Enhancing Counterfactual Classification Performance via Self-Training


  • Ruijiang Gao University of Texas at Austin
  • Max Biggs University of Virginia
  • Wei Sun IBM Research
  • Ligong Han Rutgers University




Machine Learning (ML)


Unlike traditional supervised learning, in many settings only partial feedback is available. We may only observe outcomes for the chosen actions, but not the counterfactual outcomes associated with other alternatives. Such settings encompass a wide variety of applications including pricing, online marketing and precision medicine. A key challenge is that observational data are influenced by historical policies deployed in the system, yielding a biased data distribution. We approach this task as a domain adaptation problem and propose a self-training algorithm which imputes outcomes with categorical values for finite unseen actions in the observational data to simulate a randomized trial through pseudolabelling, which we refer to as Counterfactual Self-Training (CST). CST iteratively imputes pseudolabels and retrains the model. In addition, we show input consistency loss can further improve CST performance which is shown in recent theoretical analysis of pseudolabelling. We demonstrate the effectiveness of the proposed algorithms on both synthetic and real datasets.




How to Cite

Gao, R., Biggs, M., Sun, W., & Han, L. (2022). Enhancing Counterfactual Classification Performance via Self-Training. Proceedings of the AAAI Conference on Artificial Intelligence, 36(6), 6665-6673. https://doi.org/10.1609/aaai.v36i6.20621



AAAI Technical Track on Machine Learning I