clear whether these results work for dependent observations.
As an initial exploration on this topic, this paper narrows
down to Markov chain, an important and widely used de-
pendence structure, investigating the generalization perfor-
mance of regularized modal regression (RMR) on Markov-
dependence data. Within the Markov-dependence setup, we
first show that RMR estimator is statistical consistent under
moderate conditions, and establish its explicit convergence
rates with order O

(
(1− γ2)−

1
5m−

1
5

)
under appropriate pa-

rameter selection, where m is number of Markov-dependent
observations, and γ is the absolute spectral gap of the under-
lying Markov chain.

The rest of the paper is organized as follows. Section 2
introduces the necessary notions and notations. Section 3
presents the assumptions and the main theorems. Section 4
sketches the proofs of the main theorems. Finally, a brief
discussion is concluded in Section 5.

Model and Methodology
Model Setup
Let X ∈ Rd and Y ∈ R be the input and output spaces re-
spectively. In the modal regression setting, training samples
z = {(xi, yi)}mi=1 ⊂ X ×Y are generated independently by

Y = f∗(X) + ε, (1)

where the mode of the conditional distribution of ε at any
x ∈ X is assumed to be zero, i.e.

mode(ε|X = x) = argmax
t
pε|X(t|X = x) = 0, ∀x ∈ X , (2)

where pε|X be the conditional density of ε on X . Then, the
target function of modal regression can be represented by

f∗(x) = mode(Y |X = x) = argmax
t
pY |X(t|X = x). (3)

Throughout this paper, we assume that for any x ∈ X ,
arg maxt pY |X(t|X = x) is well defined, which is equiv-
alent to the existence and uniqueness of the global mode of
the conditional density pY |X . Moreover, we assume that f∗

is bounded, i.e ‖f∗‖∞ ≤M for some M > 0.

Denote ρ on X × Y as the intrinsic distribution for
data generated by (1) and denote ρX as the corresponding
marginal distribution on X . For any measurable function
f : X → R, the modal regression performance can be char-
acterized by

R(f) =

∫
X
pY |X

(
f(x)|X = x

)
dρX (x). (4)

It has been proved that f∗ is the maximizer of (4) over all
measurable functions (Feng, Fan, and Suykens 2020). Since
ρX and pY |X are usually unknown, we can not calculate the
estimator directly by maximizing (4). Feng et al. (Feng, Fan,
and Suykens 2020) provedR(f) = pεf (0), where pεf is the
density function of random variable εf = Y − f(X). This
implies that maximizingR(f) over some hypothesis spaces
is equivalent to maximizing the density of εf at 0, which can
be estimated by non-parametric kernel density estimation.

Let Kσ : R × R → R+ be a kernel function, and
φ(u−u

′

σ ) = Kσ(u, u′) be a representing function which sat-
isfies φ(u) = φ(−u), φ(u) ≤ φ(0) for any u ∈ R and∫
R φ(u) du = 1. With the help of Kσ , we can obtain the

empirical estimation of R(f) by kernel density estimation,
given by

Rσz(f)=
1

mσ

m∑
i=1

Kσ(yi−f(xi), 0)=
1

mσ

m∑
i=1

φ
(yi−f(xi)

σ

)
.

For any f : X → R, the expectation version ofRσz (f) is

Rσ(f) =
1

σ

∫
X×Y

φ
(y − f(x)

σ

)
dρ(x, y),

which can be viewed as a surrogate of the true modal re-
gression risk R(f) since R(f) −Rσ(f) → 0 when σ → 0
(Feng, Fan, and Suykens 2020).

Markovian Process
Let {Xi}i≥1 be a Markov chain on a general space X
with invariant probability distribution π. Let P (x, dy) be a
Markov transition kernel on a general space (X ,B(X )) and
P ∗ be its adjoint, i.e. P ∗(x, dy) := P (y,dx)

π(dx) ·π(dy). For a re-
versible Markov chain, P is self-adjoint and coincides with
P ∗ and (P + P ∗)/2. For a non-reversible Markov chain, P
is not self-adjoint, but (P + P ∗)/2 is self-adjoint and as-
sociates with a reversible transition kernel (Rudolf 2011).
Denote L2(π) by the Hilbert space consisting of square in-
tegrable functions with respect to π. For any function h :
X → R, we write π(h) :=

∫
h(x)π(dx). Define the norm

of h ∈ L2(π) as ‖h‖π =
√
〈h, h〉. Let P t(x, dy), (t ∈ N)

be the t-step Markov transition kernel corresponding to P ,
then P t(x, S) = Pr(Xt+i ∈ S|Xi = x) for i ∈ N, x ∈ X
and a measurable set S.

Following the above notations, we introduce the defini-
tions of ergodicity and spectral gap for a Markov chain.

Definition 1 Let M(x) be a non-negative function. For an
initial probability measure ρ(·) on B(X ), a Markov chain is
uniformly ergodic if

‖P t(ρ, ·)− π(·)‖TV ≤M(x)ρt (5)
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for someM(x) <∞ and ρ < 1, where ‖ ·‖TV denotes total
variation norm.

A Markov chain is geometrically ergodic if (5) holds for
some t < 1, which eliminates the bounded assumption on
M(x).

For a Markov chain with stationary distribution π, the
spectrum of the chain is defined as S := {λ̄ ∈ C \ 0 : (λ̄I −
P )−1 does not exist as a bounded linear operator on L2(π)}.
For reversible chains, S lies on the real line.
Definition 2 (Spectral gap, absolute spectral gap and
pseudo spectral gap) (Paulin 2015) The spectral gap for re-
versible chains is

γ =

1− sup{λ̄ : λ̄ ∈ S, λ̄ 6= 1}, if eigenvalue 1 has
multiplicity 1,

0 otherwise

For both reversible and non-reversible chains, the absolute
spectral gap is

γa =

1− sup{|λ̄| : λ̄ ∈ S, λ̄ 6= 1}, if eigenvalue 1 has
multiplicity 1,

0, otherwise

The pseudo spectral gap of a Markov operator P is

γp := max
k≥1
{γ((P ∗)kP k)/k},

where γ((P ∗)kP k) denotes the spectral gap of the self-
adjoint operator (P ∗)kP k.

Remark 1 The dependence of a Markov chain can be char-
acterized by the spectral gap. A small λ̄ usually implies a
fast convergence of the Markov chain towards its station-
ary distribution from a non-stationary initial distribution
(Rudolf 2011). Note that in the reversible case, γ ≥ γa.
The pseudo spectral gap is similar to the spectral gap in
the sense that it allows to derive concentration bounds on
MCMC empirical averages and is closely related to the mix-
ing time (Paulin 2015).

Regularized Modal Regression with
Markov-Dependent Observations
Define an integral operator LK : L2 → L2 associated with
the kernel K : X × X → R by

LKf(x) =

∫
X
K(x, ·)f(·) dρX , x ∈ X .

Suppose X is compact and K is continuous, then LKL>K
is a self-adjoint positive operator with decreasing eigenval-
ues {λ2

k}∞k=1 with λk ≥ 0 and eigenfunctions {ψk}∞k=1
forms an orthonormal basis of L2. With this setup, we fur-
ther define |LK |β = |LKL>K |

β
2 with |LK |β(

∑∞
k=1 ckψk) =∑∞

k=1 ckλ
β
kψk, {ck}k ∈ `2.

Given samples z and a continuous K, the sample depen-
dent hypothesis space (SDHS) is defined as

HK,z =
{
f =

m∑
i=1

αiK(xi, ·),α = (α1, α2, · · · , αm)> ∈ Rm
}
,

(6)

which has been extensively used in generalization analy-
sis of regression and classification. SDHS does not require
the kernel to be symmetric and semi-definite, hence pro-
vides much flexibility and adaptivity for learning problems.
It should be noted that the hypothesisHK,z can be expressed
as the span ofK(x, ·) over the inputs {xi}mi=1, which further
implies that the hypothesis is determined by the coefficient
αi, i = 1, 2, · · · ,m once the kernel function is specified.
Therefore, regularized modal regression aims to solve the
following optimization problem

fz = arg max
f∈HK,z

{Rσz (f)− λΩq(f)}, (7)

where λ > 0 is a regularization parameter and Ωq(f) is the
coefficient regularizer, defined by

Ωq(f) = inf
{ m∑
i=1

|αi|q : f =
m∑
i=1

αiKxi ⊂ H1

}
with q = 1, 2, where H1 is given in Definition 3. Let Ki =
(K(x1,xi),K(x2,xi), · · · ,K(xm,xi)), then optimization
model (7) can be reformulated as

αz = arg max
α∈Rm

{ 1

mσ

m∑
i=1

φ
(yi −K>i α

σ

)
− λ‖α‖qq

}
(8)

with

fz =
m∑
i=1

αz
jK(xi, ·).

Note that model (8) is reduced to a robust kernel machine
to achieve sparseness when q = 1, which is a natural exten-
sion of sparse kernel regression (Chen and Wang 2018; Shi
et al. 2019). When q = 2, it is closely related to kernel ridge
regression by replacing modal regression criterion with the
mean square error criterion. In particular, when Gaussian
kernel is employed for kernel density function, (8) can be
rewritten as

αz = arg max
α∈Rm

{ 1

mσ

m∑
i=1

exp
{
− (yi −K>i α)2

σ

}
−λ‖α‖qq

}
,

which is consistent with the sparse correntropy regres-
sion with coefficient-based regularization (Chen and Wang
2018). This problem can be solved efficiently through the
Half Quadratic (HQ) (Nikolova and Ng 2005) optimization
strategy.

Theoretical Assessments
This section mainly concerns the theoretical property of reg-
ularized modal regression for Markov-dependent observa-
tions. Specifically, our goal is to bound the excess gener-
alization error R(f∗) − R(fz) in the context of general
Markov chain. To this end, we first introduce a Banach space
H1, which contains all possible SDHSHK,z in (6).

Definition 3 Define a Banach space H1 =
{
f : f =∑∞

j=1 αjK(xj), αj ∈ R, {xj} ⊂ X
}

with the norm

‖f‖ = inf
{ ∞∑
j=1

|αj | : f =
∞∑
j=1

αjKxj

}
, (9)
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It can be observed that H1 consists of continuous functions
due to the continuity of K. As an important measurement of
capacity of a hypothesis space, covering number have been
extensively studied in the work (Zhou 2002, 2003; Steinwart
and Christmann 2008). We adopt empirical covering number
involved withH1 to get a tight bound for RMR estimator.

Definition 4 (Empirical Covering Number (Wu, Ying, and
Zhou 2007)) Let H be a set of functions on Z and samples
z = {z1, z2, · · · , zm} ⊂ Z . The metric onH is denoted by

d2,z(f, g) =
{ 1

m

m∑
i=1

(
f(zi)− g(zi)

)2}1/2

for f, g ∈ H.

For any ε > 0, the empirical covering number of H with
respect to d2,z(f, g) is

N2(H, ε) = sup
m∈N

sup
z
N2,z(H, ε) > 0,

where

N2,z(H, ε) := inf
{
l ∈ N : ∃{fi}li=1 ⊂ H such that

H =
l⋃
i=1

{
f ∈ H : d2,z(f, fi) ≤ ε

}}
.

Note that for any function set H ⊂ C(X ), the empirical
covering number N2,z(H, ε) can be bounded by N (H, ε),
the uniform covering number of H with the metric ‖ · ‖∞,
due to the fact d2,z(f, g) ≤ ‖f − g‖∞. The function sets
in our situation are balls of the SDHS in the form of BR =

{f ∈ H : Ω
1
q
q (f) ≤ R}.

Assumption 1 (Complexity) For any η > 0, there exists an
exponent s with 0 < s < 2 and cs > 0 such that

logN2(HK,z, η) ≤ csη−s, ∀η > 0. (10)

Assumption 2 (Non-zero spectral gap) The underlying
Markov chain {Xi}ni=1 is stationary with unique invariant
measure π and admits an absolute spectral gap 1− γ.

Assumption 3 (Density) The conditional density of ε given
X , i.e. pε|X is second-order continuous differentiable and
‖p′′ε|X‖∞ is bounded.

Assumption 4 (Calibrated Modal Regression Kernel) The
representing function φ satisfies: 1) ∀u ∈ R, φ(u) ≤
φ(0) < ∞; 2) φ is Lipschitz continuous with constant Lφ;
3)
∫
R φ(u) du = 1 with

∫
R u

2φ(u) du <∞.

Assumption 1 is a fairly standard assumption on describ-
ing the complexity of hypothesis space. It has been exten-
sively studied in learning theory (Zhou 2002, 2003; Cucker
and Smale 2001), from which we know for a C∞ ker-
nel, (10) holds for any s > 0. Assumption 2 requires the
underlying Markov chain admits an absolute spectral gap,
which quantifies the converge speed of Markov chain to-
wards its invariant distribution π. Assumption 3 is a gen-
eral condition on conditional density of p′′ε|X and conven-
tional noise distributions satisfy this requirement. Assump-
tion 4 requires the represent function to be bounded and Lip-
schitz continuous. Typical examples include the Gaussian

kernel, Epanechnikov kernel, quadratic kernel and Triangu-
lar kernel. The following comparison theorem (Feng, Fan,
and Suykens 2020) characterizes the relationship between
excess modal risk and excess generalization risk.

Lemma 1 (Feng, Fan, and Suykens 2020) Under assump-
tion 3, for any measurable function f : X → R, it holds
that

|R(f∗)−R(f)− (Rσ(f∗)−Rσ(f))| ≤ C1σ
2,

where C1 = ‖p′′ε|X‖∞
∫
R u

2φ(u) du.

A well-established approach for conducting error analy-
sis of learning algorithms is error decomposition, where the
generalization error is usually decomposed into sample er-
ror and approximation error. Considering the characteristic
of SDHS, we formulate the error decomposition of RMR by
introducing the stepping stone functionfλ, defined by

fλ = arg max
f∈HK,z

{Rσ(f)− λΩq(f)},

where λ > 0 is the regularization parameter.

Proposition 1 Suppose fz is produced by (7) based on
Markov-dependent observations, and f∗ ∈ HK,z.Then

R(f∗)−R(fz) ≤ S1(z) + S2(z) + C1σ
2 + λΩq(f

∗),

where C1 = ‖p′′ε|X‖∞
∫
R u

2φ(u) du and

S1(z) = Rσz (f∗)−Rσz (fλ)− {Rσ(f∗)−Rσ(fλ)},
S2(z) = Rσ(f∗)−Rσ(fz)− {Rσz (f∗)−Rσz (fz)}.

With these settings, we now present theoretical results for
RMR with Markov-dependent observations.
Theorem 1 Let the Markov-dependent observations z be
generated by (1) with invariant distribution π and non-zero
absolute spectral gap γa > 0. Suppose that Assumptions
1-4 are satisfied. Let f∗ lies in the range of LβK for some
β ∈ (0, 2]. Then for any 0 < δ < 1, the following inequality

Rσ(f∗)−Rσ(fz) ≤ C log(2/δ)
(

(2γa − γ2
a)−

1
2m−

1
2σ−

1
2

+ (2γa − γ2
a)−

1
1+sm−

1
1+sσ−

4+2s
1+s R

s+2
s+1 + σ2 + λ

2β
2+β

)
holds with confidence at least 1 − δ, where C is a positive
constant independent of m,σ, δ.

Remark 2 Theorem 1 establishes the upper bound for reg-
ularized modal regression in Markov-dependent setup. As
far as we can tell, this is the first work in the literature. It
can be observed that the corresponding generalization error
relies on the spectral gap of underlying Markov chain, the
capacity of hypothesis space, the regularization parameter
λ and the bandwidth parameter σ. The dependence of the
Markov chain is measured by a quantity γa ∈ [0, 1], denot-
ing the norm of Markov operator (induced by transition ker-
nel) acting on the L2 space with respect to the invariant dis-
tribution. It has been involved as constants in mean square
error bound for Markov chain Monte Carlo (Rudolf 2011),
Hoeffding-type (Fan, Jiang, and Sun 2018) and Bernstein-
type inequalities for Markov chains (Paulin 2015). A non-
zero spectral gap is closely related to other convergence
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criterion of Markov chains, e.g. geometrically ergodic, uni-
formly ergodic(Meyn and Tweedie 2012). Note that such a
Markov chain can actually be generated by the so-called
Markov sampling strategy (Gong, Zou, and Xu 2015; Gong,
Xi, and Xu 2020), where a uniformly ergodic Markov chain
can be generated from a given dataset without temporal re-
lation.

Theorem 2 Under the same conditions in Theorem 1, take
θ = 2β

8β+5sβ+2s+4 , λ = (2γa−γ2
a)−

θ
βm−

θ
β and σ = (2γa−

γ2
a)−

θ
2βm−

θ
2β . For any 0 < δ < 1, the excess risk of RMR

estimator fz satisfies

R(f∗)−R(fz) ≤ Ĉ log(2/δ)(2γa − γ2
a)−

θ
βm−θ

with confidence at least 1−δ, where Ĉ is a positive constant
independent of m,σ, δ.

Remark 3 Theorem 2 implies the estimation consistency of
RMR when λ, σ are properly specified. In particular, when
s → 0, β = 2 we see that the learning rate in Theorem 2
is O

(
(2γa − γ2

a)−
1
5m−

1
5

)
, which is faster than the result in

(Wang et al. 2017), whose learning is O(m−
1
7 ). It is worth

noting that the learning rate of RMR in Markov-dependent
samples would be discounted by a multiplicative coefficient
(2γa−γ2

a)−
1
5 , which is determined by the convergence prop-

erty of the underlying Markov chain. Generally, a small γ
will lead to a small coefficient, which means a Markov chain
with fast converging speed has small generalization error.
Note that the absolute spectral gap assumption can be re-
laxed to the pseudo spectral gap, the corresponding learn-
ing rate established in Theorem 2 remains the same order
but the multiplicative coefficient 2γa− γ2

a is replaced by γp.

Remark 4 It is well known that any bounded independent
random variables Zi ∈ [ai, bi] (ai ≤ bi, ai, bi ∈ R) can
be seen as the transformations of i.i.d. random variables
Ui ∼ Unif [0, 1] via the inverse cumulative distribution
functions F−Zi1 : [0, 1] → [ai, bi], i.e. Zi = F−1

Zi
(Ui).

Hence, the i.i.d. sequence {Ui}i≥1 can be regarded as a sta-
tionary Markov chain on the state space [0, 1] with invariant
measure π(dy) = dy and transition kernel P (x, dy) = dy.
This Markov chain has γ = 1. In this case, the generaliza-
tion error in Theorem 2 reduces to the classical i.i.d. case,
i.e. O(m−

1
5 ). Note that such a learning rate is still better

than the result in (Wang et al. 2017). The main reason is
that we use empirical covering number to carefully charac-
terize the capacity of function space while Wang et al. (Wang
et al. 2017) adopts the Rademacher complexity as the mea-
surement. Some regularity conditions can be imposed on the
kernel function to further improve the learning rate.

To evaluate the robustness of RMR within Markov-
dependent observations, we introduce the concept of break-
down point (Donoho 1982), which measures the proportion
of bad data in a dataset that an estimator can tolerate before
returning arbitrary value.

Given a sample set z = {(xi, yi)}mi=1, the corrupted sam-
ple set z ∪ z′ is constructed by adding n arbitrary points
z′ = {(xm+j , ym+j)}nj=1, which contain a fraction n

m+n

of bad values. The finite sample contamination breakdown
point ε(αz) is defined as

ε∗(αz) = min
1≤n≤m

{ n

m+ n
: sup

z′
‖αz∪z′‖2 =∞

}
, (11)

Theorem 3 Suppose φ(u) = φ(−u) and φ(t) → 0 when
|t| → ∞. For a given Markov-dependent observations z,
and λ, σ, let

N = φ(0)−1
m∑
i=1

φ
(yi −K>i αz

σ

)
− λφ(0)−1mσ‖αz‖qq.

Then the finite sample contamination breakdown point of αz

in (8) is

ε∗(αz) =
n∗

m+ n∗
,

where n∗ is an integer satisfying dNe ≤ n∗ ≤ bNc + 1,
dae denotes the largest integer not greater than a and bac
denotes the smallest integer not less than a.
Remark 5 Theorem 3 indicates that the breakdown point
relies on φ(·), the turning parameter λ, σ and the sample
configuration. As pointed out in (Huber 1992), the break-
down point can be quite high if the bandwidth parameter is
only determined by training samples. However, with appro-
priate choice of λ and σ through some data driven strate-
gies, RMR can still achieve a satisfactory learning rate and
robustness.

Proofs
This section presents the proof details of the main theorems.
To be clear, we first list several useful lemmas which will be
used in the proofs.
Lemma 2 (Paulin 2015) (Bernstein inequality for re-
versible Markov Chains) Let X1, X2, · · · , Xm be a sta-
tionary reversible Markov chain with invariant distri-
bution π and absolute spectral gap γa. Suppose that
f1, f2, · · · , fm ∈ L2(π) with |fi − Eπ(fi)| ≤ C, denote
S :=

∑m
i=1 fi(Xi) and VS :=

∑m
i=1 Varπ(fi), then for any

t > 0,

Pπ
(
|S − Eπ(S)| ≥ t

)
≤ 2 exp

(
− t2(2γa − γ2

a)

8VS + 20Ct

)
. (12)

Lemma 3 (Cucker and Smale 2002) Let c1, c2 > 0, and
p1 > p2 > 0. Then, the equation xp1 − c1x

p2 −
c2 = 0 has unique positive zero x∗. In addition x∗ ≤
max{(2c1)1/(p1−p2), (2c2)1/p1}.

Proof of Theorem 1
PROOF. The proof of Theorem 1 consists of three steps be-
low.

Step I: Bounding S1(z). Define a random variable

ξ1 := σ−1φ
(y − f∗(x)

σ

)
− σ−1φ

(y − fλ(x)

σ

)
, z ∈ Z.

According to the boundedness assumption of φ, it is easy to
check that |ξ1(z)| ≤ 2‖φ‖∞/σ. Furthermore, we see that

Var(ξ1) = E
[
σ−1φ

(y − f∗(x)

σ

)
− σ−1φ

(y − fλ(x)

σ

)]2
≤ 2
‖φ‖∞
σ

(Rσ(f∗) +Rσ(fλ)).
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By Theorem 9 in (Feng, Fan, and Suykens 2020), we have

|Rσ(f)−R(f)| ≤ C1σ
2

2
,

which implies Rσ(f∗) ≤ R(f∗) + C1

2 σ
2 and Rσ(fλ) ≤

R(fλ) + C1

2 σ
2, where C1 is given in Lemma 1. These two

inequalities together with the fact σ ≤ 1 yield

Var(ξ1) ≤ 2‖φ‖∞
σ

(R(f∗) +R(fλ) + C1σ
2)

≤ 2‖φ‖∞
σ

(pf∗(0) + pfλ(0) + C1σ
2)

≤ C2σ
−1,

where C2 = 2‖φ‖∞(pf∗(0) + pfλ(0) +C1). Now applying
Lemma 2 to the random variable ξ1, we have

S1 ≤
20‖φ‖∞ log(2/δ)

mσ(2γa − γ2
a)

+ 2

√
2C2 log(2/δ)

mσ(2γa − γ2
a)
.

with confidence at least 1− δ.
Step II: Bounding S2(z). To this end, we first prove that

under assumptions 1 and 2, for any f ∈ BR with R ≥ 1 and
ε ≥ C1σ

2, with confidence at least 1− δ, it holds

Pz∈Zm
{Rσ(f∗)−Rσ(f)− (Rσz (f∗)−Rσz (f))√

Rσ(f∗)−Rσ(f) + 2ε
> 4
√
ε
}

≤ N2 (BR, r) exp
{
− (2γa − γ2

a)mε

40(M + 1)2R2(Lφσ−4 + Lφσ−2)

}
,

(13)

where r = σ2ε
Lφ(M+1)R . To this end, we introduce a random

variable defined by

ξ2 = σ−1φ
(y − f∗(x)

σ

)
− σ−1φ

(y − f(x)

σ

)
,

then it is easy to verify that Eξ2 = Rσ(f∗) − Rσ(f) and
for ∀f ∈ BR, |ξ2| ≤ Lφ

σ2 ‖f∗ − f‖∞ ≤ Lφ
σ2 (M + 1)R,

|ξ2−Eξ2| ≤ 2Lφ
σ2 (M+1)R and Var(ξ2) ≤ Eξ2

2 ≤
L2
φ

σ4 ‖f∗−
f‖2∞. Let {fj}Jj=1 be an r-net of the set BR with J being the
covering number of N2(BR, r), and define

µ =
√
Rσ(f∗)−Rσ(fj) + 2ε.

According to Lemma 2, we get the following conclusion

Pz∈Zm
{Rσ(f∗)−Rσ(fj)− (Rσz (f∗)−Rσz (fj))√

Rσ(f∗)−Rσ(fj) + 2ε
>
√
ε
}

≤ exp
{
− (2γa − γ2

a)mµ
2ε

8L2
φσ
−4‖f∗ − fj‖2∞ + 40Lφσ−2(M + 1)Rµ

√
ε

}
≤ exp

{
− (2γa − γ2

a)mµ
2ε

8L2
φσ
−4(M+1)2R2µ2+40Lφσ−2(M+1)2R2µ

√
ε

}
≤ exp

{
− (2γa − γ2

a)mε

40(M + 1)2R2(L2
φσ
−4 + Lφσ−2)

}
.

Since

µ2 = Rσ(f∗)−Rσ(fj)+2ε > Rσ(f∗)−Rσ(fj)+ε ≥ ε,

there exists some j such that ‖f − fj‖∞ ≤ σ2ε
Lφ(M+1)R for

any f ∈ BR, hence both |Rσ(f) − Rσ(fj)| and |Rσz (f) −
Rσz (fj)| can be bounded by ε, then we have the following
inequalities

|Rσz (f∗)−Rσz (f)− (Rσz (f∗)−Rσz (fj))|√
Rσ(f∗)−Rσ(f) + 2ε

≤
√
ε,

|Rσ(f∗)−Rσ(f)− (Rσ(f∗)−Rσ(fj))|√
Rσ(f∗)−Rσ(f) + 2ε

≤
√
ε.

These two inequalities together with the fact ε < Rσ(f∗)−
Rσ(f) + 2ε yield the following inequality

Rσ(f∗)−Rσ(fj) + 2ε = Rσ(f∗)−Rσ(fj)−
(Rσ(f∗)−Rσ(f)) +Rσ(f∗)−Rσ(f)+2ε

≤
√
ε
√
Rσ(f∗)−Rσ(f) + 2ε+Rσ(f∗)−Rσ(f) + 2ε

≤ 2(Rσ(f∗)−Rσ(f) + 2ε),

hence
Rσ(f∗)−Rσ(f)− (Rσz (f∗)−Rσz (f))√

Rσ(f∗)−Rσ(f) + 2ε
> 4
√
ε

for ∀f ∈ BR. We further get

Rσ(f∗)−Rσ(fj)− (Rσz (f∗)−Rσz (fj))√
Rσ(f∗)−Rσ(fj) + 2ε

>
√
ε,

which implies

Pz∈Zm
{Rσ(f∗)−Rσ(f)− (Rσz (f∗)−Rσz (f))√

Rσ(f∗)−Rσ(f) + 2ε
> 4
√
ε
}

≤
J∑
i=1

Pz∈Zm
{Rσ(f∗)−Rσ(fj)−(Rσz (f∗)−Rσz (fj))√

Rσ(f∗)−Rσ(fj) + 2ε
>
√
ε
}

≤N2 (BR, r) exp
{
− (2γa − γ2

a)mε

40(M + 1)2R2(L2
φσ
−4 + Lφσ−2)

}
.

We know from (13) that

Pz∈Zm
{

sup
fz∈BR

Rσ(f∗)−Rσ(fz)−(Rσz (f∗)−Rσz (fz))√
Rσ(f∗)−Rσ(fz)+2ε

>4
√
ε
}

≤ N2 (BR, r) exp
{
− (2γa − γ2

a)mε

40(M + 1)2R2(L2
φσ
−4 + Lφσ−2)

}
≤ exp

{
cs
(1
r

)s
− (2γa − γ2

a)mε

40(M + 1)2R2(L2
φσ
−4 + Lφσ−2)

}
,

(14)

Set the last term of inequality (14) equal to δ, and we get

εs+1 −
40(M + 1)2R2(L2

φσ
−4 + Lφσ

−2) log(2/δ)

(2γa − γ2
a)m

· εs

−
40csL

s+2
φ (σ−4−2s+σ−2−2s)(M+1)s+2Rs+2

(2γa − γ2
a)m

=0.

By Lemma 3, we obtain the upper bound of the smallest
positive solution ε∆ for the above equation, i.e.

ε∆ := C3(2γa − γ2
a)−

1
1+sσ−

4+2s
1+s m−

1
1+sR

s+2
s+1 log(2/δ),
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where C3 := max
{

80(M + 1)Lφ, (80cs)
1

1+s (M +

1)
s+2
s+1L

s+2
s+1

φ

}
. Then, we have for fz ∈ BR

S2(z) = Rσ(f∗)−Rσ(fz)− (Rσz (f∗)−Rσz (fz))

≤ 4
√
ε∆ ·

√
Rσ(f∗)−Rσ(fz) + 2ε∆

≤ 1

2
(Rσ(f∗)−Rσ(fz)) + 9ε∆.

(15)

Step III: Let {ψ1, ψ2, · · · } be an orthonormal basis of
L2
ρX (X) and {λ1, λ2, · · · } be the corresponding eigenvalue

with descending order. Recall that f∗ ∈ LβKg for some
0 < β ≤ 2 and g ∈ L2

ρX , then f∗ =
∑
λk≥0 αkλ

β
kψk

and g can be uniquely written as g =
∑
λk≥0 αkψk with

‖g‖qL2
ρX

=
∑
λk≥0 |αk|q ≤ ∞. Assume that λ1 ≤ λ

β−2
2+β ,

we get Ωq(f
∗) ≤

∑
λk≥0 |αk|qλ

β
k ≤ ‖g‖

q
L2
ρX

λ
β−2
2+β . Based

on the estimations in Step I and II, we see that with confi-
dence at least 1− δ,

R(f∗)−R(fz) ≤ 20‖φ‖∞ log(2/δ)

mσ(2γa − γ2
a)

+ 2

√
2C2 log(2/δ)

mσ(2γa − γ2
a)

+ 18C3(2γa − γ2
a)−

1
1+sσ−

4+2s
1+s m−

1
1+sR

s+2
s+1 log(2/δ)

+ 2λ
2β

2+β + 2C1σ
2

≤ C log(2/δ)
(

(2γa − γ2
a)−

1
2m−

1
2σ−

1
2 + (2γa − γ2

a)−
1

1+s

·m−
1

1+sσ−
4+2s
1+s R

s+2
s+1 + σ2 + λ

2β
2+β

)
,

where C = 180C1C3M
2‖φ‖∞‖g‖qL2

ρX

is a constant inde-
pendent of m, δ, σ and λ. We complete the proof. �

Proof of Theorem 2
PROOF. From the definition of fz, we know thatRσz (fz)−
λΩq(fz) ≥ Rσz (0), then λΩq(fz) ≤ Rσz (fz) − Rσz (0) ≤
2‖φ‖∞
σ , which implies Ωq(fz) ≤ 2‖φ‖∞λ−1σ−1. Hence

taking R = 2‖φ‖∞λ−1σ−1 together with Theorem 1 yield

R(f∗)−R(fz) ≤ Ĉ log(2/δ)
(

(2γa − γ2
a)−

1
2m−

1
2σ−

1
2

+ (2γa − γ2
a)−

1
1+sm−

1
1+sσ−

6+3s
1+s λ−

s+2
s+1 + σ2 + λ

2β
β+2

)
.

By taking λ = (2γa − γ2
a)−

θ
βm−

θ
β , σ = (2γa −

γ2
a)−

θ
2βm−

θ
2β and θ = 2β

8β+5sβ+2s+4 with confidence at
least 1− δ, it holds

R(f∗)−R(fz) ≤ Ĉ log(2/δ)(2γa − γ2
a)−

θ
βm−θ.

This completes the proof. �

Proof of Theorem 3
PROOF. Observe that the RMR optimization problem (8) is

equivalent to

max
α∈Rm

{
φ(0)−1

m∑
i=1

φ
(yi −K>i αz

σ

)
−λφ(0)−1mσ‖αz‖qq

}
.

(16)
Let φ∗(t) = φ(t)/φ(0). Then for any t, φ∗(t) ≤ φ∗(0) = 1
and φ∗(·) decreases monotonely toward both sides and that
φ∗(t) = 0 for |t| → ∞.

We first show that αz∪z′ is bounded when n < N . To this
end, suppose there exists a ν > 0 such that n + mν < N .
Let φ∗(t) ≤ ν for t ≥ C and α be any real vector such that
|y −K>α| ≥ C for all (x, y) ∈ z. Then we have

m+n∑
i=1

φ∗(yi −K>i αz)− λmσ‖αz‖qq ≥ N, (17)

and
m+n∑
i=1

φ∗(yi −K>i α)− λmσ‖α‖qq

≤
m+n∑
i=m+1

φ∗(yi −K>i α) +
m∑
i=1

φ∗(yi −K>i α)

≤ n+mν.

(18)

From (17) and (18), we know that αz∪z′ must satisfies |y −
K>αz∪z′ | < C for a sample in z.

On the other hand, if n > N , let ν > 0,
such that n − nν > N , and let C be such that
φ∗(t) ≤ ν for |t| ≥ C. Assume that all points in
z′ are the same and satisfy y = K>i α

∗. Let α be
any vector such that |ym+1 − K>m+1α| < C. Then∑m+n
i=1 φ∗(yi − K>i α) − λmσ‖α‖qq ≤ N + nν and∑m+n
i=1 φ∗(yi −K>i α

∗)− λmσ‖α∗‖qq ≥ n. These inequal-
ities imply that |ym+1 − K>m+1αz∪z′ | ≤ C. Hence αz∪z′
is bounded as n < N . Observe that ‖αz∪z′‖ → ∞ when
ym+1 →∞ with Km+1 fixed, and we have the breakdown.
�

Conclusions
In this paper, we investigate the generalization performance
of regularized modal regression under Markov-dependence
setup. The statistical consistency is established and an ex-
plicit learning rate is given as well. Our results show that the
Markov dependence impacts on the generalization error in
the way that sample size would be discounted by a multi-
plicative factor depending on the spectral gap of underlying
Markov chain. Moreover, the study brings us some insights
into robust regression within Markov-dependent setup. It
will be interesting to improve the learning rate obtained in
current study by imposing some regularity conditions on the
kernel function.
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