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Abstract

Sparse Neural Networks (NNs) can match the generalization
of dense NNs using a fraction of the compute/storage for in-
ference, and have the potential to enable efficient training.
However, naively training unstructured sparse NNs from ran-
dom initialization results in significantly worse generaliza-
tion, with the notable exceptions of Lottery Tickets (LTs) and
Dynamic Sparse Training (DST). Through our analysis of
gradient flow during training we attempt to answer: (1) why
training unstructured sparse networks from random initial-
ization performs poorly and; (2) what makes LTs and DST
the exceptions? We show that sparse NNs have poor gradient
flow at initialization and demonstrate the importance of using
sparsity-aware initialization. Furthermore, we find that DST
methods significantly improve gradient flow during training
over traditional sparse training methods. Finally, we show that
LTs do not improve gradient flow, rather their success lies
in re-learning the pruning solution they are derived from —
however, this comes at the cost of learning novel solutions.

1 Introduction
Deep Neural Networks (DNNs) are the state-of-the-art
method for solving problems in computer vision, speech
recognition, and many other fields. While early research in
deep learning focused on application to new problems, or
pushing state-of-the-art performance with ever larger/more
computationally expensive models, a broader focus has
emerged towards their efficient real-world application. One
such focus is on the observation that only a sparse subset of
this dense connectivity is required for inference, as apparent
in the success of pruning.

Pruning has a long history in Neural Network (NN) lit-
erature (Mozer and Smolensky 1989; Han et al. 2015), and
remains the most popular approach for finding sparse NNs.
Sparse NNs found by pruning algorithms (Han et al. 2015;
Zhu and Gupta 2018; Molchanov, Ashukha, and Vetrov 2017;
Louizos, Ullrich, and Welling 2017) (i.e. pruning solutions)
can match dense NN generalization with much better effi-
ciency at inference time. However, naively training an (un-
structured) sparse NN from a random initialization (i.e. from
scratch), typically leads to significantly worse generalization.

*These authors contributed equally.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Two methods in particular have shown some success at ad-
dressing this problem — Lottery Tickets (LTs) and Dynamic
Sparse Training (DST). However, we don’t know how to
find Lottery Tickets (LTs) efficiently; while RigL (Evci et al.
2020), a recent DST method, requires 5× the training steps
to match dense NN generalization. Only in understanding
how these methods overcome the difficulty of sparse training
can we improve upon them.

A significant breakthrough in training dense DNNs — ad-
dressing vanishing and exploding gradients — arose from
understanding gradient flow both at initialization, and dur-
ing training. In this work we investigate the role of gradient
flow in the difficulty of training unstructured sparse NNs
from random initializations and from LT initializations. Our
experimental investigation results in the following insights:

1. Sparse NNs have poor gradient flow at initialization.
In §3.1, §4.1 we show that the predominant method for
initializing sparse NNs is incorrect in not considering
heterogeneous connectivity. We believe we are the first to
show that sparsity-aware initialization methods improve
gradient flow and training.

2. Sparse NNs have poor gradient flow during training.
In §3.2, §4.2, we observe that even in sparse NN architec-
tures less sensitive to incorrect initialization, the gradient
flow during training is poor. We show that DST methods
achieving the best generalization have improved gradient
flow, especially in early training.

3. Lottery Tickets don’t improve upon (1) or (2), instead
they re-learn the pruning solution. In §3.3, §4.3 we
show that a LT initialization resides within the same basin
of attraction as the original pruning solution it is derived
from, and a LT solution is highly similar to the pruning
solution in function space.

2 Related Work
Pruning Pruning is used commonly in NN literature to
obtain sparse networks (Mozer and Smolensky 1989; Han
et al. 2015; Kusupati et al. 2020). While the majority of
pruning algorithms focus on pruning after training, a subset
focuses on pruning NNs before training (Lee, Ajanthan, and
Torr 2019; Wang, Zhang, and Grosse 2020; Tanaka et al.
2020). Gradient Signal Preservation (GRaSP) (Wang, Zhang,
and Grosse 2020) is particularly relevant to our study, since
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their pruning criteria aims to preserve gradient flow, and
they observe a positive correlation between gradient flow at
initialization and final generalization. However, the recent
work of Frankle et al. (2020b) suggests that the reported gains
are due to sparsity distributions discovered rather than the
particular sub-network identified. Another limitation of these
algorithms is that they don’t scale to large-scale tasks like
ResNet-50 training on ImageNet-2012.

Lottery Tickets Frankle and Carbin (2019) showed the
existence of sparse sub-networks at initialization — known
as Lottery Tickets — which can be trained to match the
generalization of the corresponding dense DNN. The initial
work of Frankle and Carbin (2019) inspired much follow-up
work. Liu et al. (2019); Gale, Elsen, and Hooker (2019) ob-
served that the initial formulation was not applicable to larger
networks with higher learning rates. Frankle et al. (2019,
2020a) proposed late rewinding as a solution. Morcos et al.
(2019); Sabatelli, Kestemont, and Geurts (2020) showed that
LTs trained on large datasets transfer to smaller ones, but
not vice versa. Zhou et al. (2019); Frankle, Schwab, and
Morcos (2020); Ramanujan et al. (2019) focused on further
understanding LTs, and finding sparse sub-networks at ini-
tialization. However, it is an open question whether finding
such networks at initialization could be done more efficiently
than with existing pruning algorithms.

Dynamic Sparse Training Most training algorithms work
on pre-determined architectures and optimize parameters
using fixed learning schedules. Dynamic Sparse Training
(DST), on the other hand, aims to optimize the sparse NN
connectivity jointly with model parameters. Mocanu et al.
(2018); Mostafa and Wang (2019) propose replacing low
magnitude parameters with random connections and report
improved generalization. Dettmers and Zettlemoyer (2019)
proposed using momentum values, whereas Evci et al. (2020)
used gradient estimates directly to guide the selection of
new connections, reporting results that are on par with prun-
ing algorithms, and has been applied to vision transformers
(Chen et al. 2021), language models (Dietrich et al. 2021),
reinforcement learning (Sokar et al. 2021), training recurrent
neural networks (Liu et al. 2021b) and fast ensembles (Liu
et al. 2021a). In §4.2 we study these algorithms and try to
understand the role of gradient flow in their success.

Random Initialization of Sparse NN In training sparse
NN from scratch, the vast majority of pre-existing work on
training sparse NN has used the common initialization meth-
ods (Glorot and Bengio 2010; He et al. 2015) derived for
dense NNs, with only a few notable exceptions. Liu et al.
(2019); Ramanujan et al. (2019); Gale, Elsen, and Hooker
(2019) scaled the variance (fan-in/fan-out) of a sparse NN
layer according to the layer’s sparsity, effectively using the
standard initialization for a small dense layer with an equiv-
alent number of weights as in the sparse model. Lee et al.
(2020) measures the singular values of the input gradients and
proposes to use a dense orthogonal initialization to ensure dy-
namical isometry and improve one-shot pruning performance
before training. Similar to our work, Tessera, Hooker, and
Rosman (2021); Lubana and Dick (2021) compares dense

and sparse networks at initialization and during training using
gradient flow, whereas Golubeva, Neyshabur, and Gur-Ari
(2021) study the distance to the infinite-width kernel.

3 Analyzing Gradient Flow in Sparse NNs
A significant breakthrough in training very deep NNs arose in
addressing the vanishing/exploding gradient problem, both
at initialization, and during training. This problem was un-
derstood by analyzing the signal propagation within a DNN,
and addressed in improved initialization methods (Glorot
and Bengio 2010; He et al. 2015; Xiao et al. 2018) along-
side normalization methods, such as Batch Normalization
(BatchNorm) (Ioffe and Szegedy 2015). In our work, similar
to Wang, Zhang, and Grosse (2020), we study these prob-
lems using gradient flow, ∇L(θ)T∇L(θ) which is the first
order approximation* of the decrease in the loss expected
after a gradient step. We observe poor gradient flow for the
predominant sparse NN initialization strategy and propose
a sparsity-aware generalization in §3.1. Then in §3.2 and
§3.3 we summarize our analysis of DST methods and the LT
hypothesis respectively.

3.1 The Initialization Problem in Sparse NNs
Here we analyze the gradient flow at initialization for random
sparse NNs, motivating the derivation of a more general
initialization for NN with heterogeneous connectivity, such
as in unstructured sparse NNs.

In practice, without a method such as BatchNorm (Ioffe
and Szegedy 2015), using the correct initialization can be
the difference between being able to train a DNN, or not —
as observed for VGG16 in our results (§4.1, Table 1). The
initializations proposed by Glorot and Bengio (2010); He et al.
(2015) ensure that the output distribution of every neuron in
a layer is zero-mean and of unit variance by sampling initial
weights from a Gaussian distribution with a variance based
on the number of incoming/outgoing connections for all the
neurons in a dense layer, as illustrated in Fig. 1a, which is
assumed to be identical for all neurons in the layer.

In an unstructured sparse NN however, the number of in-
coming/outgoing connections is not identical for all neurons
in a layer, as illustrated in Fig. 1b. Here we will focus only
on explaining the generalized He et al. (2015) initialization
for forward propagation, which we used in our experiments.
Derivations for the generalized Glorot and Bengio (2010);
He et al. (2015) initialization, in the forward, backward and
average use cases can be found in the extended version of
our paper †.

We propose to initialize every weight w[`]
ij ∈Wn[`]×n[`−1]

in a sparse layer ` with n[`] neurons, and connectivity mask
[m

[`]
ij ] = M ` ∈ [0, 1]n

[`]×n[`−1]

with,

w
[`]
ij ∼ N

(
0,

2

fan-in[`]i

)
, (1)

*We omit learning rate for simplicity and ensure different meth-
ods have same learning rate schedules when compared.

†arxiv/2010.03533

6578



w2
2,2w2

2,1
w2

1,2

w2
1,1 w2

3,2

w2
3,1

weight
matrix

fanin= 2

fanout= 3

w21,1 w
2
1,2

w22,1 w
2
2,2

w23,1 w
2
3,2

(a) Dense Layer

w2
2,2w2

2,1
w2

1,2

w2
1,1 w2

3,2

w2
3,1

weight
mask

_   1

_  _

2  2

fan in
0   1

0  0

1  1

(b) Sparse Layer (c) Signal Propagation at Init.

Figure 1: Glorot/He Initialization for a Sparse NN. All neurons in a dense NN layer (a) have the same fan-in, whereas in a sparse
NN (b) the fan-in can differ for every neuron, potentially requiring sampling from a different distribution for every neuron. (c) Std.
dev. of the pre-softmax output of LeNet5 with input sampled from a normal distribution, over 5 different randomly-initialized
sparse NN for a range of sparsities.

where fan-in[`]i =
∑n[`−1]

j=1 m
[`]
ij is the number of incoming

connections for neuron i in layer `.

In the special case of a dense layer where m[`]
ij = 1, ∀i, j,

Eq. (1) reduces to the initialization proposed by He et al.
(2015) since fan-in[`]i = n[`−1], ∀i. Similarly, the initializa-
tion proposed by Liu et al. (2019) is another special case
where it is assumed fan-in[`]i ≡ Ek[fan-in[`]k ], i.e. all neurons
have the same number of incoming connections in a layer
which is often not true with unstructured sparsity. Using the
dense initialization in a sparse DNN causes signal to vanish,
as empirically observed in Fig. 1c, whereas sparsity-aware
initialization techniques (ours and Liu et al. (2019)) keep the
variance of the signal constant.

3.2 Dynamic Sparse Training

While initialization is important for the first training step, the
gradient flow during the early stages of training is not well
addressed by initialization alone, rather it has been addressed
in dense DNNs by normalization methods (Ioffe and Szegedy
2015). Our findings show that even with BatchNorm however,
the gradient flow during the training of unstructured sparse
NNs is poor.

Recently, a promising new approach to training sparse
NNs has emerged — Dynamic Sparse Training (DST) — that
learns connectivity adaptively during training, showing sig-
nificant improvements over baseline methods that use fixed
masks. These methods perform periodic updates on the sparse
connectivity of each layer: commonly replacing least magni-
tude connections with new connections selected using various
criteria. We consider two of these methods and measure their
effect on gradient flow during training: Sparse Evolution-
ary Training (SET) (Mocanu et al. 2018), which chooses
new connections randomly and Rigged Lottery (RigL) (Evci
et al. 2019), which chooses the connections with high gradi-
ent magnitude. Understanding why and how these methods
achieve better results can help us in improving upon them.

3.3 Lottery Ticket Hypothesis
A recent approach for training unstructured sparse NNs while
achieving similar generalization to the original dense solu-
tion is the Lottery Ticket Hypothesis (LTH) (Frankle and
Carbin 2019). Notably, rather than training a pruned NN
structure from random initialization, the LTH uses the dense
initialization from which the pruning solution was derived.

Definition [Lottery Ticket Hypothesis]: Given a NN ar-
chitecture f with parameters θ and an optimization function
ON (f, θ) = θN , which gives the optimized parameters of
f after N training steps, there exists a sparse sub-network
characterized by the binary mask M such that for some itera-
tion K, ON (f, θK ∗M) performs as well as ON (f, θ) ∗M ,
whereas the model trained from another random initialization
θS , using the same mask ON (f, θS ∗M), typically does not*.
Initial results of Frankle and Carbin (2019) showed the LTH
held for K = 0, but later results (Liu et al. 2019; Frankle
et al. 2019) showed a largerK is necessary for larger datasets
and NN architectures, i.e. N � K ≥ 0.

We measure the gradient flow of LTs and observe poor
gradient flow overall. Despite this, LTs enjoy significantly
faster convergence compared to regular NN training, which
motivates our investigation of the success of LTs beyond
gradient flow. LTs require the connectivity mask as found
by the pruning solution along with parameter values from
the early part of the dense training. Given the importance of
the early phase of training (Frankle, Schwab, and Morcos
2020; Lewkowycz et al. 2020), it is natural to ask about the
difference between LTs and the solution they are derived
from (i.e. pruning solutions). Answering this question can
help us understand if the success of LTs is primarily due to
its relation to the solution, or if we can identify generalizable
characteristics that help with sparse NNs training.

4 Experiments
Here we show empirically that (1) sparsity-aware initializa-
tion improves gradient flow at initialization for all meth-

*See Frankle et al. (2019) for details. ∗ indicates element-wise
multiplication, respecting the mask.
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MNIST ImageNet-2012

LeNet5 (95% sparse) VGG16 (80% sparse) ResNet50 (80% sparse)

Baseline 99.21±0.07 69.25±0.13 76.75±0.12
Lottery 98.26±0.27 0.10±0.01 75.75±0.12*

Small
Dense

98.21±0.46 61.75±0.09 71.95±0.24

Dense Sparse (Liu) Sparse (Ours) Dense Sparse (Liu) Sparse(Ours) Dense Sparse (Liu) Sparse (Ours)

Scratch 62.99±42.16 96.64±0.83 97.70±0.09 51.81±3.02 62.71±0.05 62.52±0.10 70.58±0.18 70.72±0.16 70.63±0.22
SET 63.33±42.44 97.77±0.31 98.16±0.06 53.55±1.03 63.19±0.26 63.13±0.15 72.93±0.27 72.77±0.27 72.56±0.14
RigL 80.82±34.74 98.14±0.17 98.13±0.09 37.15±26.20 63.69±0.02 63.56±0.06 74.41±0.05 74.38±0.10 74.38±0.01

* With late-rewinding (i.e. K = 5000).

Table 1: Results of Trained Sparse/Dense Models from Different Initializations. The initialization proposed in Eq. (1) (Ours) and Liu et al.
(2019) improve generalization consistently over masked dense (Original) except for in ResNet50. Note that VGG16 trained without a
sparsity-aware initialization fails to converge in some instances. Baseline corresponds to the original dense architecture, whereas Small
Dense corresponds to a smaller dense model with approx. the same parameter count as the sparse models.

(a) LeNet5 (b) VGG-16 (c) ResNet-50

Figure 2: Gradient Flow of Sparse Models during Training. Gradient flow during training averaged over multiple runs, ‘+‘
indicates training runs with our proposed sparse initialization and Small Dense corresponds to training of a dense network with
same number of parameters as the sparse networks. Lottery ticket runs for ResNet-50 include late-rewinding.

ods, and achieves higher generalization for networks without
BatchNorm, (2) the mask updates of DST methods increase
gradient flow and create new negative eigenvalues in the Hes-
sian; which we believe to be the main factor for improved
generalization ‡, (3) lottery tickets have poor gradient flow,
however they achieve good performance by effectively re-
learning the pruning solution, meaning they do not address
the problem of training sparse NNs in general. Our exper-
iments include the following settings: LeNet5 on MNIST,
VGG16 on ImageNet-2012 and ResNet-50 on ImageNet-
2012. Experimental details can be found in in the extended
version of our work§.

4.1 Gradient Flow at Initialization
In this section, we measure the gradient flow over the course
of the training (Fig. 2) and evaluate the performance of gener-
alized He initialization method (Table 1), and that proposed
by Liu et al. (2019), over the commonly used dense ini-
tialization in sparse NN. Sparse NNs initialized using the
initialization distribution of a dense model (Scratch in Fig. 2)

‡Hessian experiments are presented in the extended version
§Implementation of our sparse initialization and code for repro-

ducing our experiments can be found at https://github.com/google-
research/rigl/tree/master/rigl/rigl_tf2.

start in a flat region where gradient flow is very small and
thus initial progress is limited. Learning starts after 1000
iterations for LeNet5 and 5000 for VGG-16, however, gen-
eralization is sub-optimal. Liu et al. (2019) reported their
proposed initialization has no empirical effect as compared
to the masked dense initialization¶. In contrast, our results
show their method to be largely as effective as our proposed
initialization, despite the Liu et al. (2019) initialization be-
ing incorrect in the general case (see §3.1). This indicates
that the assumption of a neuron having roughly uniform con-
nectivity is sufficient for the ranges of sparsity considered,
possibly due to a law-of-large-numbers-like averaging ef-
fect. We expect this effect to disappear with higher sparsity
and our initialization to be more important. Results in Ta-
ble 2 for a 98% sparse LeNet5 demonstrate this, where our
sparsity-aware initialization shows a 40% improvement in
test accuracy. Our initialization remedies the vanishing gradi-
ent problem at initialization (Scratch+ in Fig. 2) and results
in better generalization for all methods. For example, our
improved initialization results in an 11% improvement in
Top-1 accuracy for VGG16 (62.52 vs 51.81).

¶Models with BatchNorm and skip connections are less affected
by initialization, and this is likely why the authors did not observe
this effect.
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(a) ResNet-50 (b) LeNet5

Figure 3: Effect of Mask Updates in Dynamic Sparse Training. Effect of mask updates on the gradient norm. RigL Inverted
chooses connections with least magnitude. We measure the gradient norm before and after the mask updates and plot the ∆. ‘+‘
indicates proposed initialization and used in MNIST experiments.

Scratch
Basin

Lottery 
(Sparse)
Initialization

Pruning
Basin

Random (Scratch) 
Initializations

Lottery
Solution

Pruning
Solution

Pruning Mask

Figure 4: Lottery Tickets Are Biased Towards the Pruning Solution, Unlike Random Initialization. A cartoon illustration of the
loss landscape of a sparse model, after it is pruned from a dense solution to create a LT sub-network. A LT initialization is within
the basin of attraction of the pruned model’s solution. In contrast a random initialization is unlikely to be close to the dense
solution’s basin.

Dense/Other Sparse (Liu) Sparse (Ours)

Scratch 11.35±0.00 56.51±36.90 90.00±4.04
RigL 11.35±0.00 62.34±41.63 96.72±0.23
Prune 96.50±0.31 – –

Table 2: Sparsity-aware Initialization and Generalization:
Sparse (98%) LeNet5 (MNIST). Results show the impor-
tance of our sparsity-aware initialization at higher sparsity
regimes, compared with a standard dense initialization (He
et al. 2015), or scaled-sparse initialization (Liu et al. 2019).

While initialization is extremely important for NNs with-
out BatchNorm and skip connections, its effect on modern
architectures, such as Resnet-50, is limited (Evci et al. 2019;
Zhang, Dauphin, and Ma 2019; Frankle et al. 2020b). We
confirm these observations in our ResNet-50 experiments
in which, despite some initial improvement in gradient flow,
sparsity-aware initializations seem to have no effect on fi-
nal generalization. Additionally, we observe significant in-
crease in gradient norm after each learning rate drop (due
to increased gradient variance), which suggests studying the
gradient norm in the latter part of the training might not be
helpful.

The LT hypothesis holds for MNIST and ResNet50 (when
K=5000) but not for VGG16. We observe poor gradient flow
for LTs at initialization similar to Scratch. After around 2000
steps gradients become non zero for Scratch, while gradient
flow for LT experiments stay constant. Our sparse initializa-

tion improves gradient flow at initialization and we observe a
significant difference in gradient flow during early training
between RigL and Scratch+.

4.2 Gradient Flow During Sparse Training
Our hypothesis for Fig. 2 is that the DST methods improve
gradient flow through the updates they make on the sparse
connectivity, which in turn results in better performance. To
verify our hypothesis, we measure the change in gradient
flow whenever the sparse connectivity is updated. We also
run the inverted baseline for RigL (RigL Inverted), in which
the growing criteria is reversed and connections with the
smallest gradients are activated as in Frankle et al. (2020b).

DST methods such as RigL replace low saliency connec-
tions during training. Assuming the pruned connections in-
deed have a low impact on the loss, we might expect to see
increased gradient norm after new connections are activated,
especially in the case of RigL, which picks new connections
with high magnitude gradients. In Fig. 3 we confirm that
RigL updates increase the norm of the gradient significantly,
especially in the first half of training, whereas SET, which
picks new connections randomly, seems to be less effective
at this. Using the inverted RigL criteria doesn’t improve the
gradient flow, as expected, and without this RigL’s perfor-
mance degrades (73.83±0.12 for ResNet-50 and 92.71±7.67
for LeNet5). These results suggest that improving gradient
flow early in training — as RigL does — might be the key for
training sparse networks. Various recent works that improve
DST methods support this hypothesis: longer update inter-
vals Liu et al. (2021c) and adding parallel dense components
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(Price and Tanner 2021) or activations (Curci, Mocanu, and
Pechenizkiy 2021) that improve gradient flow brings better
results.

4.3 Why Lottery Tickets are Successful
We found that LTs do not improve gradient flow, either at ini-
tialization, or early in training, as shown in Fig. 2. This may
be surprising given the apparent success of LTs, however the
questions posed in §3.3 present an alternative hypothesis for
the ease of training from a LT initialization: Can the success
of LTs be due to their relationship to well-performing prun-
ing solutions? Here we present results showing that indeed
(1) LTs initializations are consistently closer to the pruning
solution than a random initialization, (2) trained LTs (i.e.
LT solutions) consistently end up in the same basin as the
pruning solution and (3), LT solutions are highly similar to
pruning solutions under various function similarity measures.
Our resulting understanding of LTs in the context of the prun-
ing solution and the loss landscape is illustrated in Fig. 4.

Experimental Setup To investigate the relationship be-
tween the pruned and LT solutions we perform experiments
on two models/datasets: a 95% sparse LeNet5 architec-
ture (LeCun et al. 1989) with ReLU activations trained
on MNIST (where the original LT formulation works, i.e.
K = 0), and an 80% sparse ResNet-50 (Wu, Zhong, and Liu
2018) on ImageNet-2012 (Russakovsky et al. 2015) (where
K = 0 doesn’t work (Frankle et al. 2019)), for which we
use values from K = 2000 (≈6th epoch). In both cases, we
find a LT initialization by pruning each layer of a dense NN
separately using magnitude-based iterative pruning (Zhu and
Gupta 2018).

Lottery Tickets Are Close to the Pruning Solution We
train 5 different models using different seeds from both
scratch (random) and LT initializations, the results of which
are in Figs. 5b and 5e. These networks share the same pruning
mask and therefore lie in the same solution space. We visual-
ize distances between initial and final points of these experi-
ments in Figs. 5a and 5d using 2D Multi-dimensional Scal-
ing (MDS) (Kruskal 1964) embeddings. LeNet5/MNIST: In
Fig. 5b, we provide the average L2 distance to the pruning so-
lution at initialization (dinit), and after training (dfinal). We
observe that LT initializations start significantly closer to the
pruning solution on average (dinit = 13.61 v.s. 17.46). After
training, LTs end up more than 3× closer to the pruning so-
lution compared to scratch. Resnet-50/ImageNet-2012: We
observe similar results for Resnet-50/ImageNet-2012. LTs,
again, start closer to the pruning solution, and solutions are
5× closer (dfinal = 39.35 v.s. 215.98). These results explain
non-random initial loss values for LT initializations (Zhou
et al. 2019) and their inability to find good solutions if re-
pelled by pruning solutions (Maene, Li, and Moens 2021).
LTs are biased towards the pruning solution they are derived
from, but are they in the same basin? Can it be the case that
LTs learn significantly different solutions each time in func-
tion space despite being linearly connected to the pruning
solution?

Lottery Tickets are in the Pruning Solution Basin Inves-
tigating paths between different solutions is a popular tool for
understanding how various points in parameter space relate
to each other in the loss landscape (Goodfellow, Vinyals, and
Saxe 2015; Garipov et al. 2018; Draxler et al. 2018; Evci
et al. 2019; Fort, Hu, and Lakshminarayanan 2020; Frankle
et al. 2020a). For example, Frankle et al. (2019) use linear
interpolations to show that LTs always go to the same basin||

when trained in different data orders. In Figs. 5c and 5f we
look at the linear paths between pruning solution and 4 other
points: LT initialization/solution and random (scratch) initial-
ization/solution. Each experiment is repeated 5 times with
different random seeds, and mean values are provided with
80% confidence intervals. In both experiments we observe
that the linear path between LT initialization and the pruning
solution decreases faster compared to the path that originates
from scratch initialization. After training, the linear paths to-
wards the pruning solution change drastically. The path from
the scratch solution depicts a loss barrier; the scratch solution
seems to be in a different basin than the pruning solution. In
contrast, LTs are linearly connected to the pruning solution
in both small and large-scale experiments indicating that LTs
have the same basin of attraction as the pruning solutions they
are derived from. While it seems likely, these results do not
however explicitly show that the LT and pruning solutions
have learned similar functions.

Lottery Tickets Learn Similar Functions to the Pruning
Solution Fort, Hu, and Lakshminarayanan (2020) motivate
deep ensembles by empirically showing that models starting
from different random initializations typically learn different
solutions, as compared to models trained from similar initial-
izations, and thus improve performance. In Appendix A we
adopt the analysis of (Fort, Hu, and Lakshminarayanan 2020),
but in comparing LT initializations and random initializations
using fractional disagreement — the fraction of class predic-
tions over which the LT and scratch models disagree with the
pruning solution they were derived from, Kullback–Leibler
Divergence (KL), and Jensen–Shannon Divergence (JSD).
Results in Table 3 suggest LTs models converge on a solu-
tion almost identical to the pruning solution and therefore
an ensemble of LTs brings marginal improvements. Our re-
sults also show that having a fixed initialization alone can
not explain the low disagreement observed for LT experi-
ments as Scratch solutions obtain an average disagreement
of 0.0316 despite using the same initialization, which is al-
most 10 times larger than that of the LT solutions (0.0043).
As a result, LT ensembles show significantly less gains on
MNIST and ImageNet-2012 (+0.06% and +0.54% respec-
tively) compared to a random sparse initialization (+0.96%
and +2.89%).

Implications: (a) Rewinding of LTs. Frankle et al. (2019,
2020a) argued that LTs work when the training is stable, and
thus converges to the same basin when trained with different
data sampling orders. In §4.3, we show that this basin is the
same one found by pruning, and since the training converges

||We define a basin as a set of points, each of which is linearly
connected to at least one other point in the set.
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(a) MDS Projection

MNIST/LeNet5

Method LT Scratch

Acctest 98.52 97.19
dinit 13.61 17.46
dfinal 8.03 25.64

(b) L2 Distances
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Figure 5: MDS Embeddings/L2 Distances: (a, d): 2D Multi-dimensional Scaling (MDS) embedding of sparse NNs with the same
connectivity/mask; (b, e): the average L2-distance between a pruning solution and other derived sparse networks; (c, f): linear
path between the pruning solution (α = 1.0) and LT/scratch at both initialization, and solution (end of training). Top and bottom
rows are for MNIST/LeNet5 and ImageNet-2012/ResNet-50 respectively.

to the same basin as before, we expect to see limited gains
from rewinding if any. This is partially confirmed by Renda,
Frankle, and Carbin (2020) which shows that restarting the
learning rate schedule from the pruning solution performs bet-
ter than rewinding the weights. (b) Transfer of LTs. Given
the close relationship between LTs and pruning solutions,
the observation that LTs trained on large datasets transfer to
smaller ones, but not vice versa (Morcos et al. 2019; Sabatelli,
Kestemont, and Geurts 2020) can be explained by a common
observation in transfer learning: networks trained in large
datasets transfer to smaller ones. (c) LT’s Robustness to
Perturbations. Zhou et al. (2019); Frankle, Schwab, and
Morcos (2020) found that certain perturbations, like only
using the signs of weights at initialization, do not impact
LT generalization, while others, like shuffling the weights,
do. Our results bring further insights to these observations:
As long as the perturbation is small enough such that a LT
stays in the same basin of attraction, results will be as good
as the pruning solution. (d) Success of LTs. While it is ex-
citing to see widespread applicability of LTs in different do-
mains (Brix, Bahar, and Ney 2020; Li et al. 2020; Venkatesh
et al. 2020), the results presented in this paper suggest this
success may be due to the underlying pruning algorithm (and
transfer learning) rather than LT initializations themselves.

5 Conclusion
In this work we studied (1) why training unstructured sparse
networks from random initialization performs poorly and;

(2) what makes LTs and DST the exceptions? We identified
that randomly initialized unstructured sparse NNs exhibit
poor gradient flow when initialized naively and proposed an
alternative initialization that scales the initial variance for
each neuron separately. Furthermore we showed that modern
sparse NN architectures are more sensitive to poor gradient
flow during early training rather than initialization alone. We
observed that this is somewhat addressed by state-of-the-art
DST methods, such as RigL, which significantly improves
gradient flow during early training over traditional sparse
training methods. Finally, we show that LTs do not improve
gradient flow at either initialization or during training, but
rather their success lies in effectively re-learning the original
pruning solution they are derived from. We showed that a
LTs initialization resides within the same basin of attraction
as the pruning solution and, furthermore, when trained the
LT solution learns a highly similar solution to the pruning
solution, limiting their ensemble performance. These findings
suggest that LTs are fundamentally limited in their potential
for improving the training of sparse NNs more generally.

A Comparing Function Similarity
Fort, Hu, and Lakshminarayanan (2020) motivate deep en-
sembles by empirically showing that models starting from
different random initializations typically learn different so-
lutions, as compared to models trained from similar initial-
izations. Here we adopt the analysis of (Fort, Hu, and Laksh-
minarayanan 2020), but in comparing LT initializations and
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Initialization (Top-1) Test Acc. Ensemble Disagreement Disagree. w/ Pruned

LeNet5
MNIST

LT 98.52±0.02 98.58 0.0043±0.0006 0.0089±0.0002
Scratch 97.04±0.15 98.00 0.0316±0.0023 0.0278±0.0020
Scratch (Diff. Init.) 97.19±0.33 98.43 0.0352±0.0037 0.0278±0.0032
Prune Restart 98.60±0.01 98.63 0.0027±0.0003 0.0077±0.0003

Pruned Soln. 98.53 – – –
5 Diff. Pruned 98.30±0.23 99.07 0.0214±0.0023 0.0197±0.0019*

ResNet50
ImageNet

LT 75.73±0.08 76.27 0.0894±0.0009 0.0941±0.0009
Scratch 71.16±0.13 74.05 0.2039±0.0013 0.2033±0.0012

Pruned Soln. 75.60 – – –
5 Diff. Pruned 75.65±0.13 77.80 0.1620±0.0008 0.1623±0.0011*

* Here we compare 4 different pruned models with the pruning solution LT/Scratch are derived from.

Table 3: Ensemble & Prediction Disagreement. We compare the function similarity (Fort, Hu, and
Lakshminarayanan 2020) with the original pruning solution and ensemble generalization over 5
sparse models, trained from random initializations and LTs. As a baseline, we also show results for
5 pruned models trained from different random initializations.

random initializations using fractional disagreement — the
fraction of class predictions over which the LT and scratch
models disagree with the pruning solution they were derived
from. In Table 3 we show the mean fractional disagreement
over all pairs of models. We run two versions of scratch train-
ing: (1) Scratch (Diff. Init. different weight initialization and
different data order (2) Scratch same weight initialization
and different data order for 5 different seeds the experiments
are ran. Finally, we restart training starting from the pruning
solution (Prune Restart) using, again, 5 different data orders.

The results presented in Table 3 suggest that all 5 LTs
models converge on a solution almost identical to the pruning
solution. Interestingly, the 5 LT models are even more similar
to each other (Disagree. column) than the pruning solution,
possibly because they share an initialization and training
is stable (Frankle et al. 2019). The disagreement of Prune
Restart solutions with the original pruning solution matches
the disagreement of lottery solutions; showing the extent of
similarity between LT and pruning solutions.

Our results show that having a fixed initialization alone
can not explain the low disagreement observed for LT experi-
ments as Scratch solutions obtain an average disagreement
of 0.0316 despite using the same initialization, which is al-
most 10 times more than the LT solutions (0.0043). Finding
different LT initialization is costly, however using a different
initialization in Scratch (Diff. Init.) training is free as the
initializations are random. Using different initializations we
can obtain more diverse solutions and thus achieve higher
ensemble accuracy. As suggested by the analysis of Fort, Hu,
and Lakshminarayanan (2020), ensembles of different solu-
tions are more robust, and generalize better, than ensembles
of similar solutions. An ensemble of 5 LT models with low
disagreement doesn’t significantly improve generalization as
compared to an ensemble of 5 different pruning solutions
with similar individual test accuracy. We further demonstrate
these results by comparing the output probability distribu-
tions using the KL, and JSD in our extended version.
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