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Abstract

Graph Convolutional Neural Networks (GCNs) has been gen-
erally accepted to be an effective tool for node representations
learning. An interesting way to understand GCNs is to think
of them as a message passing mechanism where each node
updates its representation by accepting information from its
neighbours (also known as positive samples). However, be-
yond these neighbouring nodes, graphs have a large, dark, all-
but forgotten world in which we find the non-neighbouring
nodes (negative samples). In this paper, we show that this
great dark world holds a substantial amount of information
that might be useful for representation learning. Most specifi-
cally, it can provide negative information about the node rep-
resentations. Our overall idea is to select appropriate negative
samples for each node and incorporate the negative informa-
tion contained in these samples into the representation up-
dates. Moreover, we show that the process of selecting the
negative samples is not trivial. Our theme therefore begins by
describing the criteria for a good negative sample, followed
by a determinantal point process algorithm for efficiently ob-
taining such samples. A GCN, boosted by diverse negative
samples, then jointly considers the positive and negative in-
formation when passing messages. Experimental evaluations
show that this idea not only improves the overall performance
of standard representation learning but also significantly alle-
viates over-smoothing problems.

Introduction
Graphs are powerful structures for modelling specific kinds
of data such as molecules, social networks, citation net-
works, traffic networks, etc. (Chakrabarti and Faloutsos
2006). However, the representation power of graphs is not
a free lunch; it brings with it issues of incompatibility with
some of the strongest and most popular deep learning algo-
rithms, as these can often only handle regular data structures
like vectors or arrays. Hence, to lend learning power to these
great tools of representation, graph neural networks (GNNs)
have emerged as a congruent deep learning architecture (Wu
et al. 2020). Such has been their success that, today, there
are many different GNN variants, each adapted for a spe-
cific task – for instance, graph sequence neural networks (Li
et al. 2016), graph convolutional neural networks (Kipf and
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Figure 1: Illustration of the motivation of this work, includ-
ing the dark world (gray shadow), different semantic clusters
(green, yellow, purple, blue nodes), positive samples (nodes
2, 3, 4) and selected diverse negative samples (nodes 6, 11,
and 18) of a given node (node 1).

Welling 2017), and spatio-temporal graph convolutional net-
works (Yu, Yin, and Zhu 2018).

Among all the varieties of GNNs, graph convolutional
neural networks (GCN) (Kipf and Welling 2017) is a sim-
ple but representative and salient one, which introduces the
concept of convolution to GNNs that means to share weights
for nodes within a layer. An easy and intuitive way to under-
stand GCNs is to think of them as a message passing mech-
anism (Geerts, Mazowiecki, and Pérez 2021) where each
node accepts information from its neighbouring nodes to up-
date its representation. The basic idea is that the representa-
tions of nodes with edge between them should be positively
correlated. Hence, the neighboring nodes are also named
as positive samples1. This message-passing mechanism is
highly effective in many scenarios, but it does lead to an an-
noying over-smoothing problem where the node representa-
tions become more and more similar as the number of layers
of the graph neural network increases. This is hardly sur-

1Hereafter we refer to neighbouring nodes and positive samples
interchangeably.
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prising when each node only updates its representation ac-
cording to its neighbours. Yet, beyond these observed edges,
there is a dark world that could provide diverse and useful
information to the representation updates and help to over-
come the over-smoothing problem at the same time, as illus-
trated in Fig. 1. The reasoning is this: two nodes without
edge between them should have different representations,
so we can understand this as a negative link. However, in
contrast to the commonly used positive links, these negative
links are rarely used in the existing various GCNs.

Selecting appropriate negative samples in a graph is not
trivial. To our knowledge, only three studies have explored
procedures to this end. The first is Kim and Oh (Kim and
Oh 2021), who propose the natural and easy approach of
uniformly randomly selecting some negative samples from
non-neighbouring nodes. However, as we all know, a large
graph is normally has the small-world property (Watts and
Strogatz 1998) which means the graph will tend to contain
some clusters. Moreover, nodes in the same cluster will tend
to have similar representations while nodes within different
clusters will tend to have different representations, as illus-
trated in Fig. 1. Hence, under uniform random selection, the
large clusters will overwhelm the smaller ones, and the final
converged node representations will be short on information
contained in the small clusters. Of the other two methods,
one is based on Monte Carlo chains (Yang et al. 2020) and
the other on personalised PageRank (Ying et al. 2018), and
neither covers diverse information as well. Further, the se-
lected negative samples should not be redundant; each of
them should not be overlapping and hold distinct informa-
tion. Hence, as a definition, a good negative sample should
contribute negative information to the give node contrast to
its positive samples and include as much information as pos-
sible to reflect the variety of the dark world.

In this paper, we propose a graph convolutional neu-
ral network boosted by diverse negative samples selected
through a determinant point process (DPP). DPP is special
point process for defining a probability distribution on a set
where more diverse subset has a higher probability (Hough
et al. 2009). Our idea is to find diverse negative samples
for a given node by firstly defining a DPP-based distribu-
tion on diverse subsets of all non-neighbouring nodes of this
node, and then outputting a diverse subset from this distri-
bution. The number of subsets is limited because the sam-
ples are mutually exclusive. However, when applying this
algorithm to large graphs, the computational cost can be as
high as O(N3), where N is the number of non-neighbouring
nodes. Therefore, we propose a method based on a depth-
first search (DFS) that collects diverse negative samples se-
quentially along the search path for a node. The motivation
is that a DFS path is able to go through all different clus-
ters in the graph and, therefore, the local samples collected
will form a good, diverse approximation of all the infor-
mation in the dark world. Further, the computational cost
is approximately O(pa · deg

3
) where pa ≪ N is the path

length (normally smaller than the diameter of the graph) and
deg ≪ N is the average degree of the graph. As an ex-
ample, consider a Cora graph (Sen et al. 2008) with 3,327

Symbol Meaning
G a graph
Gn the node set of graph G
Y a ground set
Y a node subset
k the number of negative samples of a given

node in a graph
N (i) neighbours (positive samples) of node i
N (i) negative samples of node i

x
(l)
i the representation of node i at layer l

deg(i) the degree of node i
L the L-ensemble of DPP
λ the eigenvalues of L

e
|Y|
k the kth elementary symmetric polynomial on

eigenvalues λ1, λ2, . . . , λ|Y| of L
v the eigenvectors of the L-ensemble
V the set v

Table 1: Key notations

nodes, pa = 19, and deg = 3.9. Thus, O(N3) = 3.6e10 ≫
1, 127 = O(pa · deg

3
).

In evaluating these ideas, we conducted empirical experi-
ments on different tasks, including node classification and
over-smoothing tests. The results show that our approach
produces superior results.

Thus, the contributions of this study include:
• A new negative sampling method based on a DPP that

selects diverse negative samples to better represent the
dark information;

• A DFS-based negative sampling method that sequentially
collects locally diverse negative samples along the DFS
path to greatly improve computational efficiency;

• We are the first to fuse negative samples into the graph
convolution, yielding a new GCN boosted by diverse
negative samples (D2GCN) to improve the quality of
node representations and alleviate the over-smoothing
problem.

Preliminaries
This section briefly introduces the basic concepts of graph
convolutional neural networks, message passing, and deter-
minantal point process.

Graph Convolutional Neural Networks (GCNs)
GCNs introduce traditional convolution from classical neu-
ral networks to graph neural networks. Like a message-
passing mechanism, the representation of a node is updated
using its neighbours’ representations through

xi
(l) =

∑
j∈Ni∪{i}

1√
deg(i) ·

√
deg(j)

(
Θ(l) · x(l−1)

j

)
(1)

where x
(l)
i are the representation of node i at layer l, N (i)

is the neighbours of node i (i.e., positive samples), deg(i) is
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the degree of node i, and Θ(l) is a feature transition matrix.
The goal of this equation is to aggregate (sum) the weighted
representations of all neighbours. Note that although we use
GCNs to demonstrate our approach throughout the paper,
the same ideas can be easily applied to other variants as well.

Determinantal Point Processes (DPP)
Given a ground set Y = {1, 2, . . . , |Y|}, a determinantal
point process P is a probability measure on all possible sub-
sets of Y with size 2|Y|. For every Y ⊆ Y , a DPP (Hough
et al. 2009) defined via an L-ensemble is formulated as

PL(Y ) =
det(LY )

det(L+ I)
(2)

where det(·) denotes the determinant of a given matrix, L is
a real and symmetric |Y| × |Y| matrix indexed by the ele-
ments of Y , and det(L + I) is a normalisation term that is
constant once the ground dataset Y is fixed. Given a Gram
decomposition LY = L̄T L̄, a determinantal operator can be
interpreted geometrically as

PL(Y ) ∝ det(LY ) = vol2
(
{L̄i}i∈Y

)
(3)

where the right hand side is the squared volume of the par-
allelepiped spanned by the columns in L̄ corresponding to
elements in Y . Intuitively, to get a parallelepiped of greater
volume, the columns should be as repulsive as possible to
each other. Hence, DPP assigns a higher probability to a sub-
set of Y whose elements span a greater volume.

One important variant of DPP is k-DPP (Kulesza and
Taskar 2012). k-DPP measures only k-sized subsets of Y
rather than all of them including an empty subset. It is for-
mally defined as

PL(Y ) =
det(LY )

e
|Y|
k

(4)

with the cardinality of the subset Y being a fixed size
k, i.e., |Y | = k. e

|Y|
k is the kth elementary symmet-

ric polynomial on eigenvalues λ1, λ2, . . . , λ|Y| of L, i.e.,
ek(λ1, λ2, . . . , λ|Y|).

Both DPP and k-DPP can be used to sample a diverse sub-
set, and both have been well studied in the machine learning
area (Kulesza and Taskar 2012). The popularity of DPP (and
also of k-DPP) for modeling diversity is because of its great
modelling power.

Related Work
GCN and Its Variants
Motivated by the achievements of convolutional neural net-
works (CNNs), many GNNs approaches have been actively
studied to model graph data. These are classified into two
types, spectral-based and spatial-based. (Bruna et al. 2014)
first created a graph convolution based on spectral graph the-
ory. Although their paper was conceptually important, it had
major computational flaws, which prevented it from being
a genuinely useful tool. Since then, a growing number of
enhancements, extensions, and approximations of spectral-
based GCNs have been made to overcome these flaws. Based

on these, (Kipf and Welling 2017) proposed GCNs, which is
a localized first-order approximation of spectral graph con-
volutions as a generalised method for semi-supervised learn-
ing on graph-structured data. Their model acquires implicit
representations, encodes the region graph structure and node
attributes, and expands linearly in terms of the number of
graph edges.

A representative work in a spatial-based way is Graph-
SAGE (Hamilton, Ying, and Leskovec 2017), which is a
general framework for generating node embedding by sam-
pling and aggregating features from neighbourhood of a
node. In order to theoretically analyze the representational
power of GNNs, (Xu et al. 2019) formally characterised
how expressive different GNNs variants are at learning to
represent different graph structures based on the graph iso-
morphism test (Weisfeiler and Leman 1968). They proposed
that, since modern GNNs follow a neighbourhood aggre-
gation strategy, the network at the k-th layer can be sum-
marised formally in two steps AGGREGATE and COM-
BINE. In addition, they further proposed GINs, which can
distinguish different graph structures and capture dependen-
cies between graph structures to achieve better classification
results (Xu et al. 2019).

All the above GNNs can be considered to use positive
sampling when generating new node feature vectors, be-
cause the neighbour aggregation on j ∈ N (i) leads to a
high correlation between the central node and its neighbours.
Extremely few studies use negative sampling with a GNN.
The only three works (Ying et al. 2018; Kim and Oh 2021;
Yang et al. 2020) that do use it do not satisfy the our crite-
ria of good negative samples: good negative samples should
include as many information of the dark world as possible
and, at the same time, without much overlapping and redun-
dant information. Moreover, the above approaches only use
the results of negative sampling in the loss function, while
the direct application of to convolution operations remaining
unexplored.

DPP and Its Applications
Determinantal point processes (DPPs) (Hough et al. 2009)
are statistical models and provide probability measures over
every configuration of subsets on data points. DPPs were
first introduced to machine learning area by (Kulesza and
Taskar 2012), and they have since been extended to in-
clude closed-form normalisation, marginalisation (Kulesza
and Taskar 2012), sampling (Kang 2013), dual representa-
tion, maximising a posterior (MAP) (Gillenwater, Kulesza,
and Taskar 2012b)) and parameter learning (Affandi et al.
2014; Gillenwater et al. 2014), and its structural (Gillen-
water, Kulesza, and Taskar 2012a) and Markov (Affandi,
Kulesza, and Fox 2012) variants to name just two. This re-
pulsive characteristic has been successfully applied to prior
modelling in a variety of scenarios, such as clustering (Kang
2013), inhibition in neural spiking data (Snoek, Zemel, and
Adams 2013), sequential labelling (Qiao et al. 2015), doc-
ument summarisation, video summarisation, tweet timeline
generation, and so on. However, to the best of our knowl-
edge, DPP has not been used for negative sampling with
GNNs.
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Algorithm 1: Diverse negative sampling
Input: A graph G
Output: N (i) for all i ∈ G

1: Let N = 0.
2: for each node i do
3: Compute LG\i using Eq. (5);
4: Define a distribution on all possible subsets PL(YG\i)

using Eq. (6);
5: Obtain a sample of PL(YG\i) using Algorithm 8 in

(Kulesza and Taskar 2012);
6: Save nodes in the sample as N (i);
7: end for
8: return N

Proposed Model
This section first introduces a method for obtaining good
negative samples for a given node, including two negative
sampling algorithms. We then integrate the algorithms with
a GCN to obtain a new graph convolutional neural network
boosted by diverse negative samples (D2GCN).

DPP-Based Negative Sampling
Given a node, we believe that its good negative samples
should include as much information about the dark world
as possible and, at the same time, without much overlap and
redundancy. The repulsive property of DPP inspired us to
use it to select negative samples. However, applying DPP to
different scenarios is not trivial; modifications are required
to make it work. Hence, for a given node i in a graph G, we
need to first define a L-ensemble for our problem:

LGn\i(j, j
′) = exp (cos (xj , xj′)− 1) , (5)

where Gn \ i denotes the node set of Gn excluding node
i, j and j′ are two nodes within Gn \ i, and cos(·, ·) is the
cosine similarity between two node representations x. The
node feature x is used here because, when defining the dis-
tance between nodes, nodes with similar information are ex-
pected to be further apart. xj is expected to encode the in-
formation of node j in terms of both features and network
structure. Feature information may dominate at the begin-
ning but both types of information will be balanced after a
number of training steps. The reason we chose cosine simi-
larity is because the following prediction (label and link) is
normally based on cosine similarity. We used only x to sim-
plify the explanation. However, it would be straightforward
to include more information here, like the network distance
between nodes j and j′, the similarity with node i or node
degree of each node.

With this L-ensemble, we can obtain a distribution on all
possible subsets of all nodes in the graph except for i,

PL(YGn\i) =
det(LYGn\i)

det(LGn\i + I)
(6)

where YGn\i is a set of all subsets of Gn \ i and det(·) is
the matrix determinant operator. Comparing other ordinary
probability distributions with same support, this distribution

has a nice and unique property that the more diverse the sub-
sets, the higher their probability values, the easier it is to
obtain a diverse set from this distribution by sampling. To
ensure the scale of negative samples is similar to the posi-
tive samples, we use k-DPP to fix the number of negative
samples as k = |Ni| + 1. Here, we use a sampling method
based on eigendecomposition (Hough et al. 2006; Kulesza
and Taskar 2012). Eq. (6) can be rewritten as the k-DPP dis-
tribution in terms of the corresponding DPP

Pk
L(YGn\i) =

1

e
|Gn\i|
k

det(LGn\i + I)PL(YGn\i) (7)

whenever |YGn\i| = k and e
|Gn\i|
k denotes the k-th ele-

mentary symmetric polynomial. Following the (Kulesza and
Taskar 2012), Eq. (7) can be decomposed into elementary
parts

Pk
L(YGn\i) =

1

e
|Gn\i|
k

∑
|J|=k

PVJ (YGn\i)
∏
m∈J

λm (8)

where VYGn\i denotes the set {vm}m∈YGn\i and vm and λm

are the eigenvectors and eigenvalues of the L-ensemble, re-
spectively. Based on Eq. (8), the complete process of sam-
pling from k-DPP is in Algorithm 8 in (Kulesza and Taskar
2012).

Note that comparing with a sample, the mode of this dis-
tribution is a more rigorous output (Gillenwater, Kulesza,
and Taskar 2012b), but it is usually with an unbearable com-
plexity, so we use a sample rather than mode here. The ex-
perimental evaluation have shown that the sample has been
able to achieve satisfactory results. Algorithm 1 shows a di-
verse negative sampling method based on DPP, but its com-
putation cost is above the standard for a DPP on Gn \ i
is O(|Gn \ i|3) for each node. This totals an exorbitant
O(|Gn \ i|4) for all nodes! Although Algorithm 1 is able
to explore the whole dark world and find the best diverse
negative samples, the large number of candidates makes it
an impractical solution for even a moderately-sized graph.
Hence, we propose the approximate heuristic method below.

Our belief is that the good negative samples are the ones
with different semantics and complete knowledge of the
whole graph, such as nodes 6, 11, and 18 in Fig. 2. In this
figure, we hope the selected negative samples could each
belong to the different ‘cluster’ and all ‘clusters’ are rep-
resented by the negative samples. Hence, given a node i,
we use a depth-first-search (DFS) method to build a fixed-
length path from node i to the other nodes. We then collect
the first-order neighbours of the nodes on this path to form
a candidate set. Finally, we select diverse negative samples
from this candidate set using the same DPP idea as outlined
above. This DFS-based method can be considered as using
a local diverse negative samples to approximate the global
diverse negative samples. The reason is that DFS has the ca-
pability of breaking through the ‘cluster’ of the current node
i to reach the semantics of other ‘clusters’. So the first-order
neighbours of nodes on the path are able to supply sufficient
information from many ‘clusters’ but at a much smaller size.
Although only first-order neighbours are collected here, col-
lecting a higher order may further increase approximation
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Figure 2: The concept of DPP-based negative sampling. The
target node is Node 1. Nodes 2, 3 and 4 are positive sam-
ples. Nodes 5-18 are the dark world of Node 1. The 4-length
DFS path of Node 1 is {3, 5, 11, 13}, where {5, 11, 13} are
the central nodes on the path in the dark world. With their
first-order neighbouring nodes, they form the candidate set
of DPPs, i.e.{5, 6, 7, 11, 12, 13, 14, 18}. The selected nega-
tive samples from this set are 6, 11, and 18, which can be
seen as virtual negative links to Node 1.

Algorithm 2: DFS-based diverse negative sampling
Input: A graph G
Output: N (i) for all i ∈ G

1: Let N = 0;
2: for each node i do
3: Build a DFS path pai in G \ i;
4: Let Ci = [];
5: for each node j ∈ pai do
6: Collect first-order neighbors N (j) of j;
7: Expand Ci = [Ci,N (j)];
8: end for
9: Compute LCi

using Eq. (5);
10: Define a distribution on all possible subsets PL(YCi

)
using Eq. (6);

11: Obtain a sample of PL(YCi
);

12: Save nodes in the sample as N (i).
13: end for
14: return N

performance; however, it would also increase the computa-
tional cost. In terms of path length, we found that perfor-
mance is sufficiently good when the path length is set to
around a quarter of the graph’s diameter. The full procedure
is summarised in Algorithm 2.

Here, the overall compuational cost is O(N · |pa| · deg
3
)

where |pa| ≪ N is the path length (normally smaller than
the diameter of the graph) and deg ≪ N is the average de-
gree of the graph. That is much smaller than O(|Gn \ i|4)

Algorithm 3: D2GCN
Input: A graph G

Output: x(L)
i for all i ∈ G

1: Build DFS path for all nodes;
2: for each level l do
3: for each node i in l do
4: Find negative samples for i using Algorithm 2;
5: Update node representation xi

(l) using Eq. (9);
6: end for
7: end for
8: return x(L)

GCN Boosted by Diverse Negative Samples
The classical GCN is only based on positive samples as
shown in Eq. (1), which will inevitably lead to over-
smoothing issues. With the negative samples from Algo-
rithms 1 or 2, we propose the following new graph convolu-
tional operation as

xi
(l) =

∑
j∈Ni∪{i}

1√
deg(i) ·

√
deg(j)

(
Θ(l) · x(l−1)

j

)
− ω

∑
j̄∈Ni

1√
deg(i) ·

√
deg(j̄)

(
Θ(l) · x

j̄(l−1)
) (9)

where Ni is the negative samples of node i and ω is a hyper-
parameter to balance the contribution of the negative sam-
ples. It is also interesting to consider that all these negative
samples form a virtual graph with the same nodes as be-
fore but with negative links between the nodes. When using
message-passing framework for the mode learning, there are
in fact two messages from each node: one is positive from
neighbouring nodes and the other is negative from the nega-
tive samples. The positive messages push all the nodes with
same semantics to have similar representations, while the
negative messages push all nodes with different semantics
to have different representations. This strategy is similar to
clustering, where samples within same cluster are a small
distance apart and large distances between samples indicate
the sample is sitting in a different cluster. We believe that
these negative messages are precisely what is missing from
GCNs and a significant element in their advancement.

The final GCN boosted by diverse negative samples
(D2GCN) with L layers, is given in Algorithm 3. Exclud-
ing negative sampling, the computational cost is the double
that of the original GCN. Note that, although GCNs are used
as the base model here, these idea can be easily applied to
other GNNs as well.

Experiments
Datasets
The datasets we used are benchmark graph datasets in the
literature: Citeseer, Cora and Pubmed (Sen et al. 2008).
The datasets include sparse bag-of-words feature vectors for
each document as well as a list of document-to-document
citation connections. Datasets are downloaded from Pytorch
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geometric2. To better perform the experiments using DFS,
we chose the maximum connected subgraph of each graph
data. The datasets were split strictly in accordance with
(Kipf and Welling 2017).

Baselines
GCN is the base model. We compare our sampling method
with the only three negative sampling methods available to
date, then put the selected samples into the convolution op-
eration using Eq. (9). The first method is to select negative
samples in a purely random way, named RGCN (Kim and
Oh 2021). The second one is based on Monte Carlo chains,
named MCGCN (Yang et al. 2020). The last one is based
on personalised PageRank, named PGCN (Ying et al. 2018)
To ensure the consistency and fairness of the experiments,
all the graph convolution models had the same structure and
were initialised and trained with the same methods. Note
there is no other related negative sampling works in the field.

Setup
The experimental task was standard node classification. We
set the length of DFS to 5 and the negative rate as a trainable
parameter and trained all models with different numbers of
layers in the range {2, · · · , 6} to test behaviour at increasing
depths. Each model was trained for 200 epochs on Cora and
Citeseer and for 100 epochs with Pubmed, using an Adam
optimiser with a learning rate of 0.01. Tests for each model
at each depth with each dataset were conducted 10 times.
Moreover, all experiments were conducted on an Intel(R)
Xeon(R) CPU @ 2.00GHz and NVIDIA Tesla T4 GPU. The
code was implemented in PyTorch3.

Metrics
It was our goal to verify two capabilities of the proposed
model: one is ability to improve the prediction performance
and the other is to alleviate the over-smoothing problem.
Hence, we used the following two metrics:

• Accuracy is the cross-entropy loss for the node label pre-
diction on test nodes (the larger is the better);

• Mean Average Distance (MAD) (Chen et al. 2020) re-
flects the smoothness of graph representation (the larger
is the better):

MAD =

∑
i Di∑

i 1(Di)
, Di =

∑
j Dij∑

j 1(Dij)
(10)

where Dij = 1 − cos(xi, xj) is the cosine distance be-
tween the nodes i and j.

Results
The results of five models with different numbers of lay-
ers on three datasets are shown in Fig. 3. The performances
of all five models on Cora and Citeseer were very simi-
lar in terms of both Accuracy and MAD at 2 and 3 lay-
ers. On Pubmed, our model was marginally better than the

2https://pytorch-geometric.readthedocs.io/en/latest/modules/
datasets.html

3The code is available at https://github.com/Wei9711/D2GCN.

others. When the depth increased from 3 to 6, both the Ac-
curacy and MAD of all models decreased to some extent.
This is a consistent observation with the literature that in-
creasing the depth of the network leads to a performance
drop due to over-smoothing. We also observed that the de-
creasing trends of RGCN, MCGCN and PGCN on Accuracy
were very similar, while PGCN are slightly better than the
other two on both Cora and Citeseer datasets, especially at
layers 5 and 6. As for MAD, their trends were similar on
Pubmed, but on the other two datasets GCN are much worse
than the others. Moreover, although the MAD of RGCN,
MCGCN and PGCN is close to our D2GCN on Cora and
Citeseer, especially at layers 5 and 6 on Citeseer RGCN
and PGCN even surpass our method, they are much less ac-
curate than D2GCN. This observation suggests that adding
negative samples to the convolution does reduce the over-
smoothing to some extent, but choosing the appropriate neg-
ative samples is is not trivial. Additional effort needs to be
given to the procedure for selecting negative samples.

As shown in the Fig. 3, our proposed model achieved con-
sistently the best performance in terms of accuracy on all
datasets. For MAD, it also performs outstandingly in par-
ticular on the Cora and Pubmed datasets. At first, we ob-
served that the performance of our model also decreased
along with the increasing depth. However, the rate at which
performance decreased was much slower than for the other
two models – and almost flat on Pubmed. Secondly, in terms
of MAD, the performance of our model generally exceeds
the others, especially on Pubmed by a large margin. These
observations verify that our idea is able to significantly al-
leviate the over-smoothing problem and in turn improve the
prediction accuracy. As a final observation, we found that
the variance of our model was smaller than the other four.
One possible reason is that the diverse negative samples may
quickly change the current node representation rather than
keep sticking around the initialisation when only positive
samples are used.

The sensitivity of hyper-parameters is analysed and
shown in Fig. 4 where we trained 5-layer D2GCN on Cite-
seer dataset in varying length of DFS and scale of negative
rate. We observe that as negative rate or DFS-length goes up,
the trends of both Accuracy and MAD are roughly the same,
increasing first and then decreasing. For the length of DFS,
the outstanding results are obtained when it is equal to 5 or
6. For the negative rate, it achieves the same performance as
the trainable parameters, when it is equal to {1, 2, 3}.

We further show results on three different types of
datasets in Tab.??: protein graph, gamer graph, paper graph.
We compared two SOTA methods and two latest methods for
over-smoothing include: GATv2 (Brody, Alon, and Yahav
2021) , GraphSage (Hamilton, Ying, and Leskovec 2017)
and MAD (Chen et al. 2020) and DGN (Zhou et al. 2020).
Setting is same with the above and all models are with 4
layers. Our method has consistently achieved better perfor-
mance.

Conclusion and Future Work
In this paper, we identified the importance of negative sam-
ples to GCNs and described the criteria for what constitutes
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Figure 3: The Accuracy and MAD of five models on three datasets with varying number of layers from 2 to 6. The x-axis
denotes the layer number, and the mean and standard deviation of 10 runs are given for each model with each layer number.

Figure 4: The Accuracy and MAD of D2GCN with 5 layers on Citeseer datasets in varying length of DFS and scale of negative
rate. The mean and standard deviation of 10 runs are given for each setting.

Method Proteins Twitch(EN) ogbn-arxiv
D2GCN .74 ±.02 .58 ±.01 .66 ±.01
GATv2 .66 ±.02 .54 ±.03 .31 ±.06

GraphSAGE .66 ±.02 .55 ±.01 .58 ±.02
MAD .66 ±.02 .55 ±.02 *
DGN .64 ±.01 .52 ±.01 .60 ±.01

* MAD on obgn-arxiv didn’t finish one run after more than 12h.

Table 2: Accuracy on other three different types of datasets.

a good negative sample. We introduced DPP to select mean-
ingful negative samples from the dark world of the whole
graph. To the best of our knowledge, we are the first to in-
troduce DPP to GCNs for negative sampling and the first
to fuse the negative samples into the graph convolution.
We further presented a DFS-based heuristic approximation
method to greatly reduce the computational cost. The exper-
imental evaluations shows that the proposed D2GCN con-

sistently delivers better performance than alternative meth-
ods. In addition to greater predictive accuracy, the method
also helps to prevent over-smoothing. With this study, we
identify that negative samples are important to graph neu-
ral networks and should be considered in future works. Note
that the proposed idea can be applied to other graph neural
networks apart from GCN.

In future research, we will continue to investigate how to
speed-up the DPP sampling process in the algorithm. An-
other interesting follow-up work would be to investigate
more effective aggregation of positive and negative samples
as the current solution may lose some information when
summing the samples together – especially when the sam-
ples are diverse.
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