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Abstract

Gradient temporal difference (Gradient TD) algorithms are
a popular class of stochastic approximation (SA) algorithms
used for policy evaluation in reinforcement learning. Here,
we consider Gradient TD algorithms with an additional heavy
ball momentum term and provide choice of step size and mo-
mentum parameter that ensures almost sure convergence of
these algorithms asymptotically. In doing so, we decompose
the heavy ball Gradient TD iterates into three separate iterates
with different step sizes. We first analyze these iterates under
one-timescale SA setting using results from current literature.
However, the one-timescale case is restrictive and a more gen-
eral analysis can be provided by looking at a three-timescale
decomposition of the iterates. In the process we provide the
first conditions for stability and convergence of general three-
timescale SA. We then prove that the heavy ball Gradient TD
algorithm is convergent using our three-timescale SA analysis.
Finally, we evaluate these algorithms on standard RL prob-
lems and report improvement in performance over the vanilla
algorithms.

Introduction
In reinforcement learning (RL), the goal of the learner or the
agent is to maximize its long term accumulated reward by
interacting with the environment. One important task in most
of RL algorithms is that of policy evaluation. It predicts the
average accumulated reward an agent would receive from a
state (called value function) if it follows the given policy. In
model-free learning, the agent does not have access to the
underlying dynamics of the environment and has to learn the
value function from samples of the form (state, action, reward,
next-state). Two very popular algorithms in the model-free
setting are Monte-Carlo (MC) and temporal difference (TD)
learning (see Sutton and Barto (2018), Sutton (1988)). It
is a well known fact that TD learning diverges in the off-
policy setting (see Baird (1995)). A class of algorithms called
gradient temporal difference (Gradient TD) were introduced
in (Sutton, Maei, and Szepesvári 2009) and (Sutton et al.
2009) which are convergent even in the off-policy setting.
These algorithms fall under a larger class of algorithms called
linear stochastic approximation (SA) algorithms.
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A lot of literature is dedicated to studying the asymptotic
behaviour of SA algorithms starting from the work of (Rob-
bins and Monro 1951). In recent times, the ODE method to
analyze asymptotic behaviour of SA (Ljung 1977; Kushner
and Clark 1978; Borkar 2008; Borkar and Meyn 2000) has
become quite popular in the RL community. The Gradient
TD methods were shown to be convergent using the ODE
approach. A generic one-timescale (One-TS) SA iterate has
the following form:

xn+1 = xn + a(n)
(
h(xn) +Mn+1

)
, (1)

where xn ∈ Rd1 , ∀n ≥ 0 are the iterates. The function
h : Rd1 → Rd1 is assumed to be Lipschitz continuous.Mn+1

is a Martingale difference noise sequence and a(n) is the
step-size at time-step n. Under some mild assumptions, the
iterate given by (1) converges (see Borkar 2008; Borkar and
Meyn 2000). When h is a linear map of the form b−Axn, the
matrixA is often called the driving matrix. The three Gradient
TD algorithms: GTD (Sutton, Maei, and Szepesvári 2009),
GTD2 and TDC (Sutton et al. 2009) consist two iterates of
the following form:

xn+1 = xn + a(n)
(
h(xn, yn) +M

(1)
n+1

)
, (2)

yn+1 = yn + b(n)
(
g(xn, yn) +M

(2)
n+1

)
, (3)

where xn ∈ Rd1 , yn ∈ Rd2 , ∀n ≥ 0. See the next section for
exact form of the iterates. The two iterates still form a One-
TS SA scheme if limn→∞

b(n)
a(n) = c, where c is a constant

and a two-timescale (Two-TS) scheme if limn→∞
b(n)
a(n) = 0.

Separately, adding a momentum term to accelerate the
convergence of iterates is a popular technique in stochastic
gradient descent (SGD). The two most popular schemes are
the Polyak’s Heavy ball method (Polyak 1964), and Nes-
terov’s accelerated gradient method (Nesterov 1983). A lot
of literature is dedicated to studying momentum with SGD.
Some recent works include (Ghadimi, Feyzmahdavian, and
Johansson 2014; Loizou and Richtárik 2020; Gitman et al.
2019; Ma and Yarats 2019; Assran and Rabbat 2020). Mo-
mentum in the SA setting, which is the focus of the current
work, has limited results. Very few works study the effect
of momentum in the SA setting. A recent work by (Mou
et al. 2020) studies SA with momentum briefly and shows an
improvement of mixing rate. However, the setting considered
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is restricted to linear SA and the driving matrix is assumed
to be symmetric. Further, the iterates involve an additional
Polyak-Ruppert averaging (Polyak 1990). Here, in contrast,
we analyze the asymptotic behaviour of the algorithm and
make none of the above assumptions. A somewhat distant
paper is by (Devraj, Bušı́ć, and Meyn 2019) that introduces
Matrix momentum in SA and is not equivalent to heavy ball
momentum.

A very recent work by (Avrachenkov, Patil, and Thoppe
2020) studied One-TS SA with heavy ball momentum in the
univariate case (i.e., d1 = 1 in iterate (1)) in the context of
web-page crawling. The iterates took the following form:

xn+1 = xn+a(n) (h(xn) +Mn+1)+ηn(xn−xn−1). (4)

The momentum parameter ηn was chosen to decompose the
iterate into two recursions of the form given by (2) and (3).
We use such a decomposition for Gradient TD methods with
momentum. This leads to three separate iterates with three
step-sizes. We analyze these three iterates and provide sta-
bility (iterates remain bounded throughout) and almost sure
(a.s.) convergence guarantees.

Our Contribution
• We first consider the One-TS decomposition of Gradient

TD with momentum iterates and show that the driving ma-
trix is Hurwitz (all eigen values are negative). Thereafter
we use the theory of One-TS SA to show that the iterates
are stable and convergent to the same TD solution.

• Next, we consider the Three-TS decomposition. We pro-
vide the first stability and convergence conditions for gen-
eral Three-TS recursions. We then show that the iterates
for Gradient TD with momentum satisfy these conditions.

• Finally, we evaluate these algorithms for different choice
of step-size and momentum parameters on standard RL
problems and report an improvement in performance over
their vanilla counterparts.

Preliminaries
In the standard RL setup, an agent interacts with the envi-
ronment modelled as a Markov Decision Process (MDP). At
each discrete time step t, the agent is in state st ∈ S, takes an
action at ∈ A, receives a reward rt+1 ≡ r(st, at, st+1) ∈ R
and moves to another state st+1 ∈ S . Here S and A are finite
sets of possible states and actions respectively. The transi-
tions are governed by a kernel P. A policy π : S×A → [0, 1]
is a mapping that defines the probability of picking an action
in a state. We let Pπ(s′|s) be the transition probability matrix
induced by π. Also, {dπ(s)}s∈S represents the steady-state
distribution for the Markov chain induced by π and the matrix
D is a diagonal matrix of dimension n× n with the entries
dπ(s) on its diagonals. The state-value function associated
with a policy π for state s is

V π(s) = Eπ

[ ∞∑
t=0

γtrt+1|s0 = s

]
,

where γ ∈ [0, 1) is the discount factor.

In the linear architecture setting, policy evaluation deals
with estimating V π(s) through a linear model Vθ(s) =
θTϕ(s), where ϕ(s) ≡ ϕs is a feature associated with the
state s, and θ is the parameter vector. We define the TD-error
as δt = rt+1 + γθTt ϕt+1 − θTt ϕt and Φ as an n × d matrix
where the sth row is ϕ(s)T . In the i.i.d setting it is assumed
that the tuple (ϕt, ϕ

′
t) (where ϕt+1 ≡ ϕ′t ) is drawn indepen-

dently from the stationary distribution of the Markov chain
induced by π. Let Ā = E[ϕt(γϕ′t−ϕt)T ] and b̄ = E[rt+1ϕt],
where the expectations are w.r.t. the stationary distribution
of the induced chain. The matrix Ā is negative definite (see
Maei (2011); Tsitsiklis and Van Roy (1997)). In the off-policy
case, the importance weight is given by ρt =

π(at|st)
µ(at|st) , where

π and µ are the target and behaviour policies respectively.
Introduced in (Sutton, Maei, and Szepesvári 2009), Gradient
TD are a class of TD algorithms that are convergent even in
the off-policy setting. Next, we present the iterates associ-
ated with the algorithms GTD (Sutton, Maei, and Szepesvári
2009), GTD2, TDC (Sutton et al. 2009).
1. GTD:

θt+1 = θt + αt(ϕt − γϕ′t)ϕ
T
t ut, (5)

ut+1 = ut + βt(δtϕt − ut). (6)

2. GTD2:

θt+1 = θt + αt(ϕt − γϕ′t)ϕ
T
t ut, (7)

ut+1 = ut + βt(δt − ϕTt ut)ϕt. (8)

3. TDC:

θt+1 = θt + αtδtϕt − αtγϕ
′
t(ϕ

T
t ut), (9)

ut+1 = ut + βt(δt − ϕTt ut)ϕt. (10)

The objective function for GTD is Norm of Expected Error
defined as NEU(θ) = E[δϕ]. The GTD algorithm is de-
rived by expressing the gradient direction as − 1

2∇NEU(θ)

= E
[
(ϕ− γϕ′)ϕT

]
E[δ(θ)ϕ]. Here ϕ′ ≡ ϕ(s′). If both the

expectations are substituted by samples, then the overall term
would be biased by their correlation. Therefore, an estimate
of the second expectation is maintained as a long-term quasi-
stationary estimate (see (5)) and the first expectation is sam-
pled (see (6)). For GTD2 and TDC, a similar approach is used
on the objective function Mean Square Projected Bellman
Error defined as MSPBE(θ) = ∥Vθ − ΠTπVθ∥D. Here,
Π is the projection operator that projects vectors to the sub-
space {Φθ|θ ∈ Rd} and Tπ is the Bellman operator defined
as TπV = Rπ + γPπV . As originally presented, GTD and
GTD2 are one-timescale algorithms (αt

βt
is constant) while

TDC is a two-timescale algorithm (αt

βt
→ 0). In all the three

schemes, θn → θ∗ = −Ā−1b̄.

Gradient TD with Momentum
Although, Gradient TD starts with a gradient descent based
approach, it ends up with Two-TS SA recursions. Momentum
methods are known to accelerate the convergence of SGD
iterates. Motivated by this, we examine momentum in the SA
setting, and ask if the SA recursions for Gradient TD with

6489



momentum even converge to the same TD solution. We probe
the heavy ball extension of the three Gradient TD algorithms
where, we keep an accumulation of the previous gradient val-
ues in ζt. Then, at time step t+1 the new gradient multiplied
by the step size is added to the current accumulation vector
ζt multiplied by the momentum parameter ηt as:

ζt+1 = ηtζt + αt(ϕt − γϕ′t)ϕ
T
t ut.

The parameter θ is then updated in the direction ζt+1, i.e.,
θt+1 = θt+ζt+1. Since ut+1 is computed as a long-term esti-
mate of E[δ(θ)ϕ], its update rule remains same. The momen-
tum parameter ηt is usually set to a constant in the stochastic
gradient setting. An exception to this can however be found
in (Gitman et al. 2019; Gadat, Panloup, and Saadane 2016),
where ηt → 1. Here, we consider the latter case. Substituting
ζt+1 into the iteration of θt+1 and noting that ζt = θt− θt−1,
GTD with momentum (GTD-M) can be written as:

θt+1 = θt + αt(ϕt − γϕ′t)ϕ
T
t ut + ηt(θt − θt−1), (11)

ut+1 = ut + βt(δtϕt − ut). (12)
Similarly the iterates for GTD2-M are given by:

θt+1 = θt + αt(ϕt − γϕ′t)ϕ
T
t ut + ηt(θt − θt−1), (13)

ut+1 = ut + βt(δt − ϕTt ut)ϕt. (14)
Finally, the iterates for TDC-M are given by:

θt+1 = θt + αt(δtϕt − γϕ′t(ϕ
T
t ut)) + ηt(θt − θt−1),

(15)
ut+1 = ut + βt(δt − ϕTt ut)ϕt. (16)

We choose the momentum parameter ηt as in (Avrachenkov,
Patil, and Thoppe 2020) as follows: ηt = ϱt−wαt

ϱt−1
, where

{ϱt} is a positive sequence s.t. ϱt → 0 as t→ ∞ and w ∈ R
is a constant. Note that ηt → 1 as t→ ∞. We later provide
conditions on ϱt and w to ensure a.s. convergence. As we
would see in the next section, the condition on w in the One-
TS setting is restrictive. Specifically, it depends on the norm
of the driving matrix Ā. This motivates us to look at the
Three-TS setting and then the corresponding condition on w
is less restrictive. Using the momentum parameter as above,

θt+1 = θt + αt(ϕt − γϕ′t)ϕ
T
t ut +

ϱt − wαt

ϱt−1
(θt − θt−1)

Rearranging the terms and dividing by ρt, we get:

θt+1 − θt
ϱt

=
θt − θt−1

ϱt−1

+
αt

ϱt

(
(ϕt − γϕ′t)ϕ

T
t ut − w

(
θt − θt−1

ϱt−1

))
.

We let θt+1−θt
ϱt

= vt+1, ξt =
αt

ϱt
and εt = vt+1 − vt. Then,

the GTD-M iterates in (11) and (12) can be re-written with
the following three iterates:

vt+1 = vt + ξt
(
(ϕt − γϕ′t)ϕ

T
t ut − wvt

)
(17)

ut+1 = ut + βt(δtϕt − ut) (18)
θt+1 = θt + ϱt(vt + εt) (19)

A similar decomposition can be done for the GTD2-M and
TDC-M iterates.

The work by (Devraj, Bušı́ć, and Meyn 2019) come closest
to ours in the sense that they look at momentum in stochastic
approximation. Although motivated from Polyak and Nes-
terov’s momentum schemes they explore a different direction
where instead of a scalar momentum parameter, they consider
a matrix momentum parameter.

Convergence Analysis
In this section we analyze the asymptotic behaviour of the
GTD-M iterates given by (17), (18) and (19). Throughout
the section, we consider vt, ut, θt ∈ Rd. We first consider
the One-TS case when βt = c1ξt and ϱt = c2ξt ∀t, for
some real constants c1, c2 > 0. Subsequently, we consider
the Three-TS setting where βt

ξt
→ 0 and ϱt

βt
→ 0 as t→ ∞.

One-Timescale Setting
We begin by analyzing GTD-M using a one-timescale SA
setting. We let c1 = c2 = 1 for simplicity. The iterates of
GTD-M can then be re-written as:

ψt+1 = ψt + ξt(Gtψt + gt + εt), (20)
where,

ψt =

(
vt
ut
θt

)
, gt =

(
0

rt+1ϕt
0

)
, ε̄t =

(
0
0
εt

)
,

Gt =

−wI (ϕt − γϕ′t)ϕ
T
t 0

0 −I ϕt(γϕ
′
t − ϕt)

T

I 0 0

 .

Equation (20) can be re-written in the general SA scheme as:

ψt+1 = ψt + ξt(h(ψt) +Mt+1 + ε̄t). (21)
Here h(ψ) = g + Gψ, g = E[gt], G = E[Gt], where
the expectations are w.r.t. the stationary distribution of the
Markov chain induced by the target policy π. Mt+1 =
(Gt+1 −G)ψt + (gt+1 − g). In particular,

G =

−wI −ĀT 0
0 −I Ā
I 0 0

 , g =

0
b̄
0

 ,

where recall that Ā = E[ϕ(γϕ′ − ϕ)T ] and b̄ = E[rϕ]
Lemma 1. Assume w(w + 1) > ∥Ā∥2. Then G is Hurwitz.

Proof. Let λ be an eigenvalue of G. The characteristic equa-
tion of the matrix G is given by:∣∣∣∣∣∣

−wI − λI −ĀT 0
0 −I − λI Ā
I 0 −λI

∣∣∣∣∣∣ = 0

∣∣∣∣∣∣
wI + λI ĀT 0

0 I + λI −Ā
−I 0 λI

∣∣∣∣∣∣ = 0

Using the formula for determinant of block matrices∣∣∣∣∣A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣ =
|A11|

∣∣∣∣(A22 A23

A32 A33

)
−
(
A21

A31

)
A−1

11 (A12 A13)

∣∣∣∣
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we have, ∣∣∣∣∣∣
wI + λI ĀT 0

0 I + λI −Ā
−I 0 λI

∣∣∣∣∣∣ =
|(w + λ)I|

∣∣∣∣(I + λI −Ā
0 λI

)
− 1

w+λ

(
0
−I

)(
ĀT 0

)∣∣∣∣
= (w + λ)d

∣∣∣∣I + λI −Ā
ĀT

w+λ λI

∣∣∣∣
= (w + λ)d |(1 + λ)I|

∣∣∣λI + 1
(1+λ)(w+λ) Ā

T Ā
∣∣∣

=
(w + λ)d(1 + λ)d

(w + λ)d(1 + λ)d
∣∣λ(1 + λ)(w + λ)I + ĀT Ā

∣∣
=
∣∣λ(1 + λ)(w + λ)I + ĀT Ā

∣∣
Therefore, from the characteristic equation of G, we have,∣∣λ(1 + λ)(w + λ)I + ĀT Ā

∣∣ = 0. There must exist a non-
zero vector x ∈ Cd, such that x∗(λ(1 + λ)(w + λ)I +
ĀT Ā)x = 0, where x∗ is the conjugate transpose of
the vector x and x∗x = ∥x∥2 > 0. The above equa-
tion reduces to the following cubic-polynomial equation:
λ3∥x∥2 + (w + 1)λ2∥x∥2 + wλ∥x∥2 + ∥Āx∥2 = 0, where
∥Āx∥2 = x∗ĀT Āx. Using Routh-Hurwitz criterion, a cubic
polynomial a3λ3+a2λ2+a1λ+a0 has all roots with negative
real parts iff a3, a2, a1, a0 > 0 and a1a2 > a0a3. In our case,
a3 = ∥x∥2 > 0, a2 = (w + 1)∥x∥2 > 0, a1 = w∥x∥2 >
0 and a0 = ∥Āx∥2 > 0. The last inequality follows from the
fact that Ā is negative definite and therefore x∗ĀT Āx > 0.
Finally, a1a2 = w(w + 1)∥x∥4, a0a3 = ∥x∥2∥Āx∥2 and
a1a2 > a0a3 follows from ∥Āx∥2

∥x∥2 ≤ ∥Ā∥2 < w(w + 1).
Therefore Re(λ) < 0 and the claim follows.

Consider the following assumptions:
A 1. All rewards and features satisfy |r(s, a, s′)| ≤ 1 and
∥ϕ(s)∥ ≤ 1 ∀s, s′ ∈ S, ∀a ∈ A. Also, the matrix Φ has full
rank, where Φ is an n× d matrix where the sth row is ϕ(s)T .
A 2. The step-sizes satisfy ξt = βt = ϱt > 0,∑

t

ξt = ∞,
∑
t

ξ2t <∞ ,where ξt =
αt

ϱt

and the momentum parameter satisfies: ηt = ϱt−wαt

ϱt−1
.

A 3. The samples (ϕt, ϕ′t) are drawn i.i.d from the stationary
distribution of the Markov chain induced by target policy π.
Theorem 2. Assume A1, A2 and A3 hold and let w ≥ 1.
Then, the GTD-M iterates given by (11) and (12) satisfy
θn → θ∗ = −Ā−1b̄ a.s. as n→ ∞.

Proof. Assumption A1 ensures that ∥Ā∥2 < w(w + 1) and
A3 ensures that the function h(·) is well defined. Using
Lemma 1 and (Borkar and Meyn 2000) we can show that (20)
remains stable. Then using the third extension from (Chapter-
2 pp. 17, Borkar (2008)) we can show that ψn → −G−1g as
n → ∞. Thereafter using the formula for inverse of block
matrices it can be shown that θn → −Ā−1b as n→ ∞. See
Appendix A1 in (Deb and Bhatnagar 2021) for a details.

Similar results can be proved for the GTD2-M and TDC-M.

Remark 1. If w is large, the initial values of the momentum
parameter is small. The condition on w in lemma 1 is large
compared to the condition on w in (Avrachenkov, Patil, and
Thoppe 2020), where the condition is w > 0. Motivated by
this, we look at the three-TS decomposition of the iterates.

Three Timescale Setting
We consider the three iterates for GTD-M in (17), (18) and
(19) under the following criteria for step-sizes: ξt

βt
→ 0 and

ϱt

ξt
→ 0 as t→ ∞. We provide the first conditions for stabil-

ity and a.s. convergence of generic three-TS SA recursions.
We emphasize that the setting we look at in Theorem 3 is
more general than the setting at hand of GTD-M iterates.
Although stability and convergence results exist for One-TS
and Two-TS cases, this is the first time such results have
been provided for the case of three-TS recursions. We next
provide the general iterates for a three-TS recursion along
with the assumptions used while analyzing them. Consider
the following three iterates:

xn+1 = xn+a(n)
(
h(xn, yn, zn) +M

(1)
n+1 + ε(1)n

)
, (22)

yn+1 = yn + b(n)
(
g(xn, yn, zn) +M

(2)
n+1 + ε(2)n

)
, (23)

zn+1 = zn + c(n)
(
f(xn, yn, zn) +M

(3)
n+1 + ε(3)n

)
, (24)

and the following assumptions:
(B1) h : Rd1+d2+d3 → Rd1 , g : Rd1+d2+d3 → Rd2 , f :

Rd1+d2+d3 → Rd3 are Lipchitz continuous, with Lipchitz
constants L1, L2 and L3 respectively.

(B2) {a(n)}, {b(n)}, {c(n)} are step-size sequences that
satisfy a(n) > 0, b(n) > 0, c(n) > 0, ∀n > 0,∑

n

a(n) =
∑
n

b(n) =
∑
n

c(n) = ∞,∑
n

(a(n)2 + b(n)2 + c(n)2) <∞,

b(n)

a(n)
→ 0,

c(n)

b(n)
→ 0 as n→ ∞.

(B3) {M (1)
n }, {M (2)

n }, {M (3)
n } are Martingale difference se-

quences w.r.t. the filtration {Fn} where,

Fn = σ
(
xm, ym, zm,M

(1)
m ,M (2)

m ,M (3)
m ,m ≤ n

)
.

Further, we assume that

E
[
∥M (i)

n+1∥2|Fn

]
≤ Ki

(
1 + ∥xn∥2 + ∥yn∥2 + ∥zn∥2

)
,

∀n ≥ 0, i = 1, 2, 3 and constants 0 < Ki < ∞. The
terms ε(i)t satisfy ∥ε(1)n ∥+∥ε(2)n ∥+∥ε(3)n ∥ → 0 as n→ ∞.

(B4)(i) The ode ẋ(t) = h(x(t), y, z), y ∈ Rd2 , z ∈ Rd3 has
a globally asymptotically stable equilibrium (g.a.s.e)
λ(y, z), and λ : Rd2×d3 → Rd1 is Lipchitz continuous.

(ii) The ode ẏ(t) = g(λ(y(t), z), y(t), z), z ∈ Rd3 has a
globally asymptotically stable equilibrium Γ(z), where
Γ : Rd3 → Rd2 is Lipchitz continuous.

(iii) The ode ż(t) = f(λ(Γ(z(t)), z(t)),Γ(z(t)), z(t)), has
a globally asymptotically stable equilibrium z∗ ∈ Rd3 .
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(B5) The functions hc(x, y, z) = h(cx,cy,cz)
c , c ≥ 1 sat-

isfy hc → h∞ as c → ∞ uniformly on compacts.
The ODE: ẋ(t) = h∞(x(t), y, z), has a unique glob-
ally asymptotically stable equilibrium λ∞(y, z), where
λ∞ : Rd2+d3 → Rd1 is Lipschitz continuous. Further,
λ∞(0, 0) = 0.

(B6) The functions gc(y, z) =
g(cλ∞(y,z),cy,cz)

c , c ≥ 1 sat-
isfy gc → g∞ as c → ∞ uniformly on compacts. The
ODE: ẏ(t) = g∞(y(t), z), has a unique globally asymp-
totically stable equilibrium Γ∞(z), where Γ∞ : Rd3 →
Rd2 is Lipschitz continuous. Further, Γ∞(0) = 0.

(B7) The functions fc(z) =
g(cλ∞(Γ∞(z),z),cΓ∞(z),cz)

c , c ≥
1 satisfy fc → f∞ as c → ∞ uniformly on compacts.
The ODE: ż(t) = f∞(z(t)), has the origin in Rd3 as its
unique globally asymptotically stable equilibrium.

Remark 2. Conditions (B5)-(B7) (along with (B1)-(B3))
give sufficient conditions that ensure that the iterates re-
main stable. Specifically it ensures that supn(∥xn∥+ ∥yn∥+
∥zn∥) <∞ a.s. Conditions (B1)-(B4) along with the stabil-
ity of iterates ensures a.s. convergence of the iterates.
Theorem 3. Under assumptions (B1)-(B7),the iterates
given by (22), (23) and (24), satisfy

(xn, yn, zn) → (λ(Γ(z∗), z∗),Γ(z∗), z∗) a.s. as n→ ∞

Proof. See Appendix A2 in (Deb and Bhatnagar 2021).

Next we use theorem 3, to show that the iterates of GTD-
M a.s. converge to the TD solution −Ā−1b̄. Consider the
following assumption on step-size sequences instead of A 2.
A 4. The step-sizes satisfy ξt > 0, βt > 0, ϱt > 0 ∀t,∑

t

ξt =
∑
t

βt =
∑
t

ϱt = ∞,
∑
t

(ξ2t + β2
t + ϱ2t ) <∞,

βt
ξt

→ 0,
ϱt
βt

→ 0 as t→ ∞

and the momentum parameter satisfies: ηt = ϱt−wαt

ϱt−1
.

Theorem 4. Assume A1, A3 and A4 hold and let w > 0.
Then, the GTD-M iterates given by (11) and (12) satisfy
θn → θ∗ = −Ā−1b̄ a.s. as n→ ∞.

Proof. We transform (17), (18) and (19) into the stan-
dard SA form given by (22), (23) and (24). Let Ft =
σ(u0, v0, θ0, rj+1, ϕj , ϕ

′
j : j < t). Let, At = ϕt(γϕ

′
t−ϕt)T

and bt = rt+1ϕt. Then, (17) can be re-written as:

vt+1 = vt + ξt

(
h(vt, ut, θt) +M

(1)
t+1

)
where, h(vt, ut, θt) = E[(ϕt − γϕ′t)ϕ

T
t ut − wvt|Ft] =

−AT
t ut − wvt − h(vt, ut, θt) = (ĀT − AT

t )ut. Next, (18)
can be re-written as:

ut+1 = ut + βt

(
g(vt, ut, θt) +M

(2)
t+1

)
where, g(vt, ut, θt) = E[δtϕt − ut|Ft] = Āθt + b̄− ut and
M

(2)
t+1 = Atθt+bt−ut−g(vt, ut, θt) = (At−Ā)θt+(bt−b̄).

Finally, (19) can be re-written as:

θt+1 = θt + ϱt

(
f(vt, ut, θt) + εt +M

(3)
t+1

)

where, f(vt, ut, θt) = vt and M (3)
t+1 = 0. The functions

h, g, f are linear in v, u, θ and hence Lipchitz continu-
ous, therefore satisfying (B1). We choose the step-size se-
quences such that they satisfy (B2). One popular choice
is ξt = 1

(t+1)ξ
, βt = 1

(t+1)β
, ϱt = 1

(t+1)ϱ ,
1
2 < ξ <

β < ϱ ≤ 1. Next, M (1)
t+1,M

(2)
t+1 and M

(3)
t+1 t ≥ 0, are

martingale difference sequences w.r.t Ft by construction.
E[∥M (1)

t+1∥2|Ft] ≤ ∥(ĀT −AT
t )∥2∥ut∥2, E[∥M (2)

t+1∥2|Ft] ≤
2(∥(At − Ā)∥2∥θt∥2 + ∥(bt − b̄)∥2). The first part of
(B3) is satisfied with K1 = ∥(ĀT − AT

t )∥2, K2 =
2max(∥At − Ā∥2, ∥bt − b̄∥2) and any K3 > 0. The fact
that K1,K2 < ∞ follows from the bounded features and
bounded rewards assumption in A1. Next, observe that
∥ε(3)t ∥ = ξt∥

(
(ϕt − γϕ′t)ϕ

T
t ut − wvt

)
∥ → 0 since ξt →

0 as t → ∞. For a fixed u, θ ∈ Rd, consider the ODE
v̇(t) = −ĀTu − wv(t). For w > 0, λ(u, θ) = − ĀTu

w
is the unique g.a.s.e, is linear and therefore Lipchitz con-
tinuous. This satisfies (B4)(i). Next, for a fixed θ ∈ Rd,
u̇(t) = Āθ + b̄ − u(t), has Γ(θ) = Āθ + b̄ as its unique
g.a.s.e and is Lipschitz. This satisfies (B4)(ii). Finally, to
satisfy (B4)(iii), consider,

θ̇(t) =
−ĀT Āθ(t)− ĀT b̄

w
.

Since, Ā is negative definite, therefore, −ĀT Ā is nega-
tive definite. Therefore, θ∗ = −Ā−1b̄ is the unique g.a.s.e.
Next, we show that the sufficient conditions for stability of
the three iterates are satisfied. The function, hc(v, u, θ) =
−cĀTu−wcv

c = −ĀTu−wv → h∞(v, u, θ) = −ĀTu−wv
uniformly on compacts as c → ∞. The limiting ODE:
v̇(t) = −ĀTu−wv(t) has λ∞(u, θ) = − ĀTu

w as its unique
g.a.s.e. λ∞ is Lipschitz with λ∞(0, 0) = 0, thus satisfying
assumption (B5). The function, gc(u, θ) = cĀθ+b̄−cu

c =

Āθ − u + b̄
c → g∞(u, θ) = −Āθ − u uniformly on com-

pacts as c → ∞. The limiting ODE u̇(t) = −Āθ − u(t)
has Γ∞(θ) = Āθ as its unique g.a.s.e. Γ∞ is Lipchitz with
Γ∞(0) = 0. Thus assumption (B6) is satisfied. Finally,
fc(θ) =

−cĀT Āθ
cw → f∞ = −ĀT Āθ

w uniformly on compacts

as c → ∞ and the ODE: θ̇(t) = − ĀT Āθ(t)
w has origin as

its unique g.a.s.e. This ensures the final condition (B7). By
theorem 3,(

vt
ut
θt

)
→

λ(Γ(−Ā−1b̄),−Ā−1b̄)
Γ(−Ā−1b̄)
−Ā−1b̄.

 =

 0
0

−Ā−1b̄.


Specifically, θt → −Ā−1b̄.

Similar analysis can be provided for GTD2-M and TDC-M.
See Appendix A3 in (Deb and Bhatnagar 2021) for details.
Remark 3. Convergence with importance-weighting: The
Gradient TD with momentum iterates with importance weight
ρt multiplied with the TD error can also be shown to con-
verge along similar lines. The Martingale noise needs to
substituted with a Markov noise and results along the lines of
(Ramaswamy and Bhatnagar 2019; Karmakar and Bhatna-
gar 2018) can be used to show convergence of these schemes.

6492



Figure 1: RMSPBE (averaged over 100 independent runs) accross episodes for Boyan Chain. The features used are the standard
spiked features of size 4 used in Boyan chain (see (Dann, Neumann, and Peters 2014)).

Figure 2: RMSPBE (averaged over 100 independent runs) across episodes for the 5-State Random Chain problem. The features
used are the Dependent features used in (Sutton et al. 2009).

Experiments
We evaluate the momentum based GTD algorithms defined
in section to four standard problems of policy evaluation
in reinforcement learning namely, Boyan Chain (Boyan
1999), 5-State random walk (Sutton et al. 2009), 19-State
Random Walk (Sutton and Barto 2018) and Random MDP
(Sutton et al. 2009). See Appendix A4 in (Deb and Bhat-
nagar 2021) for a detailed description of the MDP settings
and (Dann, Neumann, and Peters 2014) for details on im-
plementation. We run the three algorithms, GTD, GTD2
and TDC along with their heavy ball momentum variants
in One-TS and Three-TS settings and compare the RMSPBE
(Root of MSPBE) across episodes. Figure-1 to Figure-4 plot
these results. We consider decreasing step-sizes of the form:
ξt = 1

(t+1)ξ
, βt = 1

(t+1)β
, ϱt = 1

(t+1)ϱ , αt = 1
(t+1)α in all

the examples. Table 1 summarizes the different step-size
sequences used in our experiment.

In One-TS setting, we require ξ = β = ϱ. Since ξt = αt

ϱt
,

we must have α = 2ϱ. In the Three-TS setting, ξ < β < ϱ
thus implying, α < ϱ+ β and β < ϱ. Although our analysis
requires square summability: ξ, β, ϱ > 0.5, such choice of
step-size makes the algorithms converge very slowly. Re-
cently, (Dalal et al. 2018a) showed convergence rate results
for Gradient TD schemes with non-square summable step-
sizes also (See Remark 2 of (Dalal et al. 2018a)). Therefore,
we look at non-square summable step-sizes here, and observe
the iterates do converge. The momentum parameter is chosen
as in A2. In all the examples considered, the momentum
methods outperform their vanilla counterparts.

Boyan Chain α β ϱ w
Vanilla 0.25 0.125 - -
One-TS 0.25 0.125 0.125 1

Three-TS 0.25 0.125 0.2 0.1
5-state RW α β ϱ w

Vanilla 0.25 0.125 - -
One-TS 0.25 0.125 0.125 1

Three-TS 0.25 0.125 0.2 0.1
19-State RW α β ϱ w

Vanilla 0.125 0.0625 - -
One-TS 0.125 0.0625 0.0625 1

Three-TS 0.125 0.0625 0.1 0.1
Random Chain α β ϱ w

Vanilla 0.5 0.25 - -
One-TS 0.5 0.25 0.25 1

Three-TS 0.5 0.25 0.3 0.1

Table 1: Choice of step-size parameters

Since, in the Three-TS setting, a lower value of w can be cho-
sen, this ensures that the momentum parameter is not small
in the initial phase of the algorithm as in the One-TS setting.
This in turn helps to reduce the RMSPBE faster in the initial
phase of the algorithm as is evident from the experiments.

Remark 4. Increased Variance: Increase in variance with
momentum schemes is a known fact in the SGD literature and

6493



Figure 3: RMSPBE (averaged over 100 independent runs) accross episodes for the 19-State Random Walk problem. The features
used are an extension of the Dependent features used in (Sutton et al. 2009).

Figure 4: RMSPBE (averaged over 100 independent runs) accross episodes for 20-state Random MDP with 5 random actions.
The features used are Linear random of size 10 (see (Dann, Neumann, and Peters 2014)). For each state, the value of the feature
vector at 10th position is 1 and all the values in all other 9 positions is chosen randomly from 0 to 10 and are then normalized.

is evident in our experiments too. Since there is an added push
at each step the path becomes jittery. A similar reasoning
holds for our algorithms. We expect the initial distribution of
the parameter to have a large co-variance matrix.

Related Work and Conclusion
To the best of our knowledge no previous work has specifi-
cally looked at Gradient TD methods with an added heavy
ball term. The use of momentum specifically in the SA set-
ting is very limited. Section 4.1 of (Mou et al. 2020) does
talk about momentum; however the problem looked at is that
of SGD with momentum and the driving matrix is assumed
to be symmetric (see Appendix H of their paper). We do not
make any such assumption here. The work of (Devraj, Bušı́ć,
and Meyn 2019), indeed looks at momentum in SA setting.
However, they introduce a matrix momentum term which
is not equivalent to heavy ball momentum. Acceleration in
Gradient TD methods has been looked at in (Pan, White, and
White 2017). The authors provide a new algorithm called
ATD and the acceleration is in form of better data efficiency.
However, they do not make use of momentum methods.

In this work we have introduced heavy ball momentum in
Gradient Temporal difference algorithms for the first time.
We decompose the two iterates of these algorithms into three
separate iterates and provide asymptotic convergence guaran-
tees of these new schemes under the same assumptions made
by their vanilla counterparts. Specifically, we show conver-
gence in the One-TS regime as well as Three-TS regime. In

both the cases, the momentum parameter gradually increases
to 1. Three-TS formulation gives us more flexibility in choos-
ing the momentum parameter. Specifically, compared to the
One-TS setting, a larger momentum parameter can be chosen
during the initial phase in the Three-TS case. We observe im-
proved performance with these new schemes when compared
with the original algorithms.

As a step forward from this work, a natural direction would
be to look at more sophisticated momentum methods such as
Nesterov’s accelerated method (Nesterov 1983). Also, here
we only provide the convergence guarantees of these new
momentum methods. A particularly interesting step would be
to quantify the benefits of using momentum in SA settings.
Specifically, it would be interesting to extend weak conver-
gence rate analysis of (Konda and Tsitsiklis 2004; Mokkadem
and Pelletier 2006) to Three-TS regime. For the One-TS ver-
sions, we expect the convergence rate to remain same. In the
Three-TS case, since noise in the third iterate is missing, there
is a possibility of improvement in the convergence rate and
this requires further exploration. Also, extending the recent
convergence rate results in expectation and high probability
of GTD methods (Dalal et al. 2018b; Gupta, Srikant, and
Ying 2019; Kaledin et al. 2019; Dalal, Szorenyi, and Thoppe
2020) to these momentum settings would be interesting works
for the future. Finally a recent work by (Thoppe et al. 2021)
looked at sample complexity of momentum schemes with a
single iterate. It could be interesting to extend these results
to our case.
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