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Abstract
Inspired by the extensive success of deep learning, graph
neural networks (GNNs) have been proposed to learn ex-
pressive node representations and demonstrated promising
performance in various graph learning tasks. However, exist-
ing endeavors predominately focus on the conventional semi-
supervised setting where relatively abundant gold-labeled
nodes are provided. While it is often impractical due to the
fact that data labeling is unbearably laborious and requires
intensive domain knowledge, especially when considering the
heterogeneity of graph-structured data. Under the few-shot
semi-supervised setting, the performance of most of the ex-
isting GNNs is inevitably undermined by the overfitting and
oversmoothing issues, largely owing to the shortage of la-
beled data. In this paper, we propose a decoupled network
architecture equipped with a novel meta-learning algorithm to
solve this problem. In essence, our framework Meta-PN infers
high-quality pseudo labels on unlabeled nodes via a meta-
learned label propagation strategy, which effectively augments
the scarce labeled data while enabling large receptive fields
during training. Extensive experiments demonstrate that our
approach offers easy and substantial performance gains com-
pared to existing techniques on various benchmark datasets.
The implementation and extended manuscript of this work are
publicly available at https://github.com/kaize0409/Meta-PN.

1 Introduction
Graphs serve as a common language for modeling a plethora
of structured and relational systems, ranging from social
networks (Zafarani, Abbasi, and Liu 2014) to citation net-
works (Namata et al. 2012), to molecular graphs (Klicpera,
Groß, and Günnemann 2019). To ingest the rich information
encoded in graph-structured data, it is of paramount impor-
tance to learn expressive node representations by modeling
the information from both node attributes and graph topology.
Among numerous endeavors in the graph machine learning
(Graph ML) community, graph neural networks (GNNs) have
received significant attention due to their effectiveness and
scalability (Kipf and Welling 2017; Veličković et al. 2018;
Hamilton, Ying, and Leskovec 2017).

In general, most of the prevailing GNNs adopt the message-
passing scheme to learn the representation of a node by it-
eratively transforming, and propagating/aggregating node
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features from its local neighborhoods. Along with this idea,
different designs of GNN architectures have been proposed,
including graph convolutional networks (GCNs) (Kipf and
Welling 2017; Defferrard, Bresson, and Vandergheynst 2016),
graph attention networks (GAT) (Veličković et al. 2018;
Wang et al. 2019) and many others (Hamilton, Ying, and
Leskovec 2017; Xu et al. 2019; Klicpera, Bojchevski, and
Günnemann 2019; Wu et al. 2019; Chen et al. 2020). De-
spite their promising results, existing GNNs developed for
semi-supervised node classification predominantly assume
that the provided gold-labeled nodes are relatively abundant.
This assumption is often impractical as data labeling requires
intensive domain knowledge, especially when considering
the heterogeneity of graph-structured data (Yao et al. 2020;
Ding et al. 2020). When only few labeled nodes per class
are available, how to improve the expressive power of Graph
ML models for tackling the few-shot semi-supervised node
classification problem remains understudied and meanwhile
requires urgent research efforts.

However, it is a non-trivial and challenging task mainly
because of two reasons: (i) oversmoothing and overfitting.
In general, most of the existing GNNs are designed with
shallow architecture with restricted receptive fields, thereby
restricting the efficient propagation of label information (Li,
Han, and Wu 2018). In order to propagate the label signals
more broadly, larger receptive fields of GNNs, i.e., the num-
ber of layers, are particularly desirable (Klicpera, Bojchevski,
and Günnemann 2019). Due to the entanglement of represen-
tation transformation and propagation in each layer, GNNs
will face the oversmoothing issue when increasing the model
depth (Liu, Gao, and Ji 2020), which in turn renders the
learned node representations inseparable. In the meantime,
when training with few labeled nodes, an over-parametric
deep GNN model tends to overfit and goes timber easily;
(ii) no auxiliary knowledge. Though previous works pro-
posed for graph few-shot learning (Ding et al. 2020) or cross-
network transfer learning (Yao et al. 2020) also focus on
related low-resource scenarios, their key enabler lies in trans-
ferring knowledge from either label-rich node classes or other
similar networks. Nonetheless, such auxiliary knowledge is
commonly not accessible, making those methods practically
infeasible to be applied to few-shot semi-supervised learn-
ing. As suggested by previous research, pseudo-labeling (Li,
Han, and Wu 2018; Sun, Lin, and Zhu 2020; Ding et al.
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2022) is commonly beneficial to solve semi-supervised learn-
ing, whereas inaccurate pseudo labels may instead lead to
abysmal failure. Hence, how to infer accurate pseudo labels
on unlabeled nodes plays a pivotal role to solve the studied
research problem.

To address the aforementioned challenges, we propose a
new graph meta-learning framework, Meta Propagation Net-
works (Meta-PN), which goes beyond the canonical message-
passing scheme of GNNs and learns expressive node repre-
sentations in a more label-efficient way. Specifically, Meta-
PN is built with two simple neural networks, i.e., adaptive
label propagator and feature-label transformer, which inher-
ently decouples the entangled propagation and transformation
steps of GNNs, thereby allowing sufficient propagation of
label signals without suffering the oversmoothing issue. At its
core, the adaptive label propagator is meta-learned to adjust
its propagation strategy for inferring accurate pseudo labels
on unlabeled nodes, according to the feedback (i.e., the per-
formance change on the gold-labeled nodes) from the target
model feature-label transformer. This way the generated soft
pseudo labels not only capture informative local and global
structure information, but more importantly, have aligned
data usage with the gold-labeled nodes. Optimizing with our
proposed meta-learning algorithm, those two decoupled net-
works are able to reinforce each other synergistically. As a
result, the target model assimilates the encoded knowledge
of pseudo-labeled nodes and offers excellent performance for
the semi-supervised node classification problem even if only
few labeled nodes are available. In summary, the contribu-
tions of our work are as follows:

• We study the problem of semi-supervised node classifi-
cation under the few-shot setting, which remains largely
under-studied in the Graph ML community.

• We propose a simple yet effective graph meta-learning
framework Meta-PN to solve the studied problem. The
essential idea is to augment the limited labeled data via a
meta-learned label propagation strategy.

• We conduct comprehensive evaluations on different graph
benchmark datasets to corroborate the effectiveness of
Meta-PN. The results show its superiority over the state-
of-the-arts on semi-supervised node classification, espe-
cially under the low-resource setting.

2 Related Work
Graph Neural Networks. Graph neural networks (GNNs), a
family of neural models for learning latent node representa-
tions in a graph, have achieved gratifying success in different
graph learning tasks (Defferrard, Bresson, and Vandergheynst
2016; Kipf and Welling 2017). Originally inspired by graph
spectral theory, spectral-based graph convolutional networks
(GCNs) (Defferrard, Bresson, and Vandergheynst 2016; Kipf
and Welling 2017; Wu et al. 2019) extend the convolution op-
eration in the spectral domain to network representation learn-
ing. Among them, the model proposed by Kipf et al. (Kipf
and Welling 2017) has become the most prevailing one by
using a linear filter. Afterwards, spatial-based graph neural
networks that follow the message-passing scheme have been
extensively investigated (Hamilton, Ying, and Leskovec 2017;

Veličković et al. 2018; Xu et al. 2019). Those methods follow
the homophily principle (McPherson, Smith-Lovin, and Cook
2001) and learn node representations by iteratively transform-
ing, and propagating/aggregating node features within graph
neighborhoods. For example, GAT (Veličković et al. 2018)
and GraphSAGE (Hamilton, Ying, and Leskovec 2017) adopt
different strategies to specify fine-grained weights on neigh-
bors when aggregating neighborhood information of a node.
Deep Graph Neural Networks. Despite the success of
GNNs, the notorious over-smoothing issue can largely un-
dermine the model performance when increasing the model
depth. To counter this, researchers also try to increase the
message-passing range or receptive fields of GNNs by propos-
ing different techniques, such as adding advanced normaliza-
tions (Zhao and Akoglu 2019; Li et al. 2019a), decoupling the
feature transformation and propagation steps (Wu et al. 2019;
Klicpera, Bojchevski, and Günnemann 2019; Liu, Gao, and
Ji 2020; Dong et al. 2021) and many others (Li, Han, and Wu
2018; Xu et al. 2018). In particular, decoupled graph neural
networks have become a prevailing paradigm in the commu-
nity due to their simplicity and learning efficiency (Klicpera,
Bojchevski, and Günnemann 2019; Dong et al. 2021; Chien
et al. 2021). For example, APPNP (Klicpera, Bojchevski, and
Günnemann 2019) propagates the neural predictions via per-
sonalized PageRank, which can preserve the node’s local in-
formation while increasing the receptive fields. DAGNN (Liu,
Gao, and Ji 2020) decouples the propagation and transforma-
tion steps and then utilizes an adaptive adjustment mechanism
to balance the information from local and global neighbor-
hoods of each node. However, these deep GNNs are not
specifically developed to tackle the low-resource settings,
especially when only very few labels are available.
Graph Learning with Few Labels. For real-world graph
learning tasks, the amount of gold-labeled samples is usually
quite limited due to the expensive labeling cost. To improve
the GNN model performance on the node classes with only
few labeled nodes, graph few-shot learning (Zhou et al. 2019;
Ding et al. 2020; Wang et al. 2020) and cross-network trans-
fer learning (Yao et al. 2020; Ding et al. 2021) have been
proposed to transfer the knowledge from other auxiliary data
source(s). Nonetheless, for the problem of few-shot semi-
supervised node classification, such auxiliary datasets are
commonly not allowed to use. As another line of related work,
Li et al. (Li, Han, and Wu 2018) combined GCNs and self-
training to expand supervision signals, while M3S (Sun, Lin,
and Zhu 2020) advances this idea by utilizing the clustering
method to eliminate the inaccurate pseudo labels. However,
those methods cannot directly address the oversmoothing
issue and may suffer from inaccurate pseudo labels. By con-
ducting meta-learning on top of a decoupled design, our ap-
proach Meta-PN achieves superior performance on few-shot
semi-supervised node classification.

3 Proposed Approach
We first introduce the notations used throughout this paper.
Let G = (V, E) denote an undirected graph with nodes V and
edges E . VL and VU stand for labeled and unlabeled node
set, respectively. Let n denote the number of nodes and m
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Figure 1: Illustration of our Meta-PN framework. The adaptive label propagator propagates known labels to unlabeled nodes
and the feature-label transformer transforms the features of each node to a soft label vector. Specifically, the adaptive label
propagator is meta-learned to adjust its label propagation strategy to infer accurate pseudo labels on unlabeled nodes, according
to the feature-label transformer’s performance change on the labeled nodes. We omit the node features for simplicity.

the number of edges. The nodes in G are described by the
attribute matrix X ∈ Rn×f , where f denotes the number
of features per node. The graph structure of G is described
by the adjacent matrix A ∈ {0, 1}n×n, while Ã stands for
the adjacency matrix for a graph with added self-loops. We
let D and D̃ be the diagonal degree matrix of A and Ã,
respectively. Moreover, Ãsym = D̃− 1

2 ÃD̃− 1
2 denote the

symmetric normalized adjacency matrix with self-loops. The
class (or label) matrix is represented by Y ∈ Rn×c, where c
denotes the number of classes.

3.1 Architecture Overview
For solving the problem of few-shot semi-supervised node
classification, we propose a new framework Meta Label Prop-
agation (Meta-PN), which is built with two simple neural
networks, i.e., adaptive label propagator and feature-label
transformer. By decoupling the propagation and transfor-
mation steps with two independent networks, such a design
inherently allows large receptive fields without suffering per-
formance deterioration. Upon our proposed meta-learning al-
gorithm, the meta learner – adaptive label propagator learns
to adjust its propagation strategy for inferring accurate pseudo
labels on unlabeled nodes, by using the feedback from the
target model. Meanwhile, the target model – feature-label
transformer assimilates both the structure and feature knowl-
edge from pseudo-labeled nodes, therefore addressing the
challenges behind few-shot semi-supervised learning. Specif-
ically, we introduce the architecture details as follows:

Adaptive Label Propagator (Meta Learner). In order to
enable broader propagation of label signals, we propose to
adopt the idea of label propagation (LP) (Zhu and Ghahra-
mani 2002) to encode informative local and global structural
information. Similar to the message-passing scheme adopted
by many GNNs, label propagation follows the principle of
Homophily (McPherson, Smith-Lovin, and Cook 2001) that
indicates two connected nodes tend to be similar (share same
labels). Specifically, the objective of LP is to find a prediction

matrix Ŷ ∈ Rn×c that agrees with the label matrix Y while
being smooth on the graph such that nearby vertices have
similar soft labels (Zhou et al. 2004). Generally, the solution
can be approximated via the iteration as follows:

Ŷ = Y(K),Y(k+1) = TY(k), (1)

where Y(0) = Y and K denotes the number of power itera-
tion (propagation) steps. The transition matrix is denoted by
T, which can be set as any form of normalized adjacency ma-
trix (e.g., Ãsym). After K iterations of label propagation, the
predicted soft label matrix Ŷ can capture the prior knowledge
of neighborhood label distribution up to K hops away.

In practice, various propagation schemes can be adopted
for LP, such as the Personalized PageRank (Klicpera, Bo-
jchevski, and Günnemann 2019) where Y(k+1) = (1 −
α)TY(k) + αY(0). With appropriate teleport probability
α, the smoothed labels can avoid losing the focus on lo-
cal neighborhood even using infinitely many propagation
steps (Klicpera, Bojchevski, and Günnemann 2019). How-
ever, most of the existing LP algorithms cannot adaptively
balance the label information from different neighborhoods
for each node, which largely restricts the model expressive
power when learning with complex real-world graphs.

To counter this issue, we build an adaptive label propa-
gator gϕ(·) parameterized with ϕ, which is able to adjust
the contribution of different propagation steps for comput-
ing the smoothed label vector of one node. Specifically, the
propagation strategy can be formulated as:

Ŷi,: =

K∑
k=0

γikY
(k)
i,: ,Y

(k+1) = TY(k), (2)

where γik denotes the influence from k-hop neighborhood
for node vi and can be computed by the attention mechanism:

γik =
exp

(
aTReLU

(
WY

(k)
i,:

))
∑K

k′=0 exp
(
aTReLU

(
WY

(k′)
i,:

)) , (3)
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where a ∈ Rc is the attention vector and W ∈ Rc×c is
a weight matrix. By setting the attention vector and weight
matrix as learnable parameters, the adaptive label propagator
acquire the capability of adjusting its propagation strategy
for each node and the final smoothed labels can capture rich
structure information of the input graph.

Feature-label Transformer (Target Model). After encod-
ing the structure knowledge into the smoothed label matrix
Ŷ, we then build a feature-label transformer fθ(·) that trans-
forms node features to node label, in order to further cap-
ture feature-based graph information. For each node vi, the
feature-label transformer parameterized with θ takes the
node feature vector Xi,: as input and predicts its node label
Pi,: by:

Pi,: = fθ(Xi,:), (4)

where fθ(·) is a multi-layer perceptron (MLP) followed by a
softmax function.

In order to learn the target model , i.e., feature-label trans-
former, we take the soft pseudo labels computed by the adap-
tive label propagator as “ground-truth”. Ideally, if the gen-
erated pseudo labels are of high quality, they can be used to
augment the insufficient labeled nodes to avoid overfitting
and improve the model generalization ability (Li, Han, and
Wu 2018). In the meantime, high-quality pseudo-labeled data
not only encodes the feature patterns of unlabeled nodes, but
also carries informative local and global structure knowledge,
which enables the target model to leverage larger receptive
fields without suffering from performance degradation. As
a result, the feature-label transformer can achieve excellent
performance on the problem of few-shot semi-supervised
node classification.

It is worth mentioning that, the target model trained with
meaningful pseudo labels can be considered as a special
variant of GCN, which allows far more propagation steps
with much fewer parameters. Due to the space limit, we
attach the detailed proof in our extended version.

Learning to Propagate. One key challenge of our ap-
proach lies in how to learn a better label propagation strat-
egy for generating pseudo labels on unlabeled nodes. If the
pseudo labels are inaccurate, the target model may easily
overfit to mislabeled nodes and encounter severe performance
degradation (Ren et al. 2018). This issue is also known as the
problem of confirmation bias in pseudo-labeling (Arazo et al.
2020). While inferring accurate pseudo labels by recursively
selecting a subset of samples, re-training the prediction model
will be too expensive and unstable. Hence, without linking
the two networks in a principled way, it is almost infeasible
to enforce the adaptive label propagator to infer meaningful
label propagation strategy for improving the performance of
the feature-label transformer.

In this work, we propose to tackle this problem through
a unified meta-learning algorithm, allowing the model to
infer accurate pseudo labels for unlabeled nodes and learn a
better target model. In a sense, if the generated pseudo labels
are of high quality, their data utility should align with the
gold-labeled nodes. Accordingly, we can derive the following
meta-learning objective: optimal pseudo labels generated by

meta-learner should maximize target model’s performance
(minimize the classification loss) on the gold-labeled training
nodes. For each meta label propagation task, the goal is
to generate pseudo labels for a batch of unlabeled nodes
using the feedback of the target model (i.e., feature-label
transformer). By optimizing the adaptive label propagator
on a meta-level, it can adjust the label propagation strategy
to generate informative pseudo-labeled data.

3.2 Model Learning via Bi-level Optimization
The above meta-learning objective implies a bi-level opti-
mization problem with ϕ as the outer-loop parameters and θ
as the inner-loop parameters. This problem shares the same
formulation with many meta-learning algorithms that have
been proposed for solving different learning tasks such as
few-shot learning (Finn, Abbeel, and Levine 2017), hyper-
parameter optimization (Baydin et al. 2018), and neural archi-
tecture search (Liu, Simonyan, and Yang 2018). Specifically,
let L denote the cross-entropy loss for node classification,
and this bi-level optimization problem can be formulated as:

Outer loop:
ϕ∗ = argmin

ϕ
Evi∈VL [L(fθ∗(ϕ)(Xi,:),Yi,:)],

Inner loop:
θ∗(ϕ) = argmin

θ
Evi∈VU [L(fθ(Xi,:), gϕ(Y,A)i,:)].

(5)

The optimal solution of this bi-level optimization problem
can potentially train a highly discriminative feature-label
transformer with abundant pseudo-labeled data and only
a small set of gold-labeled data. However, deriving exact
solutions for this bi-level problem is indeed analytically in-
tractable and computationally expensive, owing to the fact
that it requires solving for the optimal θ∗(ϕ) whenever ϕ
gets updated. To approximate the optimal solution θ∗(ϕ), we
propose to take one step of gradient descent update for θ,
without solving the inner-loop optimization completely by
training until convergence. This way allows the optimization
algorithm to alternatively update the parameters of feature-
label transformer in the inner loop and the parameters of
adaptive label propagator in the outer loop:

Target Model (Inner-loop) Update. Given a batch of un-
labeled nodes from VU , we update the target model parame-
ters θ by taking their pseudo labels computed by the adap-
tive label propagator as ground-truth. For simplicity, we
use Jpseudo(θ,ϕ) to denote the inner-loop loss computed on
a batch of pseudo-labeled nodes. Assuming that parame-
ter θ is updated using the computed gradient descent on
Jpseudo(θ,ϕ), with a learning rate ηθ , then we have:

θ′ = θ − ηθ∇θJpseudo(θ,ϕ). (6)
Meta Learner (Outer-loop) Update. Note that the depen-
dency between ϕ and θ allows us to compute the meta-level
(outer-loop) loss using the gold-labeled nodes from VL. We
denote this loss by Jgold(θ

′(ϕ)) for the purpose of simplic-
ity, and back-propagate this loss to compute the gradient for
the feature-label transformer. Having the gradient, we can
update on the backward parameters ϕ with learning rate ηϕ:

ϕ′ = ϕ− ηϕ∇ϕJgold(θ
′(ϕ)). (7)
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Algorithm 1: The learning algorithm of Meta-PN.
Input: The input graph G = (V, E) with labeled node set

VL and unlabeled node set VU ; Batch size B
Output: The well-trained feature-label transformer

1 Initialize the parameters θ and ϕ
2 while not converge do
3 Randomly sample a batch of B unlabeled nodes
4 ▷ Pseudo Label Generation
5 Compute the pseudo labels for sampled nodes using the

adaptive label propagator gϕ(·)
6 ▷ Inner-loop Update for θ
7 Compute Jpseudo(θ,ϕ) using the generated pseudo

labeled nodes
8 Update parameters θ of the feature-label transformer

fθ(·) according to Eq. (6)
9 ▷ Outer-loop Update for ϕ

10 Compute Jgold(θ
′(ϕ)) on VL using the updated

feature-label transformer
11 Update parameters ϕ of the adaptive label propagator

gϕ(·) according to Eq. (7) and Eq. (8)

12 Fine-tune the feature-label transformer using VL.
13 return The well-trained feature-label transformer

To further compute the gradient of ϕ, we apply chain
rule to differentiate Jgold(θ

′(ϕ)) with respect to ϕ via θ′,
where θ′(ϕ) = θ − ηθ∇θJpseudo(θ,ϕ). The full derivation
is delegated to the Appendix of the extended version. Here,
we directly present the final result:

∇ϕJgold(θ
′(ϕ)) ≈ −ηϕ

2ϵ
[∇ϕJpseudo(θ

+,ϕ)−

∇ϕJpseudo(θ
−,ϕ)],

(8)

where θ± = θ ± ϵ∇θ′Jgold(θ
′(ϕ)), and ϵ is a small scalar

for finite difference approximation.
By alternating the update rules in Eq. (6) and Eq. (7),

we are able to progressively learn the two modules. The
complete meta-learning algorithm is shown in Algorithm 1.
Finally, as the feature-label transformer only learns from
unlabeled data with pseudo labels generated by the adaptive
label propagator, we can further fine-tune the feature-label
transformer on labeled data to improve its accuracy. After
the model converges, we use the feature-label transformer to
make final predictions on unlabeled nodes.

4 Experiments
We evaluate the effectiveness of our approach on differ-
ent benchmark datasets. Specifically, our evaluation centers
around three questions: (i) can Meta-PN outperform state-of-
the-art GNN models when labeled data is extremely sparse?
(ii) compared with the state-of-the-art GNNs, can Meta-PN
achieve competitive performance under the standard semi-
supervised setting? and (iii) when the data-scale goes large,
how would Meta-PN perform compared to other methods?

4.1 Experimental Setup
Evaluation Datasets. We conduct experiments on five graph
benchmark datasets for semi-supervised node classification

Dataset # Nodes # Edges # Features # Classes

Cora-ML 2,810 7,981 2,879 7
CiteSeer 2,110 3,668 3,703 6
PubMed 19,717 44,324 500 3
MS-CS 18,333 81,894 6,805 15
ogbn-arxiv 169,343 1,166,243 15 40

Table 1: Summary statistics of the evaluation datasets.

to demonstrate the effectiveness of the proposed Meta-PN.
The detailed statistics of the datasets are summarized in Ta-
ble 1. Specifically, Cora-ML, CiteSeer (Sen et al. 2008) and
PubMed (Namata et al. 2012) are the three most widely used
citation networks. MS-CS is a co-authorship network based
on the Microsoft Academic Graph (Shchur et al. 2018). For
data splitting, we follow the previous work (Klicpera, Bo-
jchevski, and Günnemann 2019) and split each dataset into
training set (i.e., K nodes per class for K-shot task), valida-
tion set and test set. In addition, to further evaluate the perfor-
mance of different methods on large-scale graphs, we further
include the ogbn-arxiv datasets from Open Graph Bench-
mark (OGB) (Hu et al. 2020). For the ogbn-arxiv dataset, we
randomly sample 1.0%, 1.5%, 2.0%, 2.5% nodes from its
training splits as labeled data while using the same validation
and test splits in OGB Benchmark (Hu et al. 2020). Note that
for all the datasets, we run each experiment 100 times with
multiple random splits and different initializations.

Compared Methods. To corroborate the effectiveness of our
approach, three categories of baselines are included in our
experiments: (i) Classical Models. MLP, LP (Label Propaga-
tion) (Zhou et al. 2004) are two classical models using only
feature and structure information, respectively. GCN (Kipf
and Welling 2017) and SGC (Wu et al. 2019) are two rep-
resentative GNN models. Due to the space limit, we omit
some baselines like GAT, GraphSAGE since similar results
can be observed; (ii) Label-efficient GNNs. GLP (General-
ized Label Propagation) and IGCN (Improved GCN) (Li
et al. 2019b) are two models combine label propagation and
GCN from a unifying graph filtering perspective. M3S (Sun,
Lin, and Zhu 2020) is a multi-stage self-training framework,
which incorporates self-supervised learning to improve the
model performance with few labeled nodes; (iii) Deep GNNs.
APPNP (Klicpera, Bojchevski, and Günnemann 2019) decou-
ples prediction and propagation with performing personalized
propagation of neural predictions, while DAGNN (Liu, Gao,
and Ji 2020) adaptively incorporate information from large
receptive fields. C&S (Huang et al. 2021) is an effective
model that combines label propagation and simple neural
networks. GPR-GNN (Chien et al. 2021) addresses the limi-
tation of APPNP on different types of graphs with adaptive
propagation weights.

Implementation Details. All our experiments are conducted
with a 12 GB Ti-tan Xp GPU. The proposed Meta-PN is im-
plemented in PyTorch. We use a 2-layer MLP with 64 hidden
units for the feature-label transformer. We set the batch size
to 1,024 for Cora-ML and Citeseer, and 4,096 for the other
datasets. We apply L2 regularization with λ = 0.005 on the
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Method Cora-ML CiteSeer PubMed MS-CS
3-shot 5-shot 3-shot 5-shot 3-shot 5-shot 3-shot 5-shot

MLP 41.07± 0.76 51.12± 0.61 43.34± 0.56 44.90± 0.60 56.59± 0.93 59.90± 0.84 70.33± 0.37 79.41± 0.31
LP 62.07± 0.71 68.01± 0.62 54.07± 0.59 55.73± 1.19 58.75± 0.89 59.91± 0.85 57.96± 0.69 62.98± 0.61
GCN 48.02± 0.89 67.32± 1.02 53.60± 0.86 62.60± 0.58 58.89± 0.80 65.77± 0.98 69.24± 0.94 84.43± 0.89
SGC 49.60± 0.55 67.24± 0.86 57.37± 0.98 61.55± 0.53 63.37± 0.93 64.93± 0.81 72.11± 0.76 87.51± 0.27

GLP 65.57± 0.26 71.26± 0.31 65.76± 0.49 71.36± 0.18 65.34± 0.54 65.26± 0.29 86.10± 0.21 86.94± 0.23
IGCN 66.60± 0.29 72.50± 0.20 67.47± 0.29 72.92± 0.10 62.28± 0.23 65.19± 0.13 85.83± 0.06 87.01± 0.05
M3S 64.66± 0.31 69.64± 0.18 65.12± 0.20 68.18± 0.18 63.40± 0.32 68.85± 0.26 84.96± 0.18 86.83± 0.29

APPNP 72.39± 0.98 78.32± 0.58 67.55± 0.77 71.08± 0.61 70.52± 0.62 74.24± 0.87 86.65± 0.42 90.13± 0.86
DAGNN 71.86± 0.75 77.20± 0.69 66.62± 0.27 70.55± 0.12 71.22± 0.82 73.91± 0.71 86.32± 0.57 90.30± 0.66
C&S 68.93± 0.68 73.37± 0.24 63.02± 0.72 64.72± 0.53 70.51± 0.57 73.22± 0.57 85.86± 0.45 87.99± 0.24
GPR-GNN 70.98± 0.84 75.18± 0.52 64.32± 0.81 65.28± 0.52 71.03± 0.73 74.08± 0.65 86.12± 0.37 90.29± 0.38

Meta-PN 74.94 ± 0.25 79.88 ± 0.15 70.48 ± 0.34 74.14 ± 0.50 73.25 ± 0.77 77.78 ± 0.92 88.99 ± 0.29 91.31 ± 0.22

Table 2: Test accuracy on few-shot semi-supervised node classification: mean accuracy (%) ± 95% confidence interval.

weights of the first neural layer and set the dropout rate for
both neural layers to be 0.3. For methods based on label prop-
agation, we use K = 10 power iteration (propagation) steps
by default. To make a fair comparison, we let all the config-
urations of the baselines be the same as Meta-PN including
neural network layers, hidden units, regularization, propaga-
tion steps, early stopping and initialization. We use Adam to
optimize the baseline methods as suggested and fine-tune for
the corresponding learning rate on different datasets.

4.2 Evaluation Results
Few-shot Semi-supervised Evaluation. First, we evaluate
the proposed approach Meta-PN and all the baseline meth-
ods on few-shot semi-supervised node classification, which
aims to predict the missing node labels with only a few la-
beled nodes. The average test accuracies under the few-shot
setting (i.e., 3-shot and 5-shot) can be found in Table 2. Ad-
ditional results are provided in our extended version due to
the space limit. From the reported results, we can clearly see
that Meta-PN significantly outperforms all the baseline meth-
ods on each dataset based on paired t-tests with p < 0.05.
Specifically, we elaborate our in-depth observations and anal-
ysis as follows: (i) without abundant labeled data, classi-

Method Cora-ML CiteSeer PubMed MS-CS

MLP 68.42± .34 63.98± .44 69.47± .47 88.30± .13
LP 75.74± .27 65.62± .43 69.82± .70 72.03± .25
GCN 82.70± .37 73.62± .39 76.84± .44 91.10± .20
SGC 75.97± .72 75.57± .28 71.24± .86 90.56± .14

GLP 81.67± .14 75.21± .14 78.95± .09 91.85± .04
IGCN 82.11± .09 75.22± .10 79.06± .07 91.60± .03
M3S 82.72± .13 73.73± .32 77.62± .11 91.08± .09

APPNP 85.09± .25 75.73± .30 79.73± .31 91.74± .16
DAGNN 85.65± .23 74.53± .17 79.59± .37 92.80± .17
C&S 83.18± .31 70.51± .24 77.10± .34 92.49± .19
GPR-GNN 83.53± .31 71.18± .25 79.62± .46 92.57± .21

Meta-PN 86.33 ± .36 77.13 ± .31 80.39 ± .53 93.92 ± .17

Table 3: Test accuracy on standard semi-supervised node
classification: mean accuracy (%) ± 95% confidence interval.

cal models including vanilla GNNs only obtain very poor
classification accuracy under different evaluation entries; (ii)
overall the label-efficient GNNs outperform classical GNNs,
but still cannot achieve satisfying results. One major rea-
son is that those methods cannot handle the oversmoothing
issue since they are incapable of explicitly leveraging the
knowledge from large receptive fields; (iii) by enabling better
propagation of label signals, deep GNNs have stronger per-
formance than both the classical models and label-efficient
GNNs, which again demonstrates the necessity of address-
ing the oversmoothing issue for solving the few-shot semi-
supervised learning problem. However, existing deep GNNs
are not specifically developed to tackle the data sparsity issue,
thus their performance still falls behind Meta-PN by a notice-
able margin on different datasets when only very few labels
are available. This observation proves that Meta-PN is able
to address the overfitting and oversmoothing issues when
labeled data is extremely sparse by combining the power of
large receptive fields and pseudo labels.
Standard Semi-supervised Evaluation. To make our eval-
uation more comprehensive, we then examine the effective-
ness of Meta-PN under the standard semi-supervised node
classification tasks. As in (Klicpera, Bojchevski, and Gün-
nemann 2019), we randomly sample 20 labeled nodes for
each class (i.e., 20-shot) as the training set. According to the
average performance reported in Table 3, we make the follow-
ing observations: (i) the GNN models which combine both
the structure and feature knowledge from labeled nodes can
obtain improved node classification performance compared
to methods which only consider feature or structure infor-
mation individually; (ii) under the standard semi-supervised
node classification task, the performance of the label-efficient
GNNs are close to vanilla GNNs; (iii) though Meta-PN is
mainly proposed for few-shot semi-supervised learning, it
still achieves the best performance for the standard semi-
supervised node classification task, illustrating the superiority
of our graph approach.
Evaluation on Open Graph Benchmark (OGB). Real-
world graphs commonly have a larger size and more node
classes than many toy graphs, leading to the collected graphs
having noisy structures and complex properties. To further
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Figure 2: Comparison results on ogbn-arxiv w.r.t different size of training labels.
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Figure 3: Few-shot (i.e., 5-shot or 1.0% label ratio) evaluation on different datasets w.r.t. propagation steps (K).

illustrate the effectiveness of our approach on large-scale real-
world graphs, we adopt the widely used ogbn-arxiv dataset
and compare all the methods under the few-shot setting (i.e.,
from 1% to 2.5% label ratio). We summarize their perfor-
mance for few-shot semi-supervised node classification on
ogbn-arxiv in Figure 2 by changing the ratio of training labels,
in which we omit MLP as its test accuracy is much lower than
the other methods. We can observe that Meta-PN can signif-
icantly outperform all the baseline models under different
few-shot environments. Compared to the other baseline meth-
ods, the performance of Meta-PN is relatively stable when
we decrease the ratio of training labels, which demonstrates
the robustness of Meta-PN in handling noisy and complex
real-world graphs. Remarkably, our approach can achieve
close performance to the vanilla GCN on ogbn-arxiv with
much fewer labeled nodes (2.5% vs. 54%).

Parameter & Ablation Analysis. To demonstrate the effects
of using different propagation steps and the importance of
the meta-leaned label propagation strategy for Meta-PN, we
compare our approach with two baselines under the 5-shot
(or 1.0% label ratio for ogbn-arxiv) semi-supervised setting
with varying number of propagation steps. Specifically, GCN
learns the node representation with the standard message-
passing scheme while Static-LP representing the variant of
Meta-PN that uses fixed teleport probabilities instead of meta-
learned ones. The evaluation results are shown in Figure 3. As
we can observe from the figure, GCN can achieve very close
performance with the other two methods when the number
of propagation steps is relatively small. While if we largely
increase the number of propagation steps, the performance of

GCN breaks down due to the oversmoothing issue. Empow-
ered by the idea of label propagation, Static-LP can largely
alleviate the oversmoothing issue and significantly outper-
form GCN. This verifies that larger propagation steps or
receptive fields are necessary for improving the performance
of GNN when labeled data is extremely limited. In the mean-
time, Static-LP still falls behind Meta-PN, mainly because
of the infeasibility of balancing the importance of different
receptive fields. On the contrary, Meta-PN is able to address
this issue by inferring optimal pseudo labels on unlabeled
nodes with our meta-learning algorithm. Its performance be-
comes stable when K ≥ 10, indicating that Meta-PN can
obtain good performance considering both efficiency and
effectiveness with a moderate number of propagation steps
(e.g., K = 10).

5 Conclusion
In this paper, we propose a new graph meta-learning frame-
work, Meta Propagation Networks (Meta-PN), for solving
the problem of few-shot semi-supervised node classification.
Based on the meta-learned label propagation strategy, we
are able to generate informative pseudo labels on unlabeled
nodes, in order to augment the insufficient labeled data and
learn a powerful GNN model. Though built with simple neu-
ral networks, Meta-PN effectively enables larger receptive
fields and avoids oversmoothing when learning with very few
labeled data. We test Meta-PN on a spectrum of benchmark
datasets and the results well demonstrate its effectiveness.
For future work, it would be interesting to investigate other
pseudo-labeling strategies for solving the studied problem.
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