
KerGNNs: Interpretable Graph Neural Networks with Graph Kernels

Aosong Feng1, Chenyu You1, Shiqiang Wang2, Leandros Tassiulas1

1 Yale University, New Haven, CT, USA
2 IBM T. J. Watson Research Center, Yorktown Heights, NY, USA

aosong.feng@yale.edu, chenyu.you@yale.edu, wangshiq@us.ibm.com, leandros.tassiulas@yale.edu

Abstract

Graph kernels are historically the most widely-used technique
for graph classification tasks. However, these methods suffer
from limited performance because of the hand-crafted com-
binatorial features of graphs. In recent years, graph neural
networks (GNNs) have become the state-of-the-art method
in downstream graph-related tasks due to their superior per-
formance. Most GNNs are based on Message Passing Neu-
ral Network (MPNN) frameworks. However, recent studies
show that MPNNs can not exceed the power of the Weisfeiler-
Lehman (WL) algorithm in graph isomorphism test. To ad-
dress the limitations of existing graph kernel and GNN meth-
ods, in this paper, we propose a novel GNN framework,
termed Kernel Graph Neural Networks (KerGNNs), which
integrates graph kernels into the message passing process
of GNNs. Inspired by convolution filters in convolutional
neural networks (CNNs), KerGNNs adopt trainable hidden
graphs as graph filters which are combined with subgraphs
to update node embeddings using graph kernels. In addi-
tion, we show that MPNNs can be viewed as special cases
of KerGNNs. We apply KerGNNs to multiple graph-related
tasks and use cross-validation to make fair comparisons with
benchmarks. We show that our method achieves competitive
performance compared with existing state-of-the-art meth-
ods, demonstrating the potential to increase the representation
ability of GNNs. We also show that the trained graph filters in
KerGNNs can reveal the local graph structures of the dataset,
which significantly improves the model interpretability com-
pared with conventional GNN models.

Introduction
In recent years, the machine learning research community
has devoted substantial energy to applying graph neural
networks (GNNs) to numerous downstream graph-related
tasks (Ying et al. 2018; Kipf and Welling 2016; Zhang
and Chen 2018; Chen, Li, and Bruna 2017). Considering
graph-structured tasks, the commonalities between differ-
ent variants of GNNs are Message Passing Neural Net-
works (MPNNs) (Gilmer et al. 2017). MPNNs consist of two
stages, including neighborhood aggregation and graph-level
readout. Specifically, for neighborhood aggregation, there
are three steps for each node to generate embeddings: (1)

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

v {Hi

(a) (b)

graph filterssubgraph G

1

2

3 {{ }},2 3

3
2
1

1

2

3

1-WL

subgraph-based v v

} i

{{ }},2 3

3
2
1

Figure 1: (a) 1-WL graph isomorphism test cannot distin-
guish one hexagon and two triangles because of same neigh-
borhood multisets, while subgraph-based method can find
the difference based on different subgraph topologies. (b)
The yellow shadow represents the subgraph of node v. After
interacting with graph filters, the updated node is colored in
blue.

receiving messages from its neighbors, (2) aggregating mes-
sages, and (3) updating its own features to encode the local
structural information. For graph-level tasks, a permutation-
invariant readout function is used to extract feature represen-
tations from the entire graph. In fact, MPNNs have been mo-
tivated and derived as a continuous and differentiable analog
of the Weisfeiler-Lehman (WL) algorithm (Leman and We-
isfeiler 1968) which is known to successfully test graph iso-
morphism for a broad class of graphs. However, recent stud-
ies (Xu et al. 2018; Morris et al. 2019) show that MPNNs are
at most as powerful as the WL kernel (Shervashidze et al.
2011) and WL algorithm regarding the graph isomorphism
tests. This demonstrates theoretical limits in the expressiv-
ity of popular GNNs. For example, Figure 1(a) shows two
graphs which cannot be distinguished by 1-WL algorithm,
and therefore are also indistinguishable by MPNNs.

Before the advent of GNNs, graph kernels were the most
widely-used techniques for solving graph classification tasks
(Kriege, Johansson, and Morris 2020). Graph kernels mea-
sure the similarity between graphs, and can be applied into
a kernel machine (e.g., support vector machine). Kernel
functions remove the need of learning node embeddings
in high dimensions, and enable us to operate in a high
dimensional feature space by simply computing the ker-
nel value in the low-dimensional feature space, which is
more computationally efficient than computing in the high-
dimensional space directly. Because of the empirical suc-
cess of kernel-based methods and the increasing availability
of graph-structured datasets, numerous graph kernel meth-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

6614

ods have been proposed, including walks and paths ker-
nels (Gärtner, Flach, and Wrobel 2003; Kashima, Tsuda,
and Inokuchi 2003; Borgwardt and Kriegel 2005), subgraph
kernels (Shervashidze et al. 2009), and WL kernels (Sher-
vashidze et al. 2011). However, graph kernels still have lim-
itations due to their hand-crafted features and fixed fea-
ture construction scheme, which may not effectively capture
high-dimensional information (e.g., complex node interac-
tions) on large graphs.

In this paper, to address the above-mentioned issues and
increase the expressivity of GNNs, we propose a subgraph-
based node aggregation algorithm by combining GNNs
and graph kernels into one framework, and thus the advan-
tages of both methods can be leveraged. On one hand, for
neighborhood aggregation, we apply graph kernels which
use the subgraph induced by node neighbors, so that the
expressivity will not be limited by 1-WL isomorphism test
which uses the multiset of neighboring nodes. An example
is shown in Figure 1(a), where we note that node 1 in both
graphs has the same neighborhood multiset but induce dif-
ferent subgraph topologies with its neighbors which can be
distinguished by graph kernels. On the other hand, we make
the feature construction scheme of graph kernels trainable
following the standard GNN training framework, possibly
allowing for greater adaptability.

Based on the subgraph-based node aggregation, we pro-
pose a novel GNN framework, termed KerGNNs. Specif-
ically, we first introduce a set of trainable hidden graphs,
named graph filters, in each layer. Each node within the in-
put graph is associated with a subgraph capturing its local
topological information. We then adopt graph kernel func-
tions to compare the similarity of graph filters and input
subgraphs, and use the computed kernel values to update the
respective node’s feature representations (as shown in Fig-
ure 1(b)). We show that KerGNNs provide a new kernel per-
spective to extend the standard CNN structure into the graph
domain and generalize most MPNNs. The proposed model is
then evaluated with various real-world graph and node clas-
sification tasks, and the results show superior performance
of KerGNNs compared with many existing state-of-the-art
models. To better understand the predictions of GNN-based
methods, KerGNNs can further visualize the trained graph
filters, similar to visualizing filters in CNNs, and thus pro-
vide better human-interpretable explanations for a variety of
graph-related tasks, compared to existing GNNs. Our main
contributions are summarized as follows:

1. We use neighborhood subgraph topology combined with
kernel methods for GNN neighborhood aggregation, and
show with proof that the expressivity of this approach is
not limited by the 1-WL algorithm.

2. We provide a new perspective to generalize CNNs into
the graph domain, by showing that both 2-D convolution
and graph neighborhood aggregation can be interpreted
using the language of kernel methods.

3. Besides envisioning the output graphs of the model,
KerGNNs can further reveal the local structure of the
input graphs by visualizing the topology of trained
graph filters, which significantly improves the model in-

terpretability and transparency compared with standard
MPNNs.

Related Work

Expressivity

Several works have been devoted to improving the ex-
pressivity of GNNs by introducing spatial, hierarchical,
and higher-order GNN variants. For example, Abu-El-Haija
et al. (2019) proposed the mix-hop structure which can learn
a more general class of neighborhood mixing relationships.
Sato, Yamada, and Kashima (2019) proposed to use Con-
sistent Port Numbering GNN to augment the neighborhood
aggregation, but port orderings are not unique and differ-
ent orderings may lead to different expressivity. Klicpera,
Groß, and Günnemann (2020) leveraged the atom coordi-
nate information in the molecular graph to improve the ex-
pressivity, but the notion of direction is hard to generalize
to more general graphs. Nguyen and Maehara (2020) used
the graph homomorphism numbers as updated embeddings
and show the expressivity of such graph classifiers with
universality property, which unfortunately lacks neural net-
work structure. Higher-order GNN variants have been stud-
ied in Morris et al. (2019) and Maron et al. (2019), which
is more powerful than the 1-WL graph isomorphism test.
However, higher-order methods always involve heavy com-
putation and KerGNNs introduce a different way to break
this 1-WL limit.

Combination of Graph Kernel and GNNs

Graph kernels and GNNs can be combined in the same
framework. Some works apply graph kernels and neural net-
works at different stages (Navarin, Tran, and Sperduti 2018;
Nikolentzos et al. 2018). There are also works on using GNN
architecture to design new kernels. For example, Du et al.
(2019) proposed a graph kernel equivalent to infinitely wide
GNNs which can be trained using gradient descent.

A different line of research focuses on integrating ker-
nel methods into GNNs. Lei et al. (2017) mapped inputs to
RKHS by comparing inputs with reference objects. How-
ever, the reference objects they use lack graph structure and
may not be able to capture the structural information. Chen,
Jacob, and Mairal (2020) proposed GCKN which maps the
input into a subspace of RKHS using walk and path ker-
nel. While GCKN utilizes the local walk and path only start-
ing from the central node, our model considers any walks
(up to a maximal length) within the subgraph around the
central node, and can thus explore more topological struc-
tures. Another recent work by Nikolentzos and Vazirgian-
nis (2020) focused on improving model transparency by cal-
culating the graph kernels between trainable hidden graphs
and the entire graph. However, the method only supports a
single-layer model and lacks theoretical interpretation. Our
KerGNN model generalizes their scenario by applying hid-
den graphs to extract local structural information instead of
the entire graph, and therefore constructs a multi-layer struc-
ture with better graph classification performance.

6615

Explainability
Both graph structures and feature information lead to com-
plex GNN models, making it hard for a human-intelligible
explanation of the prediction results. Therefore, the trans-
parency and explainability of GNN models are important
issues to address. Baldassarre and Azizpour (2019) com-
pared two main classes of explainability methods using in-
fection and solubility problems. Pope et al. (2019) intro-
duced explainability methods for the popular graph convolu-
tional neural networks and demonstrated the extended meth-
ods on visual scene graphs and molecular graphs. Ying et al.
(2019) proposed a model-agnostic approach that can iden-
tify a compact subgraph that has a crucial role in GNN’s
prediction. In addition to visualizing output graphs as in
regular GNNs, our KerGNN provides trained hidden graphs
as a byproduct of training without additional computations,
which contain useful structural information showing the
common characteristics of the whole dataset instead of one
specific graph, and can be helpful for interpreting the pre-
dictions of GNNs.

Background: Graph Kernels
Graph kernels have been proposed to solve the problem of
assessing the similarity between graphs, and therefore mak-
ing it possible to perform classification and regression with
graph-structured data. Most graph kernels can be written as
the sum of several pair-wise base kernels, following the R-
convolution framework (Haussler 1999):

K(G,G′) =
∑
v∈V

∑
v′∈V′

kbase(v, v
′), (1)

where G = (V, E), G′ = (V ′, E ′) are two input graphs with
node attributes, and kbase can be any positive definite kernel
defined on the node attributes. In this paper, we mainly con-
sider random walk kernel which will be integrated into our
proposed model in the next section.

Random walk kernels are one of the most studied
graph kernels. They count the number of walks that two
graphs have in common, and were initially proposed by
Gärtner, Flach, and Wrobel (2003) and Kashima, Tsuda, and
Inokuchi (2003). Among numerous variations of the ran-
dom walk kernel, we deploy the P -step random walk kernel
which compares random walks up to length P in two graphs.

Following Equation 1, we can write the base kernel of
random walks with length p as

kpbase(v, v
′)

=

⟨a(v), a(v′)⟩, if p = 0

⟨a(v), a(v′)⟩ · λ
∑

u∈N (v)

∑
u′∈N (v′)

k
(p−1)
base (u, u′), if p > 0

where λ is the coefficient, N (v) denotes neighbors of v, p
denotes the length of random walks which we compare in
two graphs. If p = 0, the random walk kernel is equivalent
to the simple node-pair kernel. To efficiently compute the
random walk kernels, we follow the generalized framework
of computing walk-based kernel (Vishwanathan et al. 2006),
and utilize the direct product graph defined as below.

Definition 1 (Direct Product Graph). For two labeled
graphs G = (V, E) and G′ = (V ′, E ′), the direct prod-
uct graph is defined as G× = G × G′ = (V×, E×), de-
fined as V× = {(v, v′) : v ∈ V ∧ v′ ∈ V ′} and E× =
{{(v, v′), (u, u′)} : {v, u} ∈ E ∧ {v′, u′} ∈ E ′}.

Performing a random walk on the direct product graph
G× is equivalent to performing the simultaneous random
walks on graphs G and G′. The P -step random walk ker-
nel can be calculated as

K(G,G′) =
P∑

p=0

Kp(G,G′) =
P∑

p=0

λp

|V×|∑
i,j=1

[
Ap

×
]
ij
, (2)

where A× is the adjacency matrix of G× and λ =
(λ0, λ1, ...) is a sequence of weights. It should be noted that
the (i, j)-th element of Ap

× (i.e., A× to the power of p) rep-
resents the number of common walks of length p between
the i-th and j-th node in G×.

To generalize the above formula into the continuous and
multi-dimensional scenario, we first define the vertex at-
tributes of the direct product graph G×. Given the node at-
tribute matrix X ∈ Rn×d for a graph with n nodes and each
node attribute is of dimension d, the node attribute matrix
S of the direct product graph G× = G1 × G2 is calculated
as S = X1X

T
2 , where X1 ∈ Rn1×d and X2 ∈ Rn2×d are

the node attribute matrices for G1 and G2, respectively, and
S ∈ Rn1×n2 . The (i, j)-th element of matrix S encodes the
similarity between the ith-node of G1 and the j-th node of
G2. We flatten S into vector s ∈ Rn1n2 for ease of nota-
tion, and then integrate the encoded pair-wise similarity into
Equation 2

Kp(G,G′) =

|V×|∑
i,j=1

sisj
[
Ap

×
]
ij
= sTAp

×s. (3)

Based on this equation, we can calculate the kernel value
between two input graphs using the similarity of common
walks as the metric. The details of calculating Equation 3
are included in Appendix.

In practice, we also consider a slight variation of Equa-
tion 1 by adding trainable weights to each base kernel term,
and we call it deep random walk kernel:

K(G,G′) =
∑
v∈V

∑
v′∈V′

w(v,v′)kbase(v, v
′), (4)

where w(v,v′) represents the trainable weight assigned to the
base kernel.

Proposed Model
In this section, we first discuss the framework of the pro-
posed KerGNN model. Then we introduce the concept of
subgraph-based neighborhood aggregation, and use it to an-
alyze the expressivity of KerGNNs. Next, we show that
KerGNNs are inspired by CNNs and compare them from the
kernel perspective. Finally we argue that KerGNNs can gen-
eralize MPNN architecture and analyze the time complexity.

6616

KerGNN Framework
In this subsection, we introduce the KerGNN model which
updates each node’s embedding according to the subgraph
centered at this node instead of the rooted subtree patterns
in MPNNs, as shown in Figure 1(b). Unless otherwise speci-
fied, we refer to the subgraph as the vertex-induced subgraph
formed from a node and all its 1-hop neighbors.

We first define the embeddings of nodes and subgraphs,
which are mapping functions from graphs to the feature
space and from nodes to the feature space.

Definition 2 (Feature mapping). Given a graph G =
(V, E), a node feature mapping is a node-wise mapping
function ϕ : V → Rd, which maps every node v ∈ V to
a point ϕ(v) in Rd, and ϕ(v) is called the feature map for
node v. A graph feature mapping is a function Φ : G → Rd′

,
where G is the set of graphs, and Φ(G) is called the feature
map for graph G ∈ G.

For an L-layer neural network, we call the input layer the
0-th layer. At each hidden layer l, the input to this layer is
an undirected graph G = (V, E), and each node v ∈ V has
a feature map ϕl−1(v) ∈ Rdl−1 . The output of layer l is the
same graph G, because we do not consider graph pooling
here, and each node v ∈ V in the output graph has a fea-
ture map ϕl(v) ∈ Rdl . For example, G can be a graph in
the dataset, and ϕ0(v) is the node attributes with dimension
d0. For graphs with discrete node labels, the attributes can
be represented as the one-hot encodings of labels and the
dimension of attributes corresponds to the total number of
classes. For graphs without node labels, we use the degree
of the node as the node attribute.

Inspired by the filters in CNN, we define a set of graph
filters at each KerGNN layer to extract the local structural
information around each node in the input graph (see Fig-
ure 1(b)).

Definition 3 (Graph filter). The i-th graph filter at layer l
is a graph H

(l)
i with n

(l)
i nodes. It has a trainable adjacency

matrix A
(l)
i ∈ Rn

(l)
i ×n

(l)
i and node attribute matrix W

(l)
i ∈

Rn
(l)
i ×dl−1 .
At layer l, there are dl graph filters such that the output di-

mension is also dl, and each node attribute in the graph filter,
represented by each row of W (l)

i , has the same dimension as
the node feature map ϕl−1(v) in the input graph.

KerGNN Layer. Now we consider a single KerGNN
layer. We assume the input is a graph-structured dataset with
undirected graph G = (V, E), and each node v ∈ V has the
attribute a(v) ∈ Rd0 . Then the input node feature map is
ϕ0(v) = a(v).

Each node v in the graph is equipped with a subgraph
Gv = (Vv, Ev), and feature maps {ϕ0(u) : u ∈ Vv} are
transformed to ϕ1(v) in a way such that neighbors’ local
information (topological information and node representa-
tions) contained in Gv will be aggregated to the central node
v. We then rely on the graph filters {H(1)

i : i = 1, ..., d1}
to obtain ϕ1(v). Specifically, we calculate ϕ1(v) by project-
ing subgraph feature map Φ0(Gv) into the i-th dimension of
ϕ1(v) using the kernel function value between graph filter

H
(1)
i and subgraph Gv , i.e.,

ϕ1,i(v) = K(Gv, H
(1)
i), (5)

where we adopt a random walk kernel as K(·, ·), which is
introduced in Equation 2. After calculating the kernel value
of the subgraph Gv with respect to every graph filter {H(1)

i :
i = 1, ..., d1}, we obtain every dimension of node v’s feature
map ϕ0(v), which forms the output of the KerGNN layer.

It should be noted that using graphs Gv and H
(1)
i to calcu-

late the kernel value is equivalent to performing inner prod-
uct of ϕ1(Gv) and ϕ1(H

(1)
i) in an implicit high-dimensional

space, and using feature map of Gv instead of the multiset
of neighboring nodes (as used in MPNNs) improves expres-
sivity, which is analyzed in the next subsection. Besides,
if we use the output space Rd1 to approximate the high-
dimensional space introduced by the kernel method, the up-
dating rule will correspond to the convolutional kernel net-
work proposed by Mairal et al. (2014), and we will follow
the same idea when we compare KerGNNs with CNNs in
the later subsection.

Multiple-layer Model. Based on the single-layer analysis
above, we can construct a multiple-layer KerGNN by stack-
ing KerGNN layers followed by readout layers. Specifically,
the input to layer l is the graph G with node feature map
{ϕl−1(v) : v ∈ G}. Layer l is parameterized by dl graph fil-
ters {H(l)

i : i = 1, ..., dl}. Each graph filter H(l)
i has a train-

able adjacency matrix A
(l)
i and node attributes W

(l)
i . Then

the i-th dimension of the output feature map for node v in G
can be explicitly calculated as

ϕl,i(v) = K(Gv, H
(l)
i). (6)

The forward pass of the lth-layer of KerGNNs is summa-
rized in Algorithm 1.

For the graph classification, we then deploy the graph-
level readout layer to generate the embedding for the entire
graph. We obtain the graph representation at each layer by
summing all the nodes’ representations. To leverage infor-
mation from every layer of the model, we then concatenate
the graph representations across all layers:

Φ(G) = concat
(∑

v∈G
ϕl(v)

∣∣∣ l = 0, 1, ..., L
)
. (7)

Expressivity of Subgraph-based Aggregation
In this subsection, we first define the subgraph-based neigh-
borhood aggregation, and discuss the requirements of the
subgraph feature map to achieve higher expressivity than 1-
WL algorithm, then we show that KerGNN is one of the
models that satisfy these requirements.

To leverage the structural information contained in the
subgraph, we aggregate the subgraph information by find-
ing a proper subgraph feature map Φ(Gv), and update the
node representation of v combining the subgraph feature
map with v’s own feature map. Formally, we define this ag-
gregation process as follows.

6617

Algorithm 1: Forward pass in l-th KerGNN layer

Input: Graph G = (V, E); Input node feature maps {ϕl−1(v) :

v ∈ V}; Graph filters {H(l)
i : i = 1, ..., dl}; Graph kernel

function K

Output: Graph G = (V, E); Output node feature maps {ϕl(v) :
v ∈ V}

for v ∈ V do
Gv = subgraph({v} ∪ N (v));
for i = 1 to dl do

ϕl,i(v) = K(Gv, H
(l)
i);

end for
end for

Definition 4 (Subgraph-based aggregation). The graph
neural network at layer l deploying subgraph-based neigh-
borhood aggregation updates feature mapping ϕ according
to ϕl(v) = u (ϕl−1(v), f (Φl−1(Gv))), where u and f are
update and aggregation functions, respectively.

GNNs distinguish different graphs by mapping them to
different embeddings, which resembles the graph isomor-
phism test. Xu et al. (2018) characterize the representational
capacity of MPNNs using the WL graph isomorphism test
criterion, and show that MPNNs can be as powerful as 1-
WL graph isomorphism test if the node update, aggregation,
and graph-level readout function are injective. We follow the
similar approach and show in the following that subgraph-
based GNNs like KerGNNs can be at least as powerful as
the 1-WL graph isomorphism test.

Because we are comparing the model’s expressivity with
the 1-WL algorithm which updates node labels based on the
multiset of neighboring nodes, to achieve high expressivity,
it is natural to think that Φ(Gv) should have a one-to-one
relationship with respect to the multiset of nodes that sub-
graph Gv contains. We show in Lemma 1 that the graph fea-
ture map induced by the random walk kernel satisfies this
condition.

Lemma 1 if Φ(G) is the feature map of graph G induced by
the random walk graph kernel, then Φ(G) is injective with
respect to the multiset of all its contained nodes {{a(v) : v ∈
V(G)}}, where {{·}} denotes the multiset and a(v) is the label
or attribute of node v.

The proof follows directly from the random walk kernel
definition in Gärtner, Flach, and Wrobel (2003), and we no-
tice that the graph feature map induced by the WL graph
kernel also satisfies this lemma. Based on this injective rela-
tionship between multiset and subgraph feature map, we can
compare the expressivity of the subgraph-based GNN and 1-
WL graph isomorphism test using the following theorem.

Theorem 1 Let A : G → Rd be a GNN with a sufficient
number of GNN layers, if the following conditions hold at
layer l:

a) A aggregates and updates node features iteratively
with ϕl(v) = u (ϕl−1(v), f (Φl−1(Gv))), where function u
and f are injective, and Φl−1 is the feature mapping induced
by the random walk kernel;

b) A’s graph-level readout, which operates on the multiset
of node features {{ϕl(v)}}, is injective;
then A maps any graphs G and H that 1-WL test decides
as non-isomorphic to different embeddings, and there exist
graph G and H that 1-WL test decides as isomorphic, but
can be mapped to different embeddings by A.

The proof is shown in Appendix. This theorem shows that
subgraph-based GNNs can be more expressive than the 1-
WL isomorphism test and thus MPNNs. In the KerGNN
model, we do not explicitly calculate the subgraph feature
map Φ(Gv) which lives in the high-dimensional space. In-
stead, we apply the kernel trick and use the subgraph fea-
ture map as K(Gv, H) = ⟨Φ(Gv),Φ(H)⟩. Then, the graph
kernel function K(·, H) can be seen as a composition of
functions u and f . Therefore, according to Theorem 1, to
achieve high representational power, the graph kernel func-
tion needs to be injective with respect to the subgraph feature
map Φ(Gv), and we introduce the following lemma to show
that the KerGNN model satisfies this requirement.

Lemma 2 There exists a feature map Φ(H) so that
K(H,Gv) = ⟨Φ(H),Φ(Gv)⟩ is unique for different
Φ(Gv).

The proof is shown in Appendix. Besides, as shown in the
definition of graph filters, in the KerGNN model we param-
eterize the node feature and adjacency matrix of graph filter
H instead of directly parameterizing Φ(H).

Connections to CNNs
Standard CNN models update the representation of each
pixel by convolving filters with the patch centered at it, and
in GNNs, a natural analog of the patch in the graph domain
is the subgraph. While many MPNNs draw connections with
CNNs by extending 2-D convolution to the graph convolu-
tion, we show in this subsection that both 2-D image con-
volution and KerGNN aggregation process can be viewed
as applying kernel tricks to the input image or graph, and
therefore, the KerGNN model naturally extends the CNN
architecture into the graph domain, from a new kernel per-
spective.

We first show in Appendix that under suitable assump-
tions, the 2-D image convolution can be viewed as applying
kernel functions between input patches and filters. The basic
idea is that we can rethink the 2-D convolution as projecting
the input image patch into the kernel-induced Hilbert space.
The projection is done by performing inner product between
the patch and basis vectors, which can be calculated using
the kernel trick, and the projected representation in the out-
put space will be the output of the CNN layer.

Then we can extend the same philosophy to the graph do-
main, by introducing subgraphs and topology-aware graph
filters as the counterpart of patches and filters in CNNs, and
KerGNN will adopt the kernel trick to project the input sub-
graph representation into the output space (detailed in Ap-
pendix). Based on these two observations, we can see that
KerGNNs generalize CNNs into the graph domain by re-
placing the kernel function for vectors with the graph kernel
function, which provides a new insight into designing GNN

6618

architecture, different from the spatial and spectral convolu-
tion perspectives.

Connections to Existing GNNs
As the subgraph of one node can be a more fruitful source of
information than just the multiset of its neighbors, we show
in this subsection that KerGNNs can generalize the standard
MPNNs. From the point of view of KerGNNs, MPNNs de-
ploy a simple graph filter with one node, and an appropri-
ate kernel function can be chosen within KerGNN frame-
work, such that KerGNNs iteratively update nodes’ repre-
sentations using neighborhood multiset aggregation like in
MPNNs. For example, we show in Appendix that the node
update rule of Graph Convolutional Network (GCN) (Kipf
and Welling 2016) can be treated as using one-node graph
filters with properly-defined R-convolution graph kernel.
Our model generalizes most MPNN structures by deploying
more complex graph filters with multiple nodes and learn-
able adjacency matrix, and using more expressive and effi-
cient graph kernels.

Time Complexity Analysis
Most MPNNs incur a time complexity of O(n2), or O(m)
if the adjacency matrix is sparse containing m non-zero en-
tries, because updating the embedding of node v involves nv

neighbors, where nv is the degree of node v. In KerGNNs,
we apply graph kernel with the subgraph Gv instead of the
whole graph, so the computational complexity would be re-
lated to the complexity of each subgraph. For the subgraph
Gv with nv + 1 nodes and adjacency matrix with mv non-
zero entries, we update the representation of node v by cal-
culating the random walk kernel. This calculation takes a
computation time of O(Pd(d′nGF (nGF +nv +1)+mv)),
where P is the maximum length of the random walk, d and
d′ are the node dimensions of the current layer and next
layer, nGF is the number of nodes in each graph filter. In
an undirected subgraph, mv represents the number of edges
and will be greater than nv and smaller than nv(nv − 1)/2.
If we sum up the computation time for all the nodes in the
entire graph, the time complexity of KerGNNs will range
between O(n2) and worst-case scenario (fully-connected
graph) O(n3). We experimentally compare the running time
of the proposed model with several GNN benchmarks. As
shown in Appendix, KerGNNs achieve better or similar run-
ning time compared to the fastest benchmark method, and
much less running time than higher-order GNNs.

Experiments
We evaluate the proposed model on graph classification task
and node classification task (discussed in Appendix), and we
also show the model interpretability by visualizing the graph
filters in the trained models as well as the output graphs.

Experiment Settings

Datasets. We evaluate our proposed KerGNN model on
8 publicly available graph classification datasets. Specifi-
cally, we use DD (Dobson and Doig 2003), PROTEINS
(Borgwardt et al. 2005), NCI1 (Schomburg et al. 2004),

ENZYMES (Schomburg et al. 2004) for binary and multi-
class classification of biological and chemical compounds,
and we also use the social datasets IMDB-BINARY, IMDB-
MULTI, REDDIT-BINARY, and COLLAB (Yanardag and
Vishwanathan 2015).

Setup. To make a fair comparison with state-of-the-art
GNNs, we follow the cross-validation procedure described
in Errica et al. (2019). We use a 10-fold cross-validation
for model assessment and an inner holdout technique with
a 90%/10% training/validation split for model selection, fol-
lowing the same dataset index splits as Errica et al. (2019).
Besides, we use Adam optimizer with an initial learning
rate of 0.01 and decay the learning rate by half in every 50
epochs. For the four social datasets, we use node degrees as
the input attributes for each node, and for the four bio/chem-
ical datasets, we use node labels or attributes as the input
feature for each node.

Hyper-parameters. The hyper-parameters that we tune
for each dataset include the learning rate, the dropout rate,
the number of layers of KerGNNs and MLP, the number of
graph filters at each layer, the number of nodes in each graph
filter, the number of nodes for each subgraph, and the hid-
den dimension of each KerGNN layer. For the random walk
kernel, we also tune the length of random walks.

Baseline Models. We consider the KerGNN model with
single and multiple KerGNN layers, namely KerGNN-
L, corresponding to KerGNN model with L layers, and
KerGNN-L-DRW representing the model deploying the
deep random walk kernel. We also compare our models
with widely-used GNNs: DGCNN (Zhang et al. 2018), Diff-
Pool (Ying et al. 2018), ECC (Simonovsky and Komodakis
2017), GIN (Xu et al. 2018), GraphSAGE (Hamilton, Ying,
and Leskovec 2017), RWGNN (Nikolentzos and Vazirgian-
nis 2020), GCKN (Chen, Jacob, and Mairal 2020), and two
high-order GNNs: 1-2-3 GNN (Morris et al. 2019) and Pow-
erful GNN (Maron et al. 2019). Part of the results for these
baseline GNNs are taken from Errica et al. (2019), and we
run GCKN, 1-2-3 GNN and Powerful GNN using the official
implementations. In addition, we also compare the proposed
KerGNN model with three popular GNN-unrelated graph
kernels: shortest path (SP) kernel (Borgwardt and Kriegel
2005), propagation (PK) kernel (Neumann et al. 2016), the
Weisfeiler-Lehman subtree (WL-sub) kernel (Shervashidze
et al. 2011) and GNN-related GNTK (Du et al. 2019). We
use the GraKeL library (Siglidis et al. 2020) to implement
these graph kernels and run GNTK using the official imple-
mentation.

Results
The graph classification results are shown in Table 1, with
the best results highlighted in bold. We can see that the pro-
posed models achieve superior performance than conven-
tional GNNs with 1-WL limits, and achieve similar perfor-
mance compared with high-order GNNs, with less running
time. The single-layer KerGNN model performs well on
small graphs like IMDB social datasets. For larger graphs,
deeper models with more layers or with deep random walk
kernel perform better. We show more experimental results,

6619

DD NCI1 PROTEINS ENZYMES IMDB-B IMDB-M REDDIT-B COLLAB

GRAPHS 1178 4110 1113 600 1000 1500 2000 5000
CLASSES 2 2 2 6 2 3 2 3
AVG. # NODES 284 30 39 33 20 13 430 74

SP 78.7±3.8 66.3±2.6 71.9±6.1 25.0±5.6 57.5±5.4 40.5±2.8 75.5±2.1 58.4±1.3
PK 78.0±3.8 72.3±2.8 59.7±0.3 61.0±6.7 73.9±4.3 51.1±5.8 68.5±2.9 77.3±2.4
WL-SUB 77.5±3.5 79.5±3.3 74.8±3.2 51.2±5.3 72.5±4.6 51.5±5.8 67.2±4.2 77.5±2.4
GNTK OOR 83.5±1.2 75.5±2.2 48.2±2.4 75.9±3.1 52.2±4.2 OOR OOR

DGCNN 76.6±4.3 76.4±1.7 72.9±3.5 38.9±5.7 69.2±3.0 45.6±3.4 87.8±2.5 71.2±1.9
DIFFPOOL 75.0±3.5 76.9±1.9 73.7±3.5 59.5±5.6 68.4±3.3 45.6±3.4 89.1±1.6 68.9±2.0
ECC 72.6±4.1 76.2±1.4 72.3±3.4 29.5±8.2 67.7±2.8 43.5±3.1 OOR OOR
GIN 75.3±2.9 80.0±1.4 73.3±4.0 59.6±4.5 71.2±3.9 48.5±3.3 89.9±1.9 75.6±2.3
GRAPHSAGE 72.9±2.0 76.0±1.8 73.0±4.5 58.2±6.0 68.8±4.5 47.6±3.5 84.3±1.9 73.9±1.7

RWGNN 77.6±4.7 73.9±1.3 74.7±3.3 57.6±6.3 70.8±4.8 48.8±2.9 90.4±1.9 71.9±2.5
GCKN 77.3±4.0 79.2±1.2 76.1±2.8 59.3±5.6 74.5±1.2 51.0±3.9 OOR 74.3±2.8
1-2-3 GNN OOR 72.7±2.9 74.5±5.6 OOR 70.7±3.4 50.2±2.2 91.1±2.1 OOR
POWERFUL GNN OOR 83.4±1.8 75.9±3.3 54.8±5.5 73.0±4.9 50.5±3.2 OOR 75.4±1.4

KERGNN-1 77.6±3.7 74.3±2.2 75.8±3.5 62.1±5.5 74.4±4.3 51.6±3.1 81.5±1.9 70.5±1.6
KERGNN-2 78.9±3.5 76.3±2.6 75.5±4.6 55.0±5.0 73.7±4.0 50.9±5.1 82.0±2.5 72.7±2.1
KERGNN-3 75.5±3.1 80.5±1.9 76.5±3.9 54.1±4.3 72.1±4.6 50.1±4.5 82.0±1.9 71.1±2.0
KERGNN-2-DRW 77.0±4.4 82.8±1.8 76.1±4.1 59.5±4.5 71.1±4.1 50.5±3.1 89.5±1.6 75.1±2.3

Table 1: Test set classification accuracies (%). The mean accuracy and standard deviation are reported. Best performances are
highlighted in bold. OOR means Out of Resources, either time or GPU memory.

C N O

input graphs graph filters output graphs input graphs graph filters output graphs

1

0

1

0

(a) (b)

Figure 2: Model visualization. Input graphs are drawn from
(a) MUTAG and (b) REDDIT-B datasets with different node
shapes corresponding to different atom types. In both graph
filters and output graphs, node color represents relative at-
tribute value.

model parameter studies, and node classification results in
Appendix. The optimal parameters of the graph filter are
different for different datasets, depending on the local struc-
tures of different types of graphs, e.g., the star patterns in
graphs of REDDIT-B and the ring and chain patterns in
graphs of NCI1.

Model Interpretability
Visualizing the filters in CNNs gives insights into what fea-
tures CNNs focus on. Following the same idea, we can also
visualize the trained graph filters, which indicate some key
structures of the input dataset. We visualize the graph filters
trained with MUTAG and REDDIT-B dataset in Figure 2.
The MUTAG dataset consists of 188 chemical compounds
divided into two classes according to their mutagenic effect
on a bacterium. As shown in the input graphs in Figure 2(a),
most of the MUTAG graphs in the dataset consist of ring
structures with 6 carbon atoms.

Compared to standard GNN variants, KerGNNs have
graph filters as extra information to help explain the pre-
dictions of the model. To visualize the graph filters, we ex-
tract the adjacency matrix and the attribute matrix for each
graph filter from the trained KerGNN layer. We then adopt
the ReLU functions to prune the unimportant edges. In Fig-
ure 2, we use different sizes of nodes to denote the relative
importance of nodes. For the MUTAG dataset, we can see
most of the graph filters have ring structures, similar to the
carbon rings at the input graphs, and some graph filters have
small connected rings, similar to the concatenated carbon
rings. It should be noted that the number of nodes in the
rings of graph filters may not be equal to 6 because we limit
the total number of nodes to be 8. KerGNN layers utilize
these rings in the graph filter to match against the local struc-
tural patterns (e.g., carbon rings) in the input graphs, using
the graph kernels. This indicates the importance of carbon
rings in the mutagenic effect, which also corresponds to our
observations in the output graphs.

Conclusion
In this paper, we have proposed Kernel Graph Neural Net-
works (KerGNNs), a new graph neural network framework
that is not restricted to the theoretical limits of the message
passing aggregation. KerGNNs are inspired by several char-
acteristics of CNNs and can be seen as a natural extension of
CNNs in the graph domain, from the viewpoint of the kernel
methods. KerGNNs achieve competitive performance on a
variety of datasets compared with several GNNs and graph
kernels, and can provide improved explainability and trans-
parency by visualizing the graph filters and output graphs.

6620

Acknowledgments
This work was partially supported by the U.S. Office of
Naval Research under Grant N00173-21-1-G006, the U.S.
National Science Foundation AI Institute Athena under
Grant CNS-2112562, and the U.S. Army Research Labo-
ratory and the U.K. Ministry of Defence under Agreement
Number W911NF-16-3-0001.

References
Abu-El-Haija, S.; Perozzi, B.; Kapoor, A.; Alipourfard, N.;
Lerman, K.; Harutyunyan, H.; Ver Steeg, G.; and Galstyan,
A. 2019. Mixhop: Higher-order graph convolutional archi-
tectures via sparsified neighborhood mixing. In interna-
tional conference on machine learning, 21–29. PMLR.
Baldassarre, F.; and Azizpour, H. 2019. Explainability tech-
niques for graph convolutional networks. arXiv preprint
arXiv:1905.13686.
Borgwardt, K. M.; and Kriegel, H.-P. 2005. Shortest-path
kernels on graphs. In Fifth IEEE international conference
on data mining (ICDM’05), 8–pp. IEEE.
Borgwardt, K. M.; Ong, C. S.; Schönauer, S.; Vishwanathan,
S.; Smola, A. J.; and Kriegel, H.-P. 2005. Protein function
prediction via graph kernels. Bioinformatics, 21(suppl 1):
i47–i56.
Chen, D.; Jacob, L.; and Mairal, J. 2020. Convolutional
kernel networks for graph-structured data. In International
Conference on Machine Learning, 1576–1586. PMLR.
Chen, Z.; Li, X.; and Bruna, J. 2017. Supervised community
detection with line graph neural networks. arXiv preprint
arXiv:1705.08415.
Dobson, P. D.; and Doig, A. J. 2003. Distinguishing enzyme
structures from non-enzymes without alignments. Journal
of molecular biology, 330(4): 771–783.
Du, S. S.; Hou, K.; Póczos, B.; Salakhutdinov, R.; Wang,
R.; and Xu, K. 2019. Graph neural tangent kernel: Fusing
graph neural networks with graph kernels. arXiv preprint
arXiv:1905.13192.
Errica, F.; Podda, M.; Bacciu, D.; and Micheli, A. 2019. A
fair comparison of graph neural networks for graph classifi-
cation. arXiv preprint arXiv:1912.09893.
Gärtner, T.; Flach, P.; and Wrobel, S. 2003. On graph ker-
nels: Hardness results and efficient alternatives. In Learning
theory and kernel machines, 129–143. Springer.
Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and
Dahl, G. E. 2017. Neural message passing for quantum
chemistry. In International Conference on Machine Learn-
ing, 1263–1272. PMLR.
Hamilton, W. L.; Ying, R.; and Leskovec, J. 2017. Induc-
tive representation learning on large graphs. arXiv preprint
arXiv:1706.02216.
Haussler, D. 1999. Convolution kernels on discrete struc-
tures. Technical report, Technical report, Department of
Computer Science, University of California
Kashima, H.; Tsuda, K.; and Inokuchi, A. 2003. Marginal-
ized kernels between labeled graphs. In Proceedings of the

20th international conference on machine learning (ICML-
03), 321–328.
Kipf, T. N.; and Welling, M. 2016. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907.
Klicpera, J.; Groß, J.; and Günnemann, S. 2020. Direc-
tional message passing for molecular graphs. arXiv preprint
arXiv:2003.03123.
Kriege, N. M.; Johansson, F. D.; and Morris, C. 2020. A
survey on graph kernels. Applied Network Science, 5(1): 1–
42.
Lei, T.; Jin, W.; Barzilay, R.; and Jaakkola, T. 2017. Deriving
neural architectures from sequence and graph kernels. In In-
ternational Conference on Machine Learning, 2024–2033.
PMLR.
Leman, A.; and Weisfeiler, B. 1968. A reduction of a graph
to a canonical form and an algebra arising during this reduc-
tion. Nauchno-Technicheskaya Informatsiya, 2(9): 12–16.
Mairal, J.; Koniusz, P.; Harchaoui, Z.; and Schmid, C.
2014. Convolutional kernel networks. arXiv preprint
arXiv:1406.3332.
Maron, H.; Ben-Hamu, H.; Serviansky, H.; and Lipman, Y.
2019. Provably powerful graph networks. arXiv preprint
arXiv:1905.11136.
Morris, C.; Ritzert, M.; Fey, M.; Hamilton, W. L.; Lenssen,
J. E.; Rattan, G.; and Grohe, M. 2019. Weisfeiler and le-
man go neural: Higher-order graph neural networks. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 33, 4602–4609.
Navarin, N.; Tran, D. V.; and Sperduti, A. 2018. Pre-
training graph neural networks with kernels. arXiv preprint
arXiv:1811.06930.
Neumann, M.; Garnett, R.; Bauckhage, C.; and Kersting,
K. 2016. Propagation kernels: efficient graph kernels from
propagated information. Machine Learning, 102(2): 209–
245.
Nguyen, H.; and Maehara, T. 2020. Graph Homomor-
phism Convolution. In International Conference on Ma-
chine Learning, 7306–7316. PMLR.
Nikolentzos, G.; Meladianos, P.; Tixier, A. J.-P.; Skianis, K.;
and Vazirgiannis, M. 2018. Kernel graph convolutional neu-
ral networks. In International Conference on Artificial Neu-
ral Networks, 22–32. Springer.
Nikolentzos, G.; and Vazirgiannis, M. 2020. Random Walk
Graph Neural Networks. In Conference on Neural Informa-
tion Processing System. PMLR.
Pope, P. E.; Kolouri, S.; Rostami, M.; Martin, C. E.; and
Hoffmann, H. 2019. Explainability methods for graph con-
volutional neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
10772–10781.
Sato, R.; Yamada, M.; and Kashima, H. 2019. Approxima-
tion ratios of graph neural networks for combinatorial prob-
lems. arXiv preprint arXiv:1905.10261.

6621

Schomburg, I.; Chang, A.; Ebeling, C.; Gremse, M.; Heldt,
C.; Huhn, G.; and Schomburg, D. 2004. BRENDA, the en-
zyme database: updates and major new developments. Nu-
cleic acids research, 32(suppl 1): D431–D433.
Shervashidze, N.; Schweitzer, P.; Van Leeuwen, E. J.;
Mehlhorn, K.; and Borgwardt, K. M. 2011. Weisfeiler-
lehman graph kernels. Journal of Machine Learning Re-
search, 12(9).
Shervashidze, N.; Vishwanathan, S.; Petri, T.; Mehlhorn, K.;
and Borgwardt, K. 2009. Efficient graphlet kernels for large
graph comparison. In Artificial intelligence and statistics,
488–495. PMLR.
Siglidis, G.; Nikolentzos, G.; Limnios, S.; Giatsidis, C.;
Skianis, K.; and Vazirgiannis, M. 2020. GraKeL: A Graph
Kernel Library in Python. Journal of Machine Learning Re-
search, 21(54): 1–5.
Simonovsky, M.; and Komodakis, N. 2017. Dynamic
edge-conditioned filters in convolutional neural networks on
graphs. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 3693–3702.
Vishwanathan, S.; Borgwardt, K. M.; Schraudolph, N. N.;
et al. 2006. Fast computation of graph kernels. In NIPS,
volume 19, 131–138. Citeseer.
Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2018.
How powerful are graph neural networks? arXiv preprint
arXiv:1810.00826.
Yanardag, P.; and Vishwanathan, S. 2015. Deep graph ker-
nels. In Proceedings of the 21th ACM SIGKDD interna-
tional conference on knowledge discovery and data mining,
1365–1374.
Ying, R.; Bourgeois, D.; You, J.; Zitnik, M.; and Leskovec,
J. 2019. Gnnexplainer: Generating explanations for graph
neural networks. Advances in neural information processing
systems, 32: 9240.
Ying, R.; You, J.; Morris, C.; Ren, X.; Hamilton, W. L.;
and Leskovec, J. 2018. Hierarchical graph representa-
tion learning with differentiable pooling. arXiv preprint
arXiv:1806.08804.
Zhang, M.; and Chen, Y. 2018. Link prediction based on
graph neural networks. arXiv preprint arXiv:1802.09691.
Zhang, M.; Cui, Z.; Neumann, M.; and Chen, Y. 2018. An
end-to-end deep learning architecture for graph classifica-
tion. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32.

6622

