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Abstract

We develop new adaptive algorithms for variational inequali-
ties with monotone operators, which capture many problems
of interest, notably convex optimization and convex-concave
saddle point problems. Our algorithms automatically adapt
to unknown problem parameters such as the smoothness and
the norm of the operator, and the variance of the stochastic
evaluation oracle. We show that our algorithms are univer-
sal and simultaneously achieve the optimal convergence rates
in the non-smooth, smooth, and stochastic settings. The con-
vergence guarantees of our algorithms improve over existing
adaptive methods and match the optimal non-adaptive algo-
rithms. Additionally, prior works require that the optimization
domain is bounded. In this work, we remove this restriction
and give algorithms for unbounded domains that are adap-
tive and universal. Our general proof techniques can be used
for many variants of the algorithm using one or two opera-
tor evaluations per iteration. The classical methods based on
the ExtraGradient/MirrorProx algorithm require two operator
evaluations per iteration, which is the dominant factor in the
running time in many settings.

1 Introduction
Variational inequalities with monotone operators are a gen-
eral framework for solving problems with convex struc-
ture including convex minimization, convex-concave sad-
dle point problems, and finding convex Nash equilibrium
(Nemirovski 2004; Juditsky, Nemirovski, and Tauvel 2011).
Given a convex domain X ⊆ Rd and a monotone mapping
F : X → Rd,

〈F (x)− F (y), x− y〉 ≥ 0 ∀x, y ∈ X
we are interested in finding an approximation to a solution
x∗ such that1

〈F (x∗), x∗ − x〉 ≤ 0 ∀x ∈ X
More recently, algorithms developed in this framework are
also applied to non-convex problems including optimizing
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1Such a solution is called a strong solution. Following previous
work, we design algorithms that converge to a weak solution. If F
is monotone and continuous, a weak solution is a strong solution
and vice-versa. We defer the formal definitions to Section 2.

generative adversarial networks (GANs) (Daskalakis et al.
2018; Yadav et al. 2018; Chavdarova et al. 2019; Gidel et al.
2019; Mertikopoulos et al. 2019). In this context, due to
the large scale of the problems, several important issues are
brought to the fore. First, the algorithms typically require
careful settings of the step sizes based on the parameters
of the problems such as smoothness, especially for high di-
mensional problems where the smoothness varies for differ-
ent coordinates. Second, classical methods based on the ex-
tra gradient algorithm (Korpelevich 1976) or the more gen-
eral mirror prox algorithm (Nemirovski 2004) requires two
gradient computations per iteration, which is the dominant
factor in the running time, making them twice as slow as
typical gradient descent methods. To rectify the first issue,
several works have been developed to design adaptive al-
gorithms that automatically adapt to the smoothness of the
problem (Bach and Levy 2019; Ene, Nguyen, and Vladu
2021). These works build upon the impressive body of works
that brought about adaptive algorithms for convex optimiza-
tion methods (see e.g. (McMahan and Streeter 2010; Duchi,
Hazan, and Singer 2011; Kingma and Ba 2014)). A differ-
ent line of work focused on reducing the number of gradient
computation to one per iteration (Popov 1980; Gidel et al.
2019; Hsieh et al. 2019; Chambolle and Pock 2011; Malit-
sky 2015; Cui and Shanbhag 2016; Daskalakis et al. 2018;
Mokhtari, Ozdaglar, and Pattathil 2020). It is worth noting
that in practice, especially in the context of training GANs,
these methods are almost always used in a heuristic fashion
along with adaptive techniques such as Adam (Kingma and
Ba 2014).

In this work, we develop new algorithms achieving the
best of both worlds: our algorithms automatically adapt to
the smoothness of the problem and require only one gradi-
ent computation per iteration. We include two variants of
the core algorithm, one variant adapts to a single shared
smoothness parameter for all coordinates and the other vari-
ant adapts simultaneously to different smoothness parame-
ters for different coordinates. Our algorithms can be viewed
as adaptive versions of the past extra-gradient method devel-
oped by Popov (1980) and further analyzed by many sub-
sequent works including most recently (Gidel et al. 2019;
Hsieh et al. 2019). Our algorithms are universal: they work
simultaneously for non-smooth functions, smooth functions,
and with stochastic oracle access. In each of these settings,
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the algorithm adapting to the scalar smoothness parame-
ter achieves the same convergence guarantees as the best-
known algorithms using the smoothness parameter in their
step sizes. In contrast, previous adaptive algorithms (Bach
and Levy 2019; Ene, Nguyen, and Vladu 2021) lose loga-
rithmic factors compared with non-adaptive algorithms and
use twice as many operator evaluations. Furthermore, our
algorithm for scalar smoothness allows for arbitrary initial-
ization of the normalization factor, which is in line with the
practice of initializing it to a small constant such as 10−10.
In contrast, previous works need the initial value to be at
least the maximum operator value or the radius of the do-
main. Our analysis framework is general and versatile, and
it allows us to analyze several variants of our algorithms, in-
cluding algorithms based on the extra-gradient method (Kor-
pelevich 1976) and algorithms that are suitable for unbouded
optimization domains. A detailed comparison of the conver-
gence rates is described in Table 1. We provide a discussion
of the algorithmic and technical contributions in Section 3
and the full version (Ene and Nguyen 2021). We note that the
convergence guarantees obtained by our scalar algorithm are
optimal in all settings (non-smooth, smooth, and stochastic),
as they match known lower bounds for convex optimization
and saddle-point problems (Nemirovsky and Yudin 1983;
Nemirovsky 1992; Ouyang and Xu 2021). Moreover, all of
our algorithms automatically adapt to unknown problem pa-
rameters such as the smoothness and the norm of the opera-
tor, and the variance of the stochastic evaluation oracle.

2 Preliminaries
Variational inequalities: In this paper, we consider the
problem of finding strong solutions to variational inequal-
ities with monotone operators. Let X ⊆ Rd be a non-empty
closed convex set (X may be unbounded). Let F : X → Rd
be a map. The variational inequality problem is to find a so-
lution x∗ ∈ X satisfying

〈F (x∗), x∗ − x〉 ≤ 0 ∀x ∈ X (1)

A solution x∗ satisfying the above condition is often called
a strong solution to the variational inequality.

The operator F is monotone if it satisfies

〈F (x)− F (y), x− y〉 ≥ 0 ∀x, y ∈ X (2)

A related notion is a weak solution, i.e., a point x∗ ∈ X
satisfying

〈F (x), x∗ − x〉 ≤ 0 ∀x ∈ X (3)

If F is monotone and continuous, a weak solution is a strong
solution and vice-versa.

Let ‖·‖ be a norm and let ‖·‖∗ be its dual norm. The oper-
ator F is β-smooth with respect to the norm ‖·‖ if it satisfies

‖F (x)− F (y)‖∗ ≤ β ‖x− y‖ (4)

The operator F is β-cocoercive with respect to the norm ‖·‖
if it satisfies

〈F (x)− F (y), x− y〉 ≥ 1

β
‖F (x)− F (y)‖2∗ ∀x, y ∈ X

(5)

Using Holder’s inequality, we can readily verify that, if F is
β-cocoercive, then it is monotone and β-smooth.

Special cases: Two well-known special cases of the varia-
tional inequality problem with monotone operators are con-
vex minimization and convex-concave saddle point prob-
lems.

In convex minimization, we are given a convex func-
tion f : X → Rd and the goal is to find a solution x∗ ∈
arg minx∈X f(x). The operator is the gradient of f , i.e.,
F = ∇f (if f is not differentiable, the operator is a subgra-
dient of f ). The monotonicity condition (2) is equivalent to
f being convex. A strong solution is a point x∗ that satisfies
the first-order optimality condtion and thus it is a global min-
imizer of f . The smoothness condition (4) coincides with the
usual smoothness condition from convex optimization. If f
is convex and β-smooth, then F = ∇f is β-cocoercive (see,
e.g., Theorem 2.1.5 in the textbook (Nesterov 2013)).

In convex-concave saddle point problems, we are given
a function f : U × V → Rd such that f(u, v) is
convex in u and concave in v, and the goal is to
solve minu∈U maxv∈V f(u, v). The operator is F =
(∇uf,−∇vf). A strong solution is a point (u∗, v∗) that is a
global saddle point, i.e.,

f(u∗, v) ≤ f(u∗, v∗) ≤ f(u, v∗) ∀(u, v) ∈ U × V

Error function: Following previous work (Nemirovski
2004; Nesterov 2007), we analyze convergence via the error
(or merit) function. Following (Nesterov 2007), we choose
an arbitrary point x0 ∈ X . For any fixed positive value D,
we define

ErrD(x) = sup
y∈X
{〈F (y), x− y〉 : ‖y − x0‖ ≤ D} (6)

If X is a bounded domain, we define

Err(x) = sup
y∈X
〈F (y), x− y〉 (7)

The following lemma, shown in (Nesterov 2007), justifies
the use of the error function to analyze convergence.

Lemma 2.1. (Nesterov 2007) Let D be any fixed positive
value. The function ErrD is well-defined and convex on
Rd. For any x ∈ X such that ‖x− x0‖ ≤ D, we have
ErrD(x) ≥ 0. If x∗ is a weak solution and ‖x∗ − x0‖ ≤ D,
then ErrD(x∗) = 0. Moreover, if ErrD(x) = 0 for some
x ∈ X with ‖x− x0‖ < D, then x is a weak solution.

We will use the following inequalities that were shown in
previous work.

Lemma 2.2. (Duchi, Hazan, and Singer 2011; McMahan
and Streeter 2010) Let a1, . . . , aT be non-negative scalars.
We have √√√√ T∑

t=1

at ≤
T∑
t=1

at√∑t
s=1 as

≤ 2

√√√√ T∑
t=1

at

Lemma 2.3. (Bach and Levy 2019) Let a1, . . . , aT ∈ [0, a]
be non-negative scalars that are at most a. Let a0 ≥ 0. We
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Non-smooth Smooth
O
(
R(G+σ)√

T

)
O
(
βR2

T + Rσ√
T

)
Theorem 3.1. Scalar step sizes, bounded domain, 1 evaluation per iteration.

O
(
ĜR
√
lnT√
T

)
O

(
ĜR+βR2(1+ln(βR/Ĝ))+G2

T + Rσ
√
lnT√
T

)
Bach and Levy (2019). Scalar step sizes, bounded domain, 2 evaluations per iteration.

O
(
‖x0−x∗‖2+G2

T + ‖x0−x∗‖(G+σ)√
T

)
O
(
β‖x0−x∗‖2+‖x0−x∗‖G+G2

T + ‖x0−x∗‖σ√
T

)
Theorem 3.2. Scalar step sizes, arbitrary domain, 1 evaluation per iteration.

O

(
‖x0−x∗‖2+G3+G ln(1+G2T)√

T

)
O

((
β‖x0−x∗‖2+β4+β2‖F (xt0+1/2)−F (xt0 )‖2

)3/2

T

)
t0 is the last iteration t such that ηt0 ≥ c

β for constant c
Antonakopoulos et al. (2021). Seterministic (σ = 0), scalar step sizes, arbitrary domain, 2 evaluations per iteration.

O
(
‖x0−x∗‖2+G2

T + ‖x0−x∗‖G√
T

)
O
(
β2‖x0−x∗‖2+‖F (xτ )−F (xτ−1)‖2+‖F (xτ−1)−F (xτ−2)‖2

T

)
τ is the last iteration t such that γt−2 ≤ cβ for constant c

Full version. Seterministic (σ = 0), scalar step sizes, arbitrary domain, 1 evaluation per iteration.

O

(
dR2
∞
T +

√
dR∞G+(

√
dR∞+R)σ√
T

)
O

(
dR2
∞β

2

T +
(
√
dR∞+R)σ√

T

)
Full version. Vector step sizes, bounded domain, 1 evaluation per iteration.

O

(
dR2
∞
T +

√
dR∞G

(√
ln( GTR∞ )

)
+Rσ

√
T

)
O
(
R2
∞
∑d
i=1 βi ln βi
T + Rσ√

T

)
Full version. Vector step sizes, bounded domain, 1 evaluation per iteration.

O

(
dR2
∞
T +

√
dR∞

(
G
√

ln( GTR∞ )+σ
√

ln( Tσ
R∞ )

)
√
T

)
O

(
R2
∞
∑d
i=1 βi ln βi
T +

√
dR∞σ

√
ln( Tσ

R∞ )
√
T

)
Ene, Nguyen, and Vladu (2021). Vector step sizes, bounded domain, 2 evaluations per iteration.

Table 1: Comparison of adaptive algorithms for variational inequalities. R,R∞ are the `2 and `∞ diameter of the domain. G is
an upper bound on the `2-norm of F (·). σ2 is the variance of the stochastic oracle for F (·) (for deterministic setting, set σ = 0).
d is the dimensions of the domain. In the smooth setting, F is smooth with respect to a norm ‖·‖B, where B = diag (β1, . . . , βd)
is a diagonal matrix with β1, . . . , βd > 0; we let β = maxi βi. The scalar algorithms set a single step size for all coordinates,
whereas the vector algorithms set a per-coordinate step size. The stated bounds are obtained by setting γ0 = 0 in Theorem
3.1 and γ0 = 1 In Theorem 3.2. The analysis of Bach and Levy (2019) requires the stochastic gradients to be bounded almost
surely by a parameter Ĝ, which is stronger than the variance assumption we use in this paper. Additionally, the algorithm of
Bach and Levy (2019) requires an estimate for Ĝ in order to step size.

have √√√√a0 +
T−1∑
t=1

at −
√
a0 ≤

T∑
t=1

at√
a0 +

∑t−1
s=1 as

≤ 2a
√
a0

+ 3
√
a+ 3

√√√√a0 +
T−1∑
t=1

at

We will also make use of the following facts from Fenchel
duality. Let φ : X → R be a differentiable convex function.
The function φ is β-smooth with respect to the norm ‖·‖ if

φ(y) ≤ φ(x) + 〈∇φ(x), y − x〉+ β

2
‖y − x‖2 ∀x, y ∈ X

The function φ is α-strongly convex with respect to ‖·‖ if

φ(y) ≥ φ(x) + 〈∇φ(x), y − x〉+ α

2
‖y − x‖2 ∀x, y ∈ X

The Fenchel conjugate of φ is the function φ∗ : X → R with

φ∗(z) = max
x∈X
{〈x, z〉 − φ(x)} ∀z ∈ X

Lemma 2.4. ((Shalev-Shwartz et al. 2011), Lemma 2.19)
Let φ : X → R be a closed convex function. The function φ
is α-strongly convex with respect to a norm ‖·‖ if and only if
φ∗ is 1

α -smooth with respect to the dual norm ‖·‖∗.
Lemma 2.5. (Danskin’s theorem, (Bertsekas, Nedic, and
Ozdaglar 2003), Proposition 4.5.1) Let φ : X → R be a
strongly convex function. For all v ∈ X , we have

∇φ∗(v) = arg min
u∈X
{φ(u)− 〈u, v〉}

Additional notation: Throughout the paper, the norm
‖·‖ without a subscript denotes the standard `2-norm. We
also use the Mahalanobis norm ‖x‖A :=

√
x>Ax, where
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Algorithm 1: AdaPEG algorithm for bounded domains X .
Let x0 = z0 ∈ X , γ0 ≥ 0, η > 0.
For t = 1, . . . , T , update:

xt = arg min
u∈X

{〈
̂F (xt−1), u

〉
+

1

2
γt−1 ‖u− zt−1‖2

}
zt = arg min

u∈X

{〈
F̂ (xt), u

〉
+

1

2
γt−1 ‖u− zt−1‖2

+
1

2
(γt − γt−1) ‖u− xt‖2

}
γt =

1

η

√√√√η2γ20 +
t∑

s=1

∥∥∥F̂ (xs)− ̂F (xs−1)
∥∥∥2

Return xT = 1
T

∑T
t=1 xt.

Algorithm 2: AdaPEG algorithm for unbounded domainsX .
Let x0 = z0 ∈ X , γ0 ≥ 0,γ−1 = 0, η > 0.
For t = 1, . . . , T , update:

xt = arg min
u∈X

{〈
̂F (xt−1), u

〉
+

1

2
γt−2 ‖u− zt−1‖2

+
1

2
(γt−1 − γt−2) ‖u− x0‖2

}
zt = arg min

u∈X

{〈
F̂ (xt), u

〉
+

1

2
γt−2 ‖u− zt−1‖2

+
1

2
(γt−1 − γt−2) ‖u− x0‖2

}
γt =

1

η

√√√√η2γ20 +
t∑

s=1

∥∥∥F̂ (xs)− ̂F (xs−1)
∥∥∥2

Return xT = 1
T

∑T
t=1 xt.

A ∈ Rd×d is a positive definite matrix. The dual norm
of ‖·‖A is ‖·‖A−1 . For a diagonal matrix D ∈ Rd×d,
we let Di denote the i-th diagonal entry of D and we let
Tr(D) =

∑d
i=1 Di denote the trace of D. For bounded do-

mainsX , we letR andR∞ denote the `2 and `∞ diameter of
X : R = maxx,y∈X ‖x− y‖, R∞ = maxx,y∈X ‖x− y‖∞.
We let G = maxx∈X ‖F (x)‖.

3 Algorithms and Convergence Guarantees
In this section, we describe our algorithms for variational
inequalities and state their convergence guarantees. For all
of our theoretical results, we assume that the operator F
is monotone. We also assume that we can perform projec-
tions onto X . We assume that the algorithms have access to
a stochastic evaluation oracle that, on input xt, it returns a
random vector F̂ (xt) satisfying the following standard as-
sumptions for a fixed (but unknown) scalar σ:

E
[
F̂ (xt)|x1, . . . , xt

]
= F (xt) (8)

E
[∥∥∥F̂ (xt)− F (xt)

∥∥∥2] ≤ σ2 (9)

3.1 Algorithm for Bounded Domains
Our algorithm for bounded domains is shown in Algorithm
1. Its analysis assumes that the optimization domain X has
bounded `2-norm radius, R = maxx,y∈X ‖x− y‖. The al-
gorithm can be viewed as an adaptive version of the Past
Extra-Gradient method of Popov (1980). Our update rule for
the step sizes can be viewed as a generalization to the vari-
ational inequalities setting of the step sizes used by Mohri
and Yang (2016); Kavis et al. (2019); Joulani et al. (2020)
for convex optimization.

The following theorem states the convergence guarantees
for Algorithm 1. We give the analysis in the full version.
Similarly to Adagrad, setting η proportional to the radius of
the domain leads to the optimal dependence on the radius
and the guarantee smoothly degrades as η moves further
away from the optimal choice. For simplicity, the theorem
below states the convergence guarantee for η = Θ(R), and
we give the guarantee and analysis for arbitrary η in the full
version.

Theorem 3.1. Let F be a monotone operator. Let η =
Θ(R), where R = maxx,y∈X ‖x− y‖ is the `2-diameter
of the domain. Let xT be the solution returned by Algorithm
1. If F is non-smooth, we have

E [Err(xT )] ≤ O
(
γ0R

2

T
+
R (G+ σ)√

T

)
where G = maxx∈X ‖F (x)‖ and σ2 is the variance param-
eter from assumption (9).

If F is β-smooth with respect to the `2-norm, we have

E [Err(xT )] ≤ O
(

(β + γ0)R2

T
+
Rσ√
T

)
Proof. (Sketch) Similarly to prior works, we first upper
bound the error function using the stochastic regret (ξt :=

F (xt)− F̂ (xt)):

T · Err(xT ) ≤ sup
y∈X

(
T∑
t=1

〈
F̂ (xt), xt − y

〉)
︸ ︷︷ ︸

stochastic regret

+R

∥∥∥∥∥
T∑
t=1

ξt

∥∥∥∥∥+
T∑
t=1

〈ξt, xt − x0〉︸ ︷︷ ︸
stochastic error

Next, we analyze the stochastic regret. We split the regret
into three terms and analyze each term separately:〈

F̂ (xt), xt − y
〉

=
〈
F̂ (xt), zt − y

〉
+
〈

̂F (xt−1), xt − zt
〉

+
〈
F̂ (xt)− ̂F (xt−1), xt − zt

〉
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The first two terms can be readily upper bounded via the
optimality condition for zt and xt. For the third term, prior
works upper bound it in terms of the iterate movement via
Cauchy-Schwartz and smoothness. We crucially depart from
this approach, and upper bound the term using the operator

value difference
∥∥∥F̂ (xt)− ̂F (xt−1)

∥∥∥2, which can be signif-
icantly smaller than the iterate movement, especially in the
initial iterations. Using the resulting bound on the regret, we
obtain

T · Err(xT ) ≤ O(R)

√√√√ T∑
t=1

∥∥∥F̂ (xt)− ̂F (xt−1)
∥∥∥2︸ ︷︷ ︸

loss

− 1

2

T∑
t=1

γt−1

(
‖xt − zt−1‖2 + ‖xt−1 − zt−1‖2

)
︸ ︷︷ ︸

gain

+R

∥∥∥∥∥
T∑
t=1

ξt

∥∥∥∥∥+

T∑
t=1

〈ξt, xt − x0〉︸ ︷︷ ︸
stochastic error

+
1

2
R2γ0

Next, we upper bound the net loss. For non-smooth oper-
ators, we ignore the gain and simply upper bound the loss
by O(G

√
T ) plus an additional stochastic error term. For

smooth operators, we crucially use the gain to offset the loss.
Using a careful and involved analysis, we upper bound the
net loss by O(βR2) plus an additional stochastic error term.

Finally, we upper bound the expected stochastic error. We
do so by leveraging the martingale assumption (8) and the
variance assumption (9), and show that the expected error is
O(σ
√
T ).

Comparison with prior work: Compared to the prior
works (Bach and Levy 2019; Ene, Nguyen, and Vladu
2021), our algorithms set the step sizes based on the op-
erator value differences instead of the iterate movement.
This choice is key to obtaining optimal convergence guar-
antees in all settings and optimal dependencies on all of the
problem parameters, matching the non-adaptive algorithms.
Prior works attain convergence rates that are suboptimal by a
Ω
(√

lnT
)

factor (Table 1). Moreover, the prior algorithms
use the off-by-one iterate (McMahan 2017), which is un-
avoidable due to the use of the iterate movement in the step
size. These works address the off-by-one issue using addi-
tional assumptions and pay additional error terms in the con-
vergence. Specifically, Bach and Levy (2019) require the as-
sumption thatG := maxx∈X ‖F (x)‖ is bounded even when
F is smooth. The algorithm requires an estimate forG in or-
der to set the step size. Additionally, the convergence guar-
antee has additional error terms, including an error term of
at leastG2/γ0. In the stochastic setting, the analysis requires
the stochastic operators to be bounded almost surely by a pa-
rameter Ĝ, and the algorithm requires an estimate for Ĝ in
order to set the step size. The algorithm and analysis of Ene,
Nguyen, and Vladu (2021) requires knowing the radius R in

order to address the off-by-one issue. The algorithm of Ene,
Nguyen, and Vladu (2021) scales the update by R to ensure
that the step sizes increase by at most a constant factor, and
the analysis breaks if this is not ensured.

In contrast, Algorithm 1 does not suffer from the off-by-
one issue. Our analysis for smooth operators does not re-
quire the operator norms to be bounded. Our convergence
guarantee has optimal dependence on T and all problem pa-
rameters. Moreover, in the stochastic setting, our analysis re-
lies only on the variance assumption (9), which is a weaker
assumption than the stochastic operators being bounded al-
most surely.

Compared to standard methods such as the Past Extra-
Gradient method (Popov 1980), our algorithms use an addi-
tional term (γt−γt−1)‖u−xt‖2 in the update rule for zt. Our
analysis framework is versatile and allows us to analyze sev-
eral variants of the algorithm, including variants that do not
include this additional term. We discuss the variants and pro-
vide experimental results in the full version. The additional
term leads to a tighter analysis with optimal dependencies on
all problem parameters and improved constant factors. The
algorithm variants performed similarly in our experiments
involving bilinear saddle point problems. Our analysis read-
ily extends to the 2-call variants of the algorithms based on
the Extra-Gradient algorithm (Korpelevich 1976). In the full
version, we discuss the 2-call variants and give experimental
results. In all of the experiments, the 1-call algorithms per-
formed equally well or better than their 2-call counterparts.

Our algorithm and analysis allows us to set γ0 and η to
arbitrary constants, analogous to how adaptive algorithms
such as Adagrad are implemented and used in practice (γ0
is analogous to the ε paramater for Adagrad). For example,
the implementation of Adagrad in pytorch sets ε = 10−10

and η = 0.01. In contrast, previous works (Bach and Levy
2019; Ene, Nguyen, and Vladu 2021) need the initial value
γ0 to be at least the maximum operator norm or the radius
of the domain. Moreover, the analysis of Ene, Nguyen, and
Vladu (2021) does not allow the algorithm to be used with a
base learning rate η 6= Θ(R): as noted above, the algorithm
needs to scale the update by the radius to ensure that the step
sizes increase by at most a constant factor, and the analysis
breaks if this is not ensured.

3.2 Algorithm for Unbounded Domains
Our algorithm for unbounded domains is shown in Algo-
rithm 2. The algorithm uses the distance from the initial
point x0 that ensures that the iterates do not diverge. The
approach is inspired by the work of Fang et al. (2020) for
online convex optimization, which used the distance to x0 to
stabilize mirror descent in the setting where the step sizes are
chosen non-adaptively (the algorithm of Fang et al. (2020)
uses the step size for the future iteration t+ 1 to perform the
update for the current iteration t).

To the best of our knowledge, this is the first adaptive
method for general unbounded domains, even in the spe-
cial case of convex minimization. The convergence guar-
antees of existing adaptive algorithms in the Adagrad fam-
ily depends on the maximum distance ‖xt − x∗‖ between
the iterates and the unconstrained optimum (a point x∗ with
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∇f(x∗) = 0). Since these distances could diverge if the
domain is unbounded, an approach employed in prior work
(e.g., (Levy 2017)) is to project the iterates onto a bounded
domain containing x∗ (such as a ball). The resulting algo-
rithms require access to an optimization domain containing
the unconstrained optimum which may not be available or
requires additional tuning (for example, for X = Rd, the
distance ‖x0 − x∗‖ is an unknown parameter that we would
need to tune in order to restrict the optimization to a ball cen-
tered at x0 that contains x∗). Moreover, the restriction that
the optimization domain contains the unconstrained opti-
mum limits the applicability of the algorithms, as it does not
allow for arbitrary constrains. Additionally, our algorithms
readily extend to the more general setting of Bregman dis-
tances. Even if the domain X is bounded, the Bregman dis-
tances are potentially unbounded (e.g., KL-divergence dis-
tances on the simplex), and previous adaptive methods can-
not be applied.

The following theorem states the convergence guarantees
for Algorithm 2. We give the analysis in the full version.
As before, for simplicity, the theorem states the guarantees
when η is set optimally, and we give the guarantee and analy-
sis for arbitrary η in the full version. In contrast to Algorithm
1, Algorithm 2 has the off-by-one iterate (see the discussion
above) and we incur an additional error term. In the follow-
ing theorem, to allow for a direct comparison with (Bach and
Levy 2019), we assume that the operator norms are bounded
even for smooth operators. We note that this assumption is
not necessary, and we give an alternate guarantee in the full
version.
Theorem 3.2. Let F be a monotone operator. Let D > 0
be any fixed positive value. Let η = Θ(D). Let xT be the
solution returned by Algorithm 2. If F is non-smooth, we
have

E [ErrD(xT )]

≤ O

(
γ0D

2 + γ−10 G2

T
+
DG+

(
D + γ−10

)
σ

√
T

)
where G = maxx∈X ‖F (x)‖ and σ2 is the variance param-
eter from assumption (9).

If F is β-smooth with respect to the `2-norm, we have

E [ErrD(xT )]

≤ O

(
(β + γ0)D2 +DG+ γ−10 G2

T
+

(
D + γ−10

)
σ

√
T

)
Contemporaneous work: Antonakopoulos, Belmega,

and Mertikopoulos (2021) propose to use adaptive step sizes
based on operator value differences for the Extra-Gradient
method, and return the weighted average of the iterates
with the weights given by the step sizes. In contrast to our
work, their algorithm and analysis does not extend to per-
coordinate step sizes or the stochastic setting, and the con-
vergence rate is sub-optimal by a Ω(lnT ) factor and has
higher dependencies on the problem parameters (Table 1).
We note that Theorem 3.2 states the convergence in terms
of G, so that it can be directly compared to (Bach and Levy

2019). The stated bound is incomparable to (Antonakopou-
los, Belmega, and Mertikopoulos 2021) in the smooth set-
ting. However, our analysis can also be used to provide a
bound in the same spirit in the full version).

3.3 Extensions
Our analysis framework is versatile and it allows us to ana-
lyze several variants and extensions of our main algorithms.
In the full version, we consider the extension to the 2-call
versions of our algorithms based on the Extra-Gradient al-
gorithm (Korpelevich 1976). In the full version, we consider
the more general setting of Bregman distances. Our analysis
establishes the same convergence rate, up to constant factors.
In our experimental evaluation, given in the full version, the
1-call algorithms performed equally well or better than their
2-call counterparts.

In the full version, we extend the algorithms and their
analysis to the vector setting where we adaptively set a per-
coordinate learning rate. The vector version of Algorithm 1
improves over the previous work of Ene, Nguyen, and Vladu
(2021) by a Ω

(√
lnT

)
factor (Table 1). The algorithm has

optimal convergence for non-smooth operators and smooth
operators that are cocoercive. For smooth operators that are
not cocoercive, our convergence guarantee has a dependence
of β2 on the smoothness parameter whereas the algorithm
of Ene, Nguyen, and Vladu (2021) has a better dependence
of β lnβ. We note that, by building on the work of Ene,
Nguyen, and Vladu (2021) and our approach, we can ana-
lyze a a single-call variant of the algorithm of their algo-
rithm. For completeness, we give this analysis in the full
version.

The per-coordinate methods enjoy a speed-up compared
with the scalar method in many common scenarios, includ-
ing learning problems with sparse gradient, as discussed in
more detail in Sections 1.3 and 6 in the work of Duchi,
Hazan, and Singer (2011). In our experimental evaluation,
given in Section 4 and the full version, the per-coordinate
methods outperformed their scalar counterparts in certain
settings.

4 Experimental Evaluation
In this section, we give experimental results on bilinear sad-
dle point instances. We provide additional experimental re-
sults, including an experiment on training generative adver-
sarial networks, in the full version.

Instances: We consider bilinear saddle point problems
minu∈U maxv∈V f(u, v), where

f(u, v) =
1

n

n∑
i=1

u>A(i)v

and A(i) ∈ Rd×d for each i ∈ [n]. The strong solution is
x∗ = (u∗, v∗) = 0. Each matrix A(i) was generated by
first sampling a diagonal matrix with entries drawn from
the Uniform([−10, 10]) distribution, and then applying a
random rotation drawn from the Haar distribution. The ini-
tial point x0 was generated by sampling each entry from
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Figure 1: Convergence on bilinear instances. We report the
mean and standard deviation over 5 runs.

the Uniform([−10, 10]) distribution. We used d = 100 in
all experiments. In the deterministic experiments, we used
n = 1. In the stochastic experiments, we used n = 100
and a minibatch of size 16 for computing the stochatic eval-
uations. In the unconstrained experiments, the feasible do-
main is X = U × V = R2d. In the constrained experiments,
X = U×V is an `2-ball of radiusR = 2 ‖x0 − x∗‖ centered
at x∗ = 0.

Algorithms: We compare the following algorithms: our
algorithms with scalar step sizes (Algorithms 1 and 2) and
per-coordinate step sizes (in the full version), the adaptive
methods of Bach and Levy (2019) and Ene, Nguyen, and
Vladu (2021), and the non-adaptive methods Extra-Gradient
(Korpelevich 1976) and Past Extra-Gradient (Popov 1980).

An experimental comparison between the 1-call algo-
rithms and their 2-call variants can be found in the full ver-
sion. In all of the experiments, the 1-call algorithms per-
formed equally well or better than their 2-call counterparts.

We also include in the full version experimental results
that include variants of our algorithms that do not include the
extra term ‖u− xt‖2 in the update rule for zt. We observe
that the algorithm variants perform similarly in the experi-
ments with bounded feasible domain. We also evaluated the
algorithm variants in the unconstrained setting, although this
is not supported by theory. We observe that one of the vari-
ants performs slightly better in the unconstrained stochastic
setting.

Hyperparameters: In the deterministic experiments, we
used a uniform step size η = 1

β for the Extra-Gradient
method and η = 1

2β for the Past Extra-Gradient method,
as suggested by the theoretical analysis (Hsieh et al. 2019).
We observed in our experiments that the additional factor
of 2 is neccessary for the Past Extra-Gradient method, and
the algorithm did not converge when run with step sizes
larger than 1

2β . In the stochastic experiments, we used de-
caying step sizes ηt = c√

t
for Extra-Gradient and Past Extra-

Gradient, where c was set via a hyperparameter search. We
set the parameter G0 used by the algorithm of Bach and
Levy (2019) via a hyperparameter search. For our algo-
rithms, we set the parameter γ0 via a hyperparameter search,
and we set η = R in the constrained experiments and
η = ‖x0 − x∗‖ in the unconstrained experiments. All of the
hyperparameter searches picked the best value from the set
{1, 5} ×

{
105, 104, . . . , 101, 1, 10−1, . . . , 10−4, 10−5

}
.

Results: The results are shown in Figure 1. We report the
mean and standard deviation over 5 runs. We note that our
algorithms have the best performance among the adaptive
methods. Moreover, our algorithms’ performance was com-
petitive with the non-adaptive methods that have access to
the smoothness parameter.
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