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Abstract

Recommender systems are facing scrutiny because of their
growing impact on the opportunities we have access to. Cur-
rent audits for fairness are limited to coarse-grained parity
assessments at the level of sensitive groups. We propose to
audit for envy-freeness, a more granular criterion aligned with
individual preferences: every user should prefer their recom-
mendations to those of other users. Since auditing for envy
requires to estimate the preferences of users beyond their
existing recommendations, we cast the audit as a new pure
exploration problem in multi-armed bandits. We propose a
sample-efficient algorithm with theoretical guarantees that it
does not deteriorate user experience. We also study the trade-
offs achieved on real-world recommendation datasets.

1 Introduction
Recommender systems shape the information and opportu-
nities available to us, as they help us prioritize content from
news outlets and social networks, sort job postings, or find
new people to connect with. To prevent the risk of unfair
delivery of opportunities across users, substantial work has
been done to audit recommender systems (Sweeney 2013; As-
plund et al. 2020; Imana et al. 2021). For instance, Datta et al.
(2015) found that women received fewer online ads for high-
paying jobs than equally qualified men, while Imana et al.
(2021) observed different delivery rates of ads depending on
gender for different companies proposing similar jobs.

The audits above aim at controlling for the possible accept-
able justifications of the disparities, such as education level
in job recommendation audits. Yet, the observed disparities
in recommendation do not necessarily imply that a group
has a less favorable treatment: they might as well reflect that
individuals of different groups tend to prefer different items.
To strengthen the conclusions of the audits, it is necessary to
develop methods that account for user preferences. Audits for
equal satisfaction between user groups follow this direction
(Mehrotra et al. 2017), but they also have limitations. For
example, they require interpersonal comparisons of measures
of satisfaction, a notoriously difficult task (Sen 1999).

*A complete version with technical appendix is available on
arXiv: https://arxiv.org/abs/2104.14527.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We propose an alternative approach to incorporating user
preferences in audits which focuses on envy-free recommen-
dations: the recommender system is deemed fair if each user
prefers their recommendation to those of all other users. Envy-
freeness allows a system to be fair even in the presence of
disparities between groups as long as these are justified by
user preferences. On the other hand, if user B systematically
receives better opportunities than user A from A’s perspective,
the system is unfair. The criterion does not require interper-
sonal comparisons of satisfaction, since it relies on compar-
isons of different recommendations from the perspective of
the same user. Similar fairness concepts have been studied in
classification tasks under the umbrella of preference-based
fairness (Zafar et al. 2017; Kim et al. 2019; Ustun et al.
2019). Envy-free recommendation is the extension of these
approaches to personalized recommender systems.

Compared to auditing for recommendation parity or equal
satisfaction, auditing for envy-freeness poses new challenges.
First, envy-freeness requires answering counterfactual ques-
tions such as “would user A get higher utility from the rec-
ommendations of user B than their own?”, while searching
for the users who most likely have the best recommendations
from A’s perspective. This type of question can be answered
reliably only through active exploration, hence we cast it
in the framework of pure exploration bandits (Bubeck et al.
2009). To make such an exploration possible, we consider
a scenario where the auditor is allowed to replace a user’s
recommendations with those that another user would have
received in the same context. Envy, or the absence thereof,
is estimated by suitably choosing whose recommendations
should be shown to whom. While this scenario is more in-
trusive than some black-box audits of parity, auditing for
envy-freeness provides a more compelling guarantee on the
wellbeing of users subject to the recommendations.

The second challenge is that active exploration requires
randomizing the recommendations, which in turn might alter
the user experience. In order to control this cost of the audit
(in terms of user utility), we follow the framework of con-
servative exploration (Wu et al. 2016; Garcelon et al. 2020),
which guarantees a performance close to the audited system.
We provide a theoretical analysis of the trade-offs that arise,
in terms of the cost and duration of the audit (measured in
the number of timesteps required to output a certificate).

Our technical contributions are twofold. (1) We provide
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a novel formal analysis of envy-free recommender systems,
including a comparison with existing item-side fairness cri-
teria and a probabilistic relaxation of the criterion. (2) We
cast the problem of auditing for envy-freeness as a new pure
exploration problem in bandits with conservative exploration
constraints, and propose a sample-efficient auditing algorithm
which provably maintains, throughout the course of the audit,
a performance close to the audited system.

We discuss the related work in Sec. 2. Envy-free recom-
mender systems are studied in Sec. 3. In Sec. 4, we present
the bandit-based auditing algorithm. In Sec. 5, we investigate
the trade-offs achieved on real-world datasets.

2 Related Work
Fair recommendation The domain of fair machine learn-
ing is organized along two orthogonal axes. The first axis is
whether fairness is oriented towards groups defined by pro-
tected attributes (Barocas and Selbst 2016), or rather oriented
towards individuals (Dwork et al. 2012). The second axis
is whether fairness is a question of parity (predictions [or
prediction errors] should be invariant by group or individ-
ual) (Corbett-Davies and Goel 2018; Kusner et al. 2017), or
preference-based (predictions are allowed to be different if
they faithfully reflect the preferences of all parties) (Zafar
et al. 2017; Kim et al. 2019; Ustun et al. 2019). Our work
takes the perspective of envy-freeness, which follows the
preference-based approach and is aimed towards individuals.

The literature on fair recommender systems covers two
problems: auditing existing systems, and designing fair rec-
ommendation algorithms. Most of the auditing literature fo-
cused on group parity in recommendations (Hannak et al.
2014; Lambrecht and Tucker 2019), and equal user utility
(Mehrotra et al. 2017; Ekstrand et al. 2018), while our audit
for envy-freeness focuses on whether personalized results are
aligned with (unknown) user preferences. On the designing
side, Patro et al. (2020); Ilvento, Jagadeesan, and Chawla
(2020) cast fair recommendation as an allocation problem,
with criteria akin to envy-freeness. They do not address the
partial observability of preferences, so they cannot guaran-
tee user-side fairness without an additional certificate that
the estimated preferences effectively represent the true user
preferences. Our work is thus complementary to theirs.

While we study fairness for users, recommender systems
are multi-sided (Burke 2017; Patro et al. 2020), thus fair-
ness can also be oriented towards recommended items (Celis,
Straszak, and Vishnoi 2017; Biega et al. 2018; Geyik, Ambler,
and Kenthapadi 2019).

Multi-armed bandits In pure exploration bandits (Bubeck
et al. 2009; Audibert, Bubeck, and Munos 2010), an agent
has to identify a specific set of arms after exploring as quickly
as possible, without performance constraints. Our setting is
close to threshold bandits (Locatelli, Gutzeit, and Carpen-
tier 2016; Kano et al. 2019) where the goal is to find arms
with better performance than a given baseline. Outside pure
exploration, in the regret minimization setting, conservative
exploration (Wu et al. 2016) enforces the anytime average
performance to be not too far worse than that of a baseline
arm.

In our work, the baseline is unknown – it is the current
recommender system – and the other “arms” are other users’
policies. The goal is to make the decision as to whether
an arm is better than the baseline, while not deteriorating
performance compared to the baseline. We thus combine
pure exploration and conservative constraints.

Existing work on fairness in exploration/exploitation
(Joseph et al. 2016; Jabbari et al. 2017; Liu et al. 2017) is
different from ours because unrelated to personalization.

Fair allocation Envy-freeness was first studied in fair allo-
cation (Foley 1967) in social choice. Our setting is different
because: a) the same item can be given to an unrestricted
number of users, and b) true user preferences are unknown.

3 Envy-Free Recommendations
3.1 Framework
There are M users, and we identify the set of users with
[M ] = {1, . . . ,M}. A personalized recommender system
has one stochastic recommendation policy πm per user m.
We denote by πm(a|x) the probability of recommending item
a ∈ A for user m ∈ [M ] in context x ∈ X . We assume that
X andA are finite to simplify notation, but this has no impact
on the results. We consider a synchronous setting where at
each time step t, the recommender system observes a context
xm
t ∼ qm for each user, selects an item amt ∼ πm(.|xm

t )
and observes reward rmt ∼ νm(amt |xm

t ) ∈ [0, 1]. We denote
by ρm(a|x) the expected reward for user m and item a in
context x, and, for any recommendation policy π, um(π) is
the utility of m for π:

um(π) = Ex∼qmEa∼π(.|x)Er∼νm(a|x) [r]

=
∑
x∈X

∑
a∈A

qm(x)π(a|x)ρm(a|x) (1)

We assume that the environment is stationary: the context
and reward distributions qm and νm, as well as the policies
πm are fixed. Even though in practice policies evolve as
they learn from user interactions and user needs change over
time, we leave the study of non-stationarities for future work.
The stationary assumption approximately holds when these
changes are slow compared to the time horizon of the audit,
which is reasonable when significant changes in user needs
or recommendation policies take e.g., weeks. Our approach
applies when items a are single products as well as when
items are structured objects such as rankings. Examples of
(context x, item a) pairs include: x is a query to a search
engine and a is a document or a ranking of documents, or x
is a song chosen by the user and a a song to play next or an
entire playlist. Remember, our goal is not to learn the user
policies πm, but rather to audit existing πms for fairness.

3.2 ϵ-Envy-Free Recommendations
Existing audits for user-side fairness in recommender systems
are based on two main criteria:
1. recommendation parity: the distribution of recommended

items should be equal across (groups of) users,
2. equal user utility: all (groups of) users should receive the

same utility, i.e. ∀m,n, um(πm) = un(πn).
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There are two ways in which these criteria conflict with the
goal of personalized recommender systems to best accomo-
date user preferences. First, recommendation parity does not
control for disparities that are aligned with user preferences.
Second, equal user utility drives utility down as soon as users
have different best achievable utilities. To address these short-
falls, we propose envy-freeness as a complementary diagno-
sis for the fairness assessment of personalized recommender
systems. In this context, envy-freeness requires that users
prefer their recommendations to those of any other user:

Definition 3.1. Let ϵ≥0. A recommender system is ϵ-envy-
free if: ∀m,n ∈ [M ] : um(πn) ≤ ϵ+ um(πm).

Envy-freeness, originally studied in fair allocation (Foley
1967) and more recently fair classification (Balcan et al. 2018;
Ustun et al. 2019; Kim et al. 2019), stipulates that it is fair
to apply different policies to different individuals or groups
as long as it benefits everyone. Following this principle, we
consider the personalization of recommendations as fair only
if it better accommodates individuals’ preferences. In con-
trast, we consider unfair the failure to give users a better
recommendation when one such is available to others.

Unlike parity or equal utility, envy-freeness is in line with
giving users their most preferred recommendations (see Sec.
3.3). Another improvement from equal user utility is that it
does not involve interpersonal utility comparisons.

Envy can arise from a variety of sources, for which we
provide concrete examples in our experiments (Sec. 5.1).
Remark. We discuss an immediate extension of envy-freeness
from individuals to groups of users in the extended version, in
the special case where groups have homogeneous preferences
and policies. Defining group envy-free recommendations in
the general case is nontrivial and left for future work.

3.3 Compatibility of Envy-Freeness
Optimal recommendations are envy-free1 Let πm,∗ ∈
argmaxπ u

m(π) denote an optimal recommendation policy
for m. Then the optimal recommender system (πm,∗)m∈M

is envy-free since: um(πm,∗) = maxπ u
m(π) ≥ um(πn,∗).

In contrast, achieving equal user utility in general can only
be achieved by decreasing the utility of best-served users for
the benefit of no one. It is also well-known that achieving
parity in general requires to deviate from optimal predictions
(Barocas, Hardt, and Narayanan 2019).

Envy-freeness vs. item-side fairness Envy-freeness is
a user-centric notion. Towards multisided fairness (Burke
2017), we analyze the compatibility of envy-freeness with
item-side fairness criteria for rankings from Singh and
Joachims (2018), based on sensitive categories of items (de-
notedA1, ...,AS). Parity of exposure prescribes that for each
user, the exposure of an item category should be proportional
to the number of items in that category. In Equity of expo-
sure2, the exposure of item categories should be proportional

1The extended version of the paper shows the difference between
envy-freeness and optimality certificates.

2Singh and Joachims (2018) use the terminology of demographic
parity (resp. disparate treatment) for what we call parity (resp. eq-
uity) of exposure. Our use of “equity” follows Biega et al. (2018).

to their average relevance to the user.
The optimal policies under parity and equity of expo-

sure constraints, denoted respectively by (πm,par)Mm=1 and
(πm,eq)Mm=1, are defined given user m and context x as:

(parity) πm,par(.|x) = argmax
p:A→[0,1]∑

a p(a)=1

∑
a∈A

p(a)ρm(a|x)

u.c. ∀s ∈ [S],
∑
a∈As

p(a) =
|As|
|A|

. (2)

Optimal policies under equity of exposure are defined simi-

larly3, but the constraints are ∀s,
∑

a∈As

p(a) =

∑
a∈As

ρm(a|x)∑
a∈A

ρm(a|x) .

We show their relation to envy-freeness:

Proposition 1. With the above notation:

• the policies (πm,par)Mm=1 are envy-free, while
• the policies (πm,eq)Mm=1 are not envy-free in general.

Optimal recommendations under parity of exposure are
envy-free because the parity constraint (2) is the same for
all users. Given two users m and n, πm,par is optimal for m
under (2) and πn,par satisfies the same constraint, so we have
um(πm,par) ≥ um(πn,par).

In contrast, the optimal recommendations under equity
of exposure are, in general, not envy-free. A first reason
is that less relevant item categories reduce the exposure of
more relevant categories: a user who prefers item a but who
also likes item b from another category envies a user who
only liked item is a. Note that amortized versions of the
criterion and other variants considering constraint averages
over user/contexts (Biega et al. 2018; Patro et al. 2020) have
similar pitfalls unless envy-freeness is explictly enforced, as
in Patro et al. (2020) who developed an envy-free algorithm
assuming the true preferences are known.

3.4 Probabilistic Relaxation of Envy-Freeness
Envy-freeness, as defined in Sec. 3.2, (a) compares the rec-
ommendations of a target user to those of all other users, and
(b) these comparisons must be made for all users. In practice,
as we show, this means that the sample complexity of the
audit increases with the number of users, and that all users
must be part of the audit.

In practice, it is likely sufficient to relax both conditions
on all users to give a guarantee for most recommendation
policies and most users. Given two small probabilities λ and
γ, the relaxed criterion we propose requires that for at least
1−λ fraction of users, the utility of users for their own policy
is in the top-γ% of their utilities for anyone else’s policy. The
formal definition is given below. The fundamental observa-
tion, which we prove in Th. 2 in Sec. 4.5, is that the sample
complexity of the audit and the number of users impacted
by the audit are now independent on the total number of

3The original criterion (Singh and Joachims 2018, Eq. 4) would
be written in our case as ∀s, s′ ∈ [S], 1

|As|
∑

a∈As
p(a) =

1
|As′ |

∑
a∈As′

p(a), which is equivalent to (2). A similar remark
holds for the equity constraint.
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Figure 1: Auditing scenario: the auditor either shows the user
their recommendation in the current rec. system, or explores
by showing the recommendation given to another user.

users. We believe that these relaxed criteria are thus likely to
encourage the deployment of envy-free audits in practice.

Definition 3.2. Let ϵ, γ, λ≥ 0. Let UM denote the discrete
uniform distribution over [M ]. A user m is (ϵ, γ)-envious if:

Pn∼UM

[
um(πm) + ϵ < um(πn)

]
> γ.

A recommender system is (ϵ, γ, λ)-envy-free if at least a
(1− λ) fraction of its users are not (ϵ, γ)-envious.

4 Certifying Envy-Freeness
4.1 Auditing Scenario
The envy-freeness auditor must answer the counterfactual
question: “had user m been given the recommendations of
user n, would m get higher utility?”. The main challenge
is that the answer requires to access to user preferences,
which are only partially observed since users only interact
with recommended items. There is thus a need for an active
exploration process that recommends items which would not
have been recommended otherwise.

To make such an exploration possible, we consider the
following auditing scenario: at each time step t, the auditor
chooses to either (a) give the user a “normal” recommenda-
tion, or (b) explore user preferences by giving the user a rec-
ommendation from another user (see Fig. 1) . This scenario
has the advantage of lightweight infrastructure requirements,
since the auditor only needs to query another user’s policy,
rather than implementing a full recommender system within
the operational constraints of the platform. Moreover, this in-
terface is sufficient to estimate envy because envy is defined
based on the performance of other user’s policies. This type
of internal audit (Raji et al. 2020) requires more access than
usual external audits that focus on recommendation parity,
but this is necessary to explore user preferences.

We note that the auditor must make sure that this approach
follows the relevant ethical standard for randomized experi-
ments in the context of the audited system. The auditor must
also check that using other users’ recommendation policies
does not pose privacy problems. From now on, we assume
these issues have been resolved.

4.2 The Equivalent Bandit Problem
We now cast the audit for envy-freeness as a new variant of
pure exploration bandit problems. We first focus on auditing
envy for a single target user and define the corresponding
objectives, then we present our auditing algorithm. Finally
we specify how to use it for the certification of either the
exact or probabilistic envy-freeness criteria.

Algorithm 1: OCEF algorithm. ξt (line 4) evaluates the
conservative exploration constraint and is defined in (4).

input :Confidence parameter δ, conservative exploration
parameter α, envy parameter ϵ

output :envy or ϵ−no-envy
1 S0 ← [K] // all arms except 0
2 for t=1, . . . do
3 Choose ℓt from St−1 // e.g., unif.sample
4 if β0(t−1)> min

k∈St−1

βk(t−1) or ξt<0 then kt ← 0

5 else kt ← ℓt
6 Observe context xt ∼ q, show at ∼ πkt(.|xt) and

observe rt ∼ ν(at|xt) // i.e., pull arm kt
and update conf.intervals with Lem.??

7 St ←
{
k ∈ St−1 : µk(t) > µ

0
(t) + ϵ

}
8 if ∃k ∈ St, µk

(t) > µ0(t) then return envy
9 if St = ∅ then return ϵ-no-envy

10 end

For a target user m, the auditor must estimate whether
um(πm) + ϵ ≥ um(πn), for n in a subset {n1, ..., nK} of
K users from [M ] (where K is specified later, depending
on the criterion). As we first focus on auditing envy for
one target user m, we drop all superscripts m to simplify
notation. We identify {n1, ..., nK} with [K] and rename(
um(πn1), ..., um(πnK )

)
as (µ1, ..., µK). To estimate µk,

we obtain samples by making recommendations using the
policy πk and observing the reward. The remaining challenge
is to choose which user k to sample at each time step while
not deteriorating the experience of the target user too much.
Index 0 represents the target user: we use µ0 for the utility
of the user for their policy (i.e., um(πm)). Because the audit
is a special form of bandit problem, following the bandit
literature, an index of a user is called an arm, and arm 0 is
the baseline.

Objectives and evaluation metrics We present our algo-
rithm OCEF (Online Certification of Envy-Freeness) in the
next subsection. Given ϵ > 0 and α ≥ 0, OCEF returns either
envy or ϵ-no-envy and has two objectives:

1. Correctness: if OCEF returns envy, then ∃k, µk > µ0. If
OCEF returns ϵ-no-envy then max

k∈[K]
µk ≤ µ0 + ϵ.

2. Recommendation performance: during the audit, OCEF
must maintain a fraction 1−α of the baseline performance.
Denoting by ks ∈ {0, . . . ,K} the arm (group index) cho-
sen at round s, this requirement is formalized as a conser-
vative exploration constraint (Wu et al. 2016):

∀t, 1
t

t∑
s=1

µks ≥ (1− α)µ0 . (3)

We focus on the fixed confidence setting, where given
a confidence parameter δ ∈ (0, 1) the algorithm provably
satisfies both objectives with probability 1− δ. In addition,
there are two criteria to assess an online auditing algorithm:
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1. Duration of the audit: the number of time-steps before the
algorithm stops.

2. Cost of the audit: the cumulative loss of rewards incurred.
Denoting the duration by τ , the cost is τµ0 −

∑τ
s=1 µks

.
It is possible that the cost is negative when there is envy.
In that case, the audit increased recommendation perfor-
mance by finding better recommendations for the group.

We note the asymmetry in the return statements of the al-
gorithm: envy does not depend on ϵ. This asymmetry is
necessary to obtain finite worst-case bounds on the duration
and the cost of audit, as we see in Theorem 1.

Our setting had not yet been addressed by the pure explo-
ration bandit literature, which mainly studies the identifica-
tion of (ϵ-)optimal arms (Audibert, Bubeck, and Munos 2010).
Auditing for envy-freeness requires proper strategies in order
to efficiently estimate the arm performances compared to the
unknown baseline. Additionally, by making the cost of the au-
dit a primary evaluation criterion, we also bring the principle
of conservative exploration to the pure exploration setting,
while it had only been studied in regret minimization (Wu
et al. 2016). In our setting, conservative constraints involve
nontrivial trade-offs between the duration and cost of the
audit. We now present the algorithm, and then the theoretical
guarantees for the objectives and evaluation measures.

4.3 The OCEF Algorithm
OCEF is described in Alg. 1. It maintains confidence inter-
vals on arm performances (µk)

K
k=0. Given the confidence

parameter δ, the lower and upper bounds on µk at time step
t, denoted by µ

k
(t) and µk(t), are chosen so that with prob-

ability at least 1 − δ, we have ∀k, t, µk ∈ [µ
k
(t), µk(t)]. In

the algorithm, βk(t) = (µk(t)−µ
k
(t))/2. As Jamieson et al.

(2014), we use anytime bounds inspired by the law of the
iterated logarithm. These are given in Lemma 4 of the full
version of this paper.

OCEF maintains an active set St of all arms in [K] (i.e.,
excluding the baseline) whose performance are not confi-
dently less than µ0 + ϵ. It is initialized to S0 = [K] (line
1). At each round t, the algorithm selects an arm ℓt ∈ St

(line 3). Then, depending on the state of the conservative ex-
ploration constraint (described later), the algorithm pulls kt,
which is either ℓt or the baseline (lines 4-6). After observing
the reward rt, the confidence interval of µℓt is updated, and
all active arms that are confidently worse than the baseline
plus ϵ are de-activated (line 7). The algorithm returns envy
if an arm k is confidently better than the baseline (line 8),
returns ϵ-no-envy if there are no more active arms, (line 9)
or continues if neither of these conditions are met.

Conservative exploration To deal with the conserva-
tive exploration constraint (3), we follow (Garcelon et al.
2020). Denoting At = {s ≤ t : ks ̸= 0} the time
steps at which the baseline was not pulled, we maintain
a confidence interval such that with probability ≥ 1 − δ,
we have ∀t > 0,

∣∣∑
s∈At

(µks − rs)
∣∣ ≤ Φ(t), where

Φ(t) = min
(∑K

k=1 βk(t− 1)Nk(t− 1), ϕ(t)
)

and ϕ(t) =

σ
√

2|At−1| log
( 6|At−1|2

δ

)
+ 2

3 log
( 6|At−1|2

δ

)
.

This confidence interval is used to estimate whether the
conservative constraint (3) is met at round t as follows.
First, let us denote by Nk(t) the number of times arm k
has been pulled until t, and notice that (3) is equivalent to∑

s∈At
µks
− ((1− α)t−N0(t))µ0 ≥ 0. After choosing ℓt

(line 3), we use the lower bound on
∑

s∈At
µks and the upper

bound for µ0 to obtain a conservative estimate of (3). Using
τ = t− 1, this leads to:

ξt =
∑
s∈Aτ

rs − Φ(t) + µ
ℓt
(τ) + (N0(τ)− (1− α)t)µ0(τ) . (4)

Then, as long as the confidence intervals hold, pulling ℓt
does not break the constraint (3) if ξt ≥ 0. The algorithm
thus pulls the baseline arm when ξt < 0. To simplify the
theoretical analysis, OCEF also pulls the baseline if it does
not have the tightest confidence interval (lines 4-6).

4.4 Analysis
The main theoretical result of the paper is the following:
Theorem 1. Let ϵ ∈ (0, 1], α ∈ (0, 1], δ ∈ (0, 1

2 ) and ηk =

max(µk − µ0, µ0 + ϵ − µk) and hk = max(1, 1
ηk
). OCEF

achieves the following guarantees with probability ≥ 1− δ:
• OCEF is correct and satisfies the conservative constraint

on the recommendation performance (3).

• The duration is in O

( K∑
k=1

hk log
(K log(Khk/δηk)

δ

)
min(αµ0, ηk)

)
.

• The cost is in O

( ∑
k:µk<µ0

(µ0−µk)hk

ηk
log

(K log(Khk/δηk))
δ

))
.

The important problem-dependent quantity ηk is the gap
between the baseline and other arms k. It is asymmetric
depending on whether the arm is better than the baseline
(µk−µ0) or the converse (µ0−µk + ϵ) because the stopping
condition for envy does not depend on ϵ. This leads to a
worst case that only depends on ϵ, since ηk = max(µk −
µ0, µ0 − µk + ϵ) ≥ ϵ

2 , while if the condition was symmetric,
we would have possibly unbounded duration when µk = µ0+
ϵ for some k ̸= 0. Overall, ignoring log terms, we conclude
that when αµ0 is large, the duration is of order

∑
k

1
η2
k

and

the cost is of order
∑

k
1
ηk

. This becomes
∑

k
1

αµ0ηk
and∑

k
1
ηk

when αµ0 is small compared to ηk. This means that
the conservative constraint has an impact mostly when it is
strict. It also means that when either αµ0 ≪ ηk or η2k ≪ ηk
the cost can be small even when the duration is fairly high.

4.5 Full Audit
Exact criterion To audit for envy-freeness on the full sys-
tem, we apply OCEF to all M users simultaneously and with
K = M , meaning that the set of arms corresponds to all
the users’ policies. By the union bound, using δ′ = δ

M in-
stead of δ in OCEF’s confidence intervals, the guarantees of
Theorem 1 hold simultaneously for all users.

For recommender systems with large user databases, the
duration of OCEF thus becomes less manageable as M in-
creases. We show how to use OCEF to certify the probabilis-
tic criterion with guarantees that do not depend on M .
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Algorithm 2: AUDIT algorithm. The algorithm ei-
ther outputs a probabilistic certificate of (ϵ, γ, λ)-envy-
freeness, or evidence of envy.

input :Confidence parameter δ, conservative exploration
parameter α, envy parameters (ϵ, γ, λ)

output :(ϵ, γ, λ)-envy-free or not-envy-free
1 Draw a sample S̃ of M̃ =

⌈
log(3/δ)

λ

⌉
users from [M ]

2 for each user m ∈ S̃ in parallel do
3 Sample K =

⌈
log(3M̃/δ)

log(1/(1−γ))

⌉
arms from [M ] \ {m}

4 Run OCEF
(

δ
3M̃

, α, ϵ
)

for user m with the K arms
5 if OCEF outputs envy then

return not-envy-free
6 end
7 return (ϵ, γ, λ)-envy-free

Probabilistic criterion The AUDIT algorithm for auditing
the full recommender system is described in Alg. 2. AUDIT
samples a subset of users and a subset of arms for each sam-
pled user. Then it applies OCEF to each user simultaneously
with their sampled arms. It stops either upon finding an en-
vious user, or when all sampled users are certified with ϵ-no
envy. Again there is a necessary asymmetry in the return state-
ments of AUDIT to obtain finite worst-case bounds whether
or not the system is envy-free.

The number of target users M̃ and arms K in Alg. 2 are
chosen so that ϵ-envy-freeness w.r.t. the sampled users and
arms translates into (ϵ, γ, λ)-envy-freeness. Combining these
random approximation guarantees with Th. 1, we get:

Theorem 2. Let M̃ =
⌈
log(3/δ)

λ

⌉
and K =

⌈
log(3M̃/δ)

log(1/(1−γ))

⌉
.

With probability 1 − δ, AUDIT is correct, it satisfies the
conservative constraint (3) for all M̃ target users, and the
bounds on duration and cost from Th. 1 (using δ

3M̃
instead

of δ) are simultaneously valid.

Importantly, in contrast to naively using OCEF to compare
all users against all, the audit for the probabilistic relaxation
of envy-freeness only requires to query a constant number of
users and policies that does not depend on the total number
of users M . Therefore, the bounds on duration and cost are
also independent of M , which is a drastic improvement.

5 Experiments
We present experiments describing sources of envy (Sec.
5.1) and evaluating the auditing algorithm OCEF on two
recommendation tasks (Sec. 5.2).

We create a music recommendation task based on the
Last.fm dataset from Cantador et al. (2011), which contains
the music listening histories of 1.9k users. We select the
2500 items most listened to, and simulate ground truth user
preferences by filling in missing entries with a popular ma-
trix completion algorithm for implicit feedback data4. We

4Using the Python library Implicit: https://github.com/benfred/
implicit (MIT License).

Figure 2: Envy from model mispecification on MovieLens
and Lastfm: envy is high when the latent factor model is mis-
pecified, but it decreases as the number of factors increases.

also address movie recommendation with the MovieLens-1M
dataset (Harper and Konstan 2015), which contains ratings
of movies by real users, and from which we extract the top
2000 users and 2500 items with the most ratings. We binarize
ratings by setting those < 3 to zero, and as for Last.fm we
complete the matrix to generate ground truth preferences.

For both recommendation tasks, the simulated recom-
mender system estimates relevance scores using low-rank
matrix completion (Bell and Sejnowski 1995) on a train-
ing sample of 20% of the ground truth preferences, where
the rated / played items are sampled uniformly at random.
Recommendations are given by a fixed-temperature softmax
policy over the predicted scores. We generate binary rewards
using a Bernoulli distribution with expectation given by our
ground truth preferences.

5.1 Sources of Envy

We consider two measures of the degree of envy. Denoting
∆m = max( max

n∈[M ]
um(πn)− um(πm), 0), these are:

• the average envy experienced by users: 1
M

∑
m∈[M ]

∆m,

• the proportion of ϵ-envious users: 1
M

∑
m∈[M ]

1{∆m>ϵ}.

Envy from model mispecification We demonstrate that
envy arises from a standard recommendation model when the
modeling assumptions are too strong. We vary the number of
latent factors of the matrix completion model and evaluate a
softmax policy with inverse temperature set to 5. In Fig. 2,
with one latent factor we observe no envy. This is because all
users receive the same recommendations since matrix com-
pletion is then equivalent to a popularity-based recommender
system. With enough latent factors, preferences are properly
captured by the model and the degree of envy decreases. For
intermediate number of latent factors, envy is visible.

Envy from equal user utility We show that in contrast to
envy-freeness, enforcing equal user utility (EUU) degrades
user satisfaction and creates envy between users. We compute
optimal EUU policies and unconstrained optimal policies
(OPT) on the ground truth preferences of Last.fm and Movie-
Lens. Our results in Table 1 confirm the pitfalls of EUU,
while illustrating that OPT policies are always envy-free.
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Last.fm MovieLens
EUU OPT EUU OPT

Total utility 1552 1726 1671 1761
Average envy 0.10 0 0.04 0
Prop. 0.05-envious 0.61 0 0.13 0

Table 1: Optimal policies with equal user utility penalty
(EUU) vs. Unconstrained optimal policies (OPT), computed
on ground truth preferences: EUU deteriorates total utility
and creates envy between users.

Figure 3: Effect of the conservative exploration parameter α
on the duration and cost of auditing on Bandit experiments.

5.2 Evaluation of the Auditing Algorithm
Our goal is now to answer for OCEF: in practice, what is the
interplay between the required sample size per user, the cost
of exploration and the conservative exploration parameter?

Bandit experiments We first study the trade-off between
duration and cost of the audit on 4 bandit problems with
Bernoulli rewards and 10 arms. In Problem 1, the baseline is
the best arm and all other arms are equally bad. In Prob. 2,
arm 1 is best and all other arms are as bad as the baseline. In
Prob.3 the baseline is best and the means of arms from best
to worst decrease rapidly. Prob. 4 uses the same means as
Prob. 3, but the means of the baseline and arm 1 are swapped,
making the baseline second-to-best. We set δ = ϵ = 0.05
and report results averaged over 100 trials.

Figure 3 plots the duration and the cost of exploration as a
function of the conservative constraint parameter α (smaller
α means more conservative). The curves show that for Prob-
lems 2, 3, and 4, duration is minimal for a non-trivial α. This
is because when α is large, all arms are pulled as much as
the baseline, so their confidence intervals are similar. When
α decreases, the baseline is pulled more, which reduces the
length of the relevant confidence intervals β0(t) + βk(t) for
all arms k. This, in turn, shortens the audit because non-
baseline arms are more rapidly discarded or declared better.
When α becomes too small, however, the additional pulls
of the baseline have no effect on β0(t) + βk(t) because it
is dominated by βk(t), so the duration only increases. This
subtle phenomenon is not captured by our analysis (Th. 1),
because the ratios β0(t)/βk(t) are difficult to track formally.

The sign of the cost of exploration depends on whether
there is envy. In Prob. 2 where the baseline has the worst per-
formance, exploration is beneficial to the user and so the cost
is negative. On all other instances however, the cost is posi-

Figure 4: Scaling w.r.t. α on MovieLens (ML) and Last.fm,
for recommender systems that are either envy-free (EF) or
with envy. There are 41 target users and 75 arms.

tive. The cost of exploration is closest to 0 when α becomes
small because then β0(t) + βk(t) is the smallest possible for
a given number of pulls of k. For instance, in Prob. 4, the
cost is close to 0 when α is very small and increases with
α. It is the case where the baseline is not the best arm but is
close to it, and there are many bad arms. When the algorithm
is very conservative, bad arms are discarded rapidly thanks
to the good estimation of the baseline performance. In this
“low-cost” regime however, the audit is significantly longer.

MovieLens and Last.fm experiments We now evaluate
the certification of the (absence of) envy of recommendation
policies on MovieLens (ML) and Last.fm. We consider two
recommendation policies which are softmax functions over
predicted relevance scores with inverse temperature set to
either 5 or 10. These scores were obtained by matrix com-
pletion with 48 latent factors. On both datasets, with inverse
temperature equal to 5, the softmax recommender system is
envy-free, whereas there is envy when it is set to 10. We use
AUDIT with OCEF to certify the probabilistic criterion. The
envy parameters are set to ϵ = δ = 0.05 and λ = γ = 0.1,
therefore we have M̃ = 41 target users and K = 75 arms,
independently on the number of users in each dataset.

The results of applying OCEF on each dataset (ML or
Last.fm) with each policy (envy-free or with envy) are shown
in Fig. 4. For the (ϵ, γ, λ)-envy-free policies, results are aver-
aged over 20 trials and over all the non-(ϵ, γ)-envious users,
whereas when there is envy, results are averaged over the
target users who are ϵ-envious. We observe clear tendencies
similar to those of the previous section, although the exact
sweet spots in terms of α depends on the specific configura-
tion. In particular, on envy-free configurations, the cost of the
audit is positive and grows when relaxing the conservative
constraint, while it is negative and decreasing with α when
there is envy.

6 Conclusion
We proposed the audit of recommender systems for user-side
fairness with the criterion of envy-freeness. The auditing
problem requires an explicit exploration of user preferences,
which leads to a formulation as a bandit problem with conser-
vative constraints. We presented an algorithm for this problem
and analyzed its performance experimentally.
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